稻瘟病菌(Magnaporthe grisea)致病相关基因的分子标记及克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用近年来发展起来的真菌限制性内切酶介导整合(REMI)插入诱变技术,用含有HygB抗性标记的质粒pUCATPH在稻瘟病菌菌株M131中建立一个转化体系,结果发现用不同的限制酶介导转化,原生质体的转化效率有不同程度的提高,经过多次转化得到639个转化子,对其中的200个转化子进行致病性测定,发现其中6个转化子对一些品种的致病性和原始菌株M131对比发生了变化,即为致病性突变体,同时还观察到部分表型发生变化的表型突变体。
     用DIG辛标记质粒pUCATPH作为探针对6个致病性突变菌株和两个表型突变菌株进行点杂交检测,结果都呈杂交阳性,说明质粒的插入使原始菌株M131的某个致病相关基因或黑色素产生相关基因发生了突变。对这些突变菌株进行rep-PCR分析,发现变菌株的rep-PCR图谱不仅和原始菌株M131相比有一定差异而且相互间也有区别,可以认为这些菌株在分子水平上发生了突变,并且在REMI诱变中质粒插入基因组的位点不同。将其中两个表型突变菌株及rep-PCR图谱差异性较大的两个致病性突变菌株和M131的DNA分别用Hind Ⅲ和EcoR Ⅴ酶切电泳后,以DIG辛标记的质粒为探针进行RFLP分析,结果发现突变菌株中不仅在质粒插入位点有杂交信号,而且在分子量较小处也有强弱不一的信号出现。这些现象可能是质粒多位点串联整合并且整合后发生重组的结果。
     突变菌株01-36对已知含有抗病基因Pita的K1品种致病性发现了变化,根据基因-基因学说,可以推测菌株中无毒基因avr-Pita可能发生了突变。依据已经发表的无毒基因avr-Pita序列设计出引物P1、P2,分别对M131和突变菌株01-36基因组DNA进行PCR扩增,结果都出现一条1100bp左右的扩增带。将M131的扩增片段测序后得到长度为1057bp的序列,并且将所测序列和已知的avr-Pita一段序列比较发现达98%的同源,即该序列为无毒基因的某一段序列,但插入的位点并不在所扩增片段内。另外选取一些来自不同地区的致病性差异较大的稻瘟病菌菌株进行PCR扩增,以M131扩增产物为探针,对各扩增产物进行点杂交分析,结果都为阳性反应,即所有扩增片段都可能和无毒基因avr-Pita有部分同源性。本文通过无毒基因的克隆和分析,对基因-基因学说中病原菌无毒基因和抗病基因互作方式进行了初步探讨。
To perform insertional mutation to tag pathogenicity related gene in Magnaporthe grisea, the pathogen strain Ml31 was used to establish a high-efficient Restriction Enzyme Mediated Integration(REMI) transformation system with the plasmid pUCATPH. The plasmid pUCATPH was linearized by restriction endonucleases Hind III, Sac I, and Kpn I, respectively. Resulted fragments were introduced individually into Ml31 in the presence of corresponding enzymes. Transformation ration was found to be increased by the incorporation of restriction enzymes, while levels of transformation enhancement varied with enzymes.
    Based on pathogenicity and pigment production of 200 transfomants, two transformants with altered phenotypes and six transformants with modified pathogenicity were obtained. DNA dot hybridization analysis revealed that the plasmid DNA was integrated into the fungal genomes in these transformants. Moreover, genes involved in pathogenicity or pigment production experimentally were mutated in these mutants. Rep-PCR fingerprint patterns of the trasformants and M131 revealed that mutants were different from M131, and from one another, suggesting that they have mutated at molecular levels. To determine patterns of the plasmid integration, DNA from four transformants were digested with Hind III and EcoR V ,respectively, and tested by dot hybridization using pUCATPH as the probe. It is found that M131 was not homologous to pUCATPH, and the four transformants all showed many bands of varied sizes. These patterns could result from REMI events, tandem integrations, or a combination of both.
    The transformant 01-36 was nonpathogenic to the rice varity K1 with resistance gene Pita, which was different from M131. It could be deduced that avirulence gene avr-Pita might had mutated in the transformant 01-36. The genome DNA of the strains 01-36 and M131 was PCR amplified using a couple of primers PI and P2 designed according to the sequence of avirulence gene avr-Pita, and a 1057bp fragment was obtained. The amplified
    
    
    band from M131 was sequenced and then aligned with the sequence of avr-Pila gene. The result was that the sequence was 98% homologous to one fragment of avr-Pita sequence, but the integration site was not within this fragment. The other amplified fragments of the strains those are incompatible to Kl and from different regions, was subjected to dot hybridization analysis with the probe of tagged avr-Pita. Positive responses showed that they all could included homologous fragments to avr-Pita gene. The interaction fashions between avirulence genes and resistant genes were pilot studied.
引文
1. Adachi K, Hamer J E. Divergent cAMP singal Pathway regulate growth and pathogenesis in the rice blast fungus, Magnaporthe grisea. Plant Cell. 1998,10:1361-1373
    2. Balhadere P V, Talbot N J. Fungal pathogenicity-establishing infection. In: Dickson M(ed.) Molecular Plant Pathology.2000, vol.4:1-25
    3. Balhadere P V, Talbot N J. FDE1 encodes a P-ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Plant Cell. 2001.13:1987-2004
    4. Bryan, G. T., Wu, K., Farrall, L et al. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell. 2000,12:2033-2046
    5. Chen D, Zeigler R S, Leung H, et al. Population structure of Pyricularia grisea at two screening sites in the Philippines. Phytopathology. 1995a, 85(9): 1011-1020
    6. Chen D, Ling Z. Pathotypic analysis of Pyricularia grisea using two sets of near-isogenic lines. Int. Rice Res. Notes 1995b,20:13-14
    7. Chu O M Y, Li H W. Cytological studies of Pyricularia oryzae Cav. Bot. Bull. Acad. Sin. 1965,6:116-130
    8. Chumley F G and Valent B. Genetic analysis of melanin-deficient, non-pathogenic mutants of Magnaporthe grisea. Molecular Plant-Microbe Interactions 1990,3:135-143
    9. Clergeot P-H, Gourgues M, Cots J et al. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Proc Natl Acad Sci USA. 2001, 98:6963-6986
    10. Crawford, M. S., Chumley, F G, Weaver, C G, et al, Characterization of the heterokaryotic and vegetative diploid phases of Magnaporthe grisea. Genetics, 1986,114:1111-1129
    11. De Zwaan T M, Carroll A M, Valent B. Magnaporthe grisea Pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues. Plant Cell. 1999,11:2013-2030
    12. Ellingboe, A. H., Wu, B. C. and Robertson, W. Inheritance of avirulence/virulence in a cross of two isolates of Magnaporthe grisea pathogenic to rice phytopathology. 1990,80:108-111
    13. Farman, M. L, and Leong, S. A. Genetic and physical mapping of telomeres in the rice blast fungus, Magnaporthe grisea.Genetics. 1995,140:479-492
    14. Flor, H. H. Current Status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971,9:275-296
    15. Francois Villalba, Marc-Henri Lebrun, Aurelie Hua-Van, et al. Transposon impala, a Nobel Tool for Gene Tagging in the Rice Blast Fungus Magnaporthe grisea. MPMI. 2001,14(3):308-315
    
    
    16. George M C, Nelson R J, Zeigler R S, et al. Rapid population analysis of Magnaporthe grisea by using rep-PCR and endogenous repetitive DNA sequence. Phytopathology.1998,88:223-229
    17. Giatgong P. Frederiksen R A. Pathogenic variability and cytology of monoconidial subcultures of Pyricularia oryzae. Ibid, 1969,59(1):152-157
    18. Hamer J E, Valent B, Chumley F G. Mutations at the SMO genetic locus affect the shape of diverse cell types in the rice blast fungus. Genetics. 1989,122,351-361
    19. Hamer J E., Molecular probes for rice blast disease. Sciences. 1991, 252:632-633
    20. Hamer J E. and Givan, S. Genetic mapping with dispersed sequece in the rice blast fungus: Mapping the SMO locus. Molecular and General Genetics. 1990,223:487-495
    21. Hayashi N, Li C, Li J, et al. Distribution of fertile Magnaporthe grisea fugus pathogenic to rice in Yunnan Province, China. Annals-of-the-Phytopathological-Society-of-Japan. 1997,63(4):316-323
    22. Heath M C., Correlations between cytologically detected plant-fungi interactions and pathogenicity of Magnaporthe grisea toward weeping lovegrass. Phytopathology. 1990, 80:1382-1386
    23. IRRI. ANN. Rept. For 1975, 92-99. Los Banos, Philippines, 1976,548
    24. Iwano M, Lee J L, Kong P. Distribution of pathogenic races and changes in virulence of rice blast fungus, Pyricularia oryzae Cav., in Yunnan Province, China. JARQ(Japan Agricultural Research Quarterly), 1990,23:241-248
    25. James A. Sweigard, Anne M. Carroll,Leonard Farrall, et al, Identification, Cloning, and Characterization of PWL2,a Gene for Host Species Specificity in the Rice Blast Fungus .The plat cell.1995,7:1221-1233
    26. James. A. Sweigard, Anne M. Carroll et al. Magnaporthe grisea Pathogenicity Genes Obtained Through Insertional Mutagenesis.MPMI. 1998,11 (5):404-412
    27. Janna L. Beckorman and Daniel J. Ebbole. MPG1, a Gene Encoding a Fungal Hydrophobin of Magnaporthe grisea, Is Involved in Surface Recognition.MPMI. 1996,9(6):450-456
    28. Jio, Y, McAdams, S. A, Bryan, G. T, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBOJ.2000,19:4004-4014
    29. Kachroo, R, S. A. Leong and B. B. Chattoo. Pot2, an inve(?)d repeat transposon from the rice blast fungus Magnaporthe grisea. Mol & Gen. Gent. 1994, 245(3):339-348
    30. Kames war R K vsr, Crill R Nuclear cytology and mating behavior of Pyricularia spp. Oryza,1981,18:18-21
    31. Kanazin V, Marek L F, Shoemaker R C. Resistance gene analogs are conserved and clustered in soybean. Proc. Natl. Acad. Sci. USA 1996, 93:11746-11750
    32. Kang, S. Sweigard, J. A. and Valent, B. The PWL host specificity gene family in the blast fugus
    
    Magnaporthe grisea.MPMI. 1995,8:939-948
    33. Katsuya K, Kiyosawa S. Studies on mixture inoculation of Pyricularia oryzae on rice, 2:Interstrain difference of mixture inoculation effect, Ibid, 1969,35:229-307
    34. Keller H, Pamboukdjian N, Pouchent M, et al. Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell. 1999,11:223-236
    35. Kim C K, Yoshino R. Epidemiological studies of rice blast disease caused by Pyricularia oryzae Cavara. Ⅵ. Measurement of sporulation on blast lesions of naturally infected leaf. Annals-of-the-Phytopathological-Society-of-Japan, 1995,61(2):89-92
    36. Kiyosawas. Pathogenic variations of Pyricularia oryzae and their use in genetic and breeding studies. SABRAO Journal, 1976,8:53-67
    37. Kumar J, Nelson R J, Zeigler R S. Population structure and dynamics of Magnaporthe grisea in the Indian Himalayas. Gentics, 1999,152:971-984
    38. Latterell F M, Tullis E C, Otten R J L, et al. Physiologic races of Pyricularia oryzae. Phytopathoiogy, 1954,44:495-496
    39. Latterell F M, Rossi A E. Longebity and pathogenic stability of Pyricularia oryzae. Phytopathology. 1986, 76:231-235
    40. Lauge, R., and De Wit, P. J. G. M. Fungus avirulence genes: Structure and possible functions. Fungal Gen.Biol. 1998,24:285-297
    41. Lau, G W. and A H. Ellingboe Genetic analysis of mutation to increased virulence in Magnaporthe grisea. Phytopathology. 1993,83(10):1093-1096
    42. Leister D, Kurth J, Laurie D A, et al. Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci. USA, 1998,95:370-375
    43. Leung H., Borromeo. E. S., Bemardo, M. A., and Nottegham. J. L. Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea. Phytopathology. 1988,78:1227-1233
    44. Leung, H., Lehtinen. U., Karjalainen, et al. Trasformation of the rice blast fungus Magnaporthe grisea to hygromyein B resistance. Curr. Genet. 1990,17:409-411
    45. Leung H and Tega M. Magnaporthe grisea (Pyricularia species), the blast fungus. Adv. Plant Path. 1988,6:175-187
    46. Liu S, Dean R A. G protein α-subunit genes control growth, development and pathogenicity of Magnaporthe grisea. MPMI. 1997,10:1075-1086
    47. Mandel, M. A., Crouch, V. W., Gunawardena, U. P., Harper, T. M., and Orbach, M. J. Physical mapping of the Magnaporthe grisea AVR1-MARA locus reveals the virulent allele contains two
    
    deletions. Mol. Plant-Microbe Interact. 1997,10: 1102-1105
    48. Motoyama T, Imanishi K, Yamaguchi I. Cdna cloning, expression and mutagensis of scytalone dehydratase needed for pathogenicity of the rice blast fungus, Pyricularia grisea. Biosci Biotechnol Biochem. 1998,62:564-566
    49. Nagakubo T, Tanga M, Tsuda M, et al. Genetic linkage relationships in Pyricularia oryzae. Mem. Coll. Agric. Kyoto Univ, 1983,122:75-83
    50. Namai T, Ehara T Y, Tagashi J. Changes in aggressiveness of a Pyricularia oryzae isolate(race 337) by successive passage on rice cultivars with different true resistance gene. Ann. Phytopath. Soc. Japan, 1990,56:1-9
    51. Nitta N, Farman M L, Leong S A. Genome organization of Magnaporthe grisea :integration genetic maps, clustering of transposable elements and identification of genome. Theor. Appl. Genet. 1997,95:20-32
    52. Orbach, M. J, Farrall, L. Sweigard, J. A, et al. A telomeric avirulence gene determines efficacy for rice blast resistance gene Pi-ta. Plat cell. 2000,12:2019-2032
    53. Ou S H. Pathogen variability and host resistance in rice blast disease. Ann. Rev. Phytopathol. 1980,18:167-187
    54. Ou S H. Rice Disease(2nd eds) Commonwealth Mycological Institute. 1985
    55. Parsons K A, Chumley F G, and Valent B. Genetic transformation of fungal pathogen responsible for rice blast disease. Pro. Natl. Acad. Sci USA 1987, 84:4161-4165
    56. Poonsak Mekwanakern, Wichai Kositatana, Levy, M, et al. Sexually Fertile Magnaporthe grisea Rice Pathogens in Thailand.Plant Disease. 1998,3(10):939-943
    57. Ronald P C. The molecular basis of disease resistance in rice. Plant-Molecular-Biology. 1997,35:1-2,363-371
    58. Seogchan Kang, James A. Sweigard et al. The PWL Host Specificity Gene Family in the Blast Fungus Magnaporthe grisea. MPMI. 1995,8(6):939-948
    59. Seogchan Kang, Marc Henrl Lebrun, Gain of Virulence Caused by Insertion of a Pot3 Transposon in a Magnaporthe grisea Avirulence Gene. MPM1.2001,14(5):671-674
    60. Shen-Y(沈瑛), Zhu P L, Genetic diversity and geography distribution of Magnaporthe grisea in China. Journal-of-Zhejiang-Agricultural University. 1998,24(5):493-501
    61. Shull V, Hamer J E. Genomic structure and variability in Pyricularia grisea. In: Zeigler R, Leong S A,Teng P, (eds). Rice Blast Disease. Wallingford, CAB International, 1995
    62. Silue D., Notteghem, J. L. and Tharreau, D. Evidence for a gene-for-gene relationship in the Oryza sariva-Magnaporthe grisea pathosystem. Phytopathology. 1992, 82:577-580
    
    
    63. Silue D., Tharreau, D. and Notteghem, J. L. Identification of Magnaporthe grisea avirulence genes to seven rice cultivars. Phytopathology. 1992, 82:1462-1467
    64. Silue D., Tharreau, D. and Notteghem, J. L. et al. Identification and characterization of apflin a non-pathogenic mutant of the rice blast fungus Magnaporthe grisea that is unable to differentiate appressoria. Physiological-and-Molecular-Plant-Pathology. 1998,53(4):239-251
    65. Skinner D Z, Budde A D, Farman, M. L., et al. Genome organization of Magnaporthe grisea: genetic map, electrophoretic karyotype, and occurrence of repeated DNAs. Theor. Appl. Genet. 1993,87:545-557
    66. Smith J R, Leong S A. Mapping of a Magnaporthe grisea locus affecting rice (Oryzae sativa) cultivar specificity. Theor. App. Genet. 1994,88:901-908
    67. Suzuki H. Origin of bariation in Pyricularia oryzae. The Rice Blast Disease, Pro. Symp. At IRRI, July 1963,111-149.
    68. Sweigard, J A, Chumley, F G, and Valent, B. Cloning and analysis of CUT1, a cutinase gene for Magnaporthe grisea. Mol. Gen. Genet. 1992a,232:174-182
    69. Sweigard, J A, Chumley, F G, and Valent, B.. Disruption for a Magnaporthe grisea cutinase gene. Mol. Gen. Genet. 1992b,232:183-190
    70. Romao J, Hamer J E. Genetic organization of a repeated DNA sequece family in the rice blast fungus. Pro. Natl. Acad. Sci. USA. 1992.89(5):316-320
    71. Sweigard JA, Valent B, Orbach MJ, et al. Genetic map of the rice blast fungus Magnaporthe grisea(n=7), in: O'brien SJ. (ed) Genetic Maps, Vol 6. Cold spring harbor Laboratory, New York.1993,3:113-115
    72. Shull V, Hamer J E. Genomic structure and variability in Pyricularia grisea. In: ZEIGLER R, LEONG S A, Teng P (eds). Rice Blast Disease. Wsllingford, CAB International.1995
    73. Skinner D Z, Budde A D, Farman M L, et al. Genome organization of Magnaporthe grisea: genetic map, electrophoretic karyotype, and occurrence of repeated DNAs. Theor. Appl. Genet. 1993,87:545-557
    74. Skinner D Z, Leung H. Leung S A. Genetic map of the blast fungus, Magnaporthe grisea. In: O' GRIEN S J (ed). Genetic Maps: Locus Maps of Complex Genomes. Cold Spring Harbor, NY: Cold Spring Harbor Press,5th, ed. 1990.3:82-83
    75. Silue D, Notteghem J L, Tharreau D. Evidence of a gene-for-gene relationship in the Oryzae sativa-Magnaporthe grisea pathosustem. Phytopathology. 1992,82:577-580
    76. Silue D, Production of perithecia of Magnaporthe grisea on rice plants. Mycological Research. 1992.94(8):1151-1152
    
    
    77. Taga M, Waki T, Tsuda M, et al. Fungicide sensitivity and genetics of IBP-resistance mutants of Pyricularia oryza. Phytopathology e, 1982,72:905-908
    78. Takashi Kamakura, Syuichi Yamaguchi, Ken-ichiro Saitoh, et al. A Novel Gene, CBP1, Encoding a Putative Extracellular Chitin-Binding Protein, May Play an Important Role in the Hydrophobic Surface Sensing of Magnaporthe grisea During Appressorium Differentiantion. MPMI. 2002,15(5):437-444
    79. Talbot N J, Kershaw M J, Wakley G E, et al. MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related of Magnaporthe grisea. Plat Cell. 1996, 8:985-999
    80. Talbot N J., Ebbole, D J., and Hamer.J E. Identification and Characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell. 1993,5:1575-1590
    81. Talbot N J. Fungal biology-coming up for air and sprulation.Nature.1999a, 398:295-296
    82. Tang X, Xie M, Kim Y J, et al. Overexpression of Pto activates defense responses and confers broad resistance. Plant Cell, 1999,11:15-30
    83. Tyler L. Harp, James C. Correll. Recovery and characterization of spontaneous, selenate-resistant mutation of Magnaporthe grisea, the rice blast pathoge. Mycotogia. 1998,90(6):954-963
    84. Tucker S L, Talbot N J. Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annu Rev Phytopathol.2001,39:385-417
    85. Valent B, Chumley F G. Avirulence genes and mechanisms of genetic instability in the rice blast fungus. Pages in: Rice Blast Disease. R. S. Zeigler, S A. Leong and P. S. Teng, eds. CAB International Press, Wallingford, and Oxon. and UK. 1994, 111-134
    86. Valent. B., and Chumley, F. G. Molecular genetic analysis of the rice blast fungus Magnaporthe grisea. Annu. Rev. Phytopathol. 1991,29:443-467
    87. Valent. B. Rice blast as a model system for plant pathology. Phytopathology. 1990,80(1):33-36
    88. Valent. B., Crawford, M S. Weaver, C G, et al. Genetic studies of fertility and pathlgenicity in Magnaporthe grisea(Pyricularia oryzae). Iowa State Journal of Research. 1986,60:569-594
    89. Waly Dioh, Didier Tharreau, Jean Loup Notteghem,et al. Mapping of Avirulence Gene in the rice blast fungus,Magnaporthe grisea, with RFLP and RAPD Markers. MPM1. 2000,13(2):217-227
    90. Wang A M, Mackill D J, Bonman J M. Inheritance of partial resistance to blast in indica rice cultivars. Crop Science. 1989,29:848-853
    91. Wang G L, Mackill D J, Bonman J M, et al. RFLP mapping of genes conferring complete and partial resistant to blast in a durably resistance rice cultivar. Genetics. 1994,136:1421-1434
    92. Wang Z. H. (王宗华), Y. J. Zhou (周益军), C. Mundt, et al. Relationship between genomic variation
    
    and diversity in blast resistance in rice varieties cultivated in the Yangtze Delta of China. International Plant & Animal Genome Ⅶ Conference, San Diego, Calif., USA. 1999
    93. Xu J R, Hamer J E. MAP kinase and cAMP singaling regulate infecton structure formation and pathogenic growth in the blast fungus Magnaporthe grisea. Gene Dev. 1996,10:2696-2706
    94. Xu J R, Staiger C J, Hamer J E. Inactivation of the mitogen-actiated protein kinase penetration of host cells but allows activation of plant defence responses.Proc Natl Acad Sci USA 1998, 95: 12713-12718
    95. Yaegashi, H. Hevert T T. Perithecial development and nuclear behavior in Pyricularia. Phytopathology. 1976,66:122-126
    96. Yaegashi, H. Inheritance of pathogenicity in crosses of Pyricularia isolates from weeping lovegrass and finger miller. Annals of the phytopathological Society of Japan. 1978,44:626-632
    97. Yamada, M., Kiyosawa, S., Proposal of a new method for differentiating races of Pyricularia oryzae Cavara in Japan. Annals of the Phytopathological Society of Japan. 1976,42:216-219
    98. Yu Z H, Mackill D J, Bonman J M, et al. Tagging genes for blast resistance in rice via linkage to RFLP markers. Theoretical and Applied Genetics. 1991,81:471-476
    99. Zeigler R S, Scott R P, Leung H, et al. Evidence of parasexual exchange of DNA in the rice blast fungus challenges its exclusive clonality. Phytopathology. 1997,87(3):284-294
    100. Z. Shi, D. Christian, H. Leung. Enhanced Transformation in Magnaporthe grisea by Restriction Enzyme Mediated Intrgration of Plasmid DNA. Phytopathology. 1995,85(3):329-333
    101. Zhixin Shi, Hei Leung. Genetic Analysis and Rapid Mapping of a Sporulation Mutation in Magnaporthe grisea. MPMI. 1994,7(1): 113-120
    102. Zhixin Shi, Hei Leung. Genetic Analysis of Sporulation in Magnaporthe grisea by Chemical and Insertional Mutagenesis, MPMI. 1995,8(6):949-959
    103. Zhou Y-J (周益军) Genetic diversity and mutation for pathogenicity in Magnaporthe grisea. PhD Thesis. Nanjing Agricultural University, 2000
    104.董继新,董海涛,李德葆等 植物抗病基因研究进展植物病理学报 2001,31(1):1-9
    105.董继新,董海涛,李德葆等 水稻抗瘟性研究进展 农业生物技术学报 2000,8(1):99-102
    106.董继新,董海涛,何祖华等 一个水稻与稻瘟病菌(Magnaporthe grisea)互作相关新基因的克隆 农业生物技术学报 2001,9(1):41-44
    107.段永嘉,朱有勇,刘二明等 稻瘟病抗性遗传规律研究 见:朱立宏等编 主要农作物抗病性遗传研究进展 南京:江苏科学技术出版社 1990,111-115
    108.范军,彭友良 一种新的水稻植保素的诱导、纯化及特性研究 植物病理学报 1996,26(3):217-221
    
    
    109.方中达,过崇俭 我国水稻主要病原菌致病性和害虫的致害性 杜正文主编 [中国水稻病虫害综合防治策略和技术] 北京:农业出版社,1991,4-28
    110.高坂茁尔,加藤蹊 著 稻瘟病抗病育种凌忠专等译,北京:农业出版社 1990,389-391
    111.何明,卢代华,毛建辉 影响稻瘟病灾变的关键生态因子研究 西南农业大学学报 1998,20(5):392-396
    112.何月秋,唐文华 水稻稻瘟病菌研究进展(一) 水稻稻瘟病菌多样性及其变异机制 西南农业大学学报 2001,16(1):60-64
    113.何月秋,唐文华 水稻稻瘟病菌研究进展(二) 水稻稻瘟病菌遗传与分子生物学研究进展 西南农业大学学报 2001,16(2):154-159
    114.何月秋,唐文华,Hei Lung等 稻瘟病菌致病变异株的分离 云南农业大学学报 2000,15(3):197-199,211
    115.黄培堂等译 分子克隆实验指南(第三版) 科学出版社,2002
    116.黄富,程开禄,罗庆明等 稻瘟病菌致病性变异研究 西南农业学报 1999,12(4):69-73
    117.金冬雁,黎孟枫等译 分子克隆实验指南 (第二版) 科学出版社,1992
    118.金敏忠,柴荣耀 我国稻瘟病菌生理小种研究的进展 植物保护 1990,16(3):37-41
    119.李晓兵,吴爽 稻瘟病抗性的生理生化机制 安徽农业科学 2002,30(4):515-518
    120.李成云,沈瑛,袁筱萍等 稻瘟病菌两个陆稻菌株的致病性遗传研究 中国农业科学 1997,30(4):30-35
    121.李成云,陈宗麒,陈琼珠等 稻瘟病菌的研究进展 西南农业学报 1995,8(3):107-111
    122.李成云,罗朝喜,李进斌等 稻瘟病菌无毒基因的分子标记 中国农业科学 2000,33(3):49-53
    123.李露,李成云,杨明等 稻瘟病菌致病机制及无毒基因的研究进展 云南农业科技 2001,(4):41-44
    124.黎裕,贾继增,王天宇 分子标记的种类及其发展 生物技术通报 1999,4:19-22
    125.林菲,李成云,李进斌等 利用分子标记对水稻稻瘟病菌三个新非致病性基因的连锁分析 全国水稻稻瘟病学术研讨会论文集 2001,62-68
    126.刘二明,叶华智 植物抗病性的“基因对基因”关系的(?)子遗传学研究进展,中国植物病理学会第四届青年学术研讨会论文选编(植物病理学研究进展) 1999,204-210
    127.刘树俊,魏荣宣,有江力等 稻瘟病菌致病突变体的REMI诱变与鉴定 1998,14(3):254-258
    128.刘俊峰,董宁,侯占军等 稻瘟菌对水稻品种梅雨明的无毒性的遗传分析和分子标记 植物病理学报 2001,31(2):10-15.
    129.卢代华,毛建辉 影响稻瘟病灾变的关键生态因子研究 西南农业大学学报 1998,20(5):392-396
    
    
    130.鲁国东,黄大年,陶全洲等 以cosmid质粒为载体的稻瘟病菌转化体系的建立及病菌基因文库的构建 中国水稻科学 1995,9(3):156-160
    131.鲁国东,王宗华,谢联辉 稻瘟病菌分子遗传学研究进展 福建农业大学学报 1997,26:56-63
    132.鲁国东,张学博 离体接种鉴定水稻品种的抗瘟性 福建农业大学学报 1994,23(2):160-164
    133.鲁国华等 稻瘟病菌分子遗传学研究进展 福建农业大学学报 1997,26(1):56-63
    134.陆凡,王法明,郑小波等 江苏省稻瘟病菌生理小种的演变及与水稻品种的相互关系 南京农业大学学报 1999,22(4):31-34
    135.毛建辉,何明,何忠全等 持续低温对稻瘟病的影响研究 西南农业大学学报 1997,19(3):228-230
    136.潘汝谦,康必鉴,黄建明等 水稻稻瘟病菌致病性分化研究 华南农业大学学报 1999,20(3):15-18
    137.全国稻瘟病防治科研协作组全国稻瘟病防治科研协作组 20 年工作成就回顾 浙江农业学报1993,5(增刊):1-4
    138.沈瑛,李成云,袁筱萍等 稻瘟病菌的菌丝融合现象及其后代的致病性 中国农业科学,1997,30(6):16-22
    139.沈瑛,朱培良,袁筱萍等 我国稻瘟病菌的遗传多样性 植物病理学报 1993,23(4):309-313
    140.沈瑛,朱培良,袁筱萍等 稻瘟病菌有性态的诱导及其后代的致病性 西南农业学报 1995,8(3):74-79
    141.沈瑛,朱培良,袁筱萍等 我国稻瘟病菌有性态的研究 中国农业科学 1994,27(1):25-29
    142.陶全洲 利用显性选择标记基因转化稻瘟病菌(英文) 中国水稻科学 1993.7(4):232-238
    143.王煜,李文新,徐宁淳等 水稻植保素的生物化学研究进展 武汉植物学研究 1999,17(增刊):111-116
    144.王宝华,鲁国东,林伟明等 稻瘟病菌无毒基因的遗传分析 全国水稻稻瘟病学术研讨会论文集 2001,31
    145.王洪凯,林福呈,李德葆 稻瘟病菌致病相关基因研究进展 菌物系统 2002,21(3):459-464
    146.王金生 分子植物病理学 北京:中国农业出版社 1999,158-160
    147.王石平,刘克德,王江等 用同源序列的染色体定位寻找水稻抗病基因DNA片段 植物学报1998,40(1):42-50
    148.魏士平,王刚等 水稻稻瘟病菌突变体库的构建 全国水稻稻瘟病学术研讨会论文集 2001,48
    149.吴建利,庄杰云,柴荣耀等 水稻抗穗瘟基因的分子定位 植物病理学报 2000,30(2):111-115
    150.许文耀,王金陵 稻瘟病菌粗毒素对水稻品种的毒性与产毒菌株致病力间的关系 福建农业大学学报 1994,23(2):165-168
    151.许志刚 普通植物病理学 1997
    
    
    152.杨炜,黄大年,王金霞等 以潮酶素抗性为选择标记的稻瘟病菌原生质体转化 遗传学报1994,21(4):305-312
    153.曾千春,叶华智,朱祯等 稻瘟病分子生物学研究进展 生物技术通报 2000,3:1-7
    154.张海英,许勇,王永健 分子标记技术概述 (上) 2001,(2):45
    155.郑康乐,钱惠荣,庄杰云等 应用DNA标记定位水稻的抗稻瘟病基因 植物病理学报 1995,25(4):307-313
    156.郑先武等 水稻NBS-LRR类R基因同源序列 中国科学 2001,31(1):43-51
    157.益军,范永坚,王金生等 稻瘟病菌原生质体的制备和再生菌株的致病性 2000,16(2):83-87
    158.朱蘅,蒋琬如,陈美玲等 稻瘟病菌株的DNA指纹及其与小种致病性相互关系的研究 作物学报 1994,20(3):257-263
    159.朱立煌,徐吉臣,陈英等 用分子标记定位一个未知的抗稻瘟病基因 中国科学(B辑) 1994,24:1048-1052

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700