植物病毒侵染寄主的分子细胞学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蚕豆萎蔫病毒-2(BBWV-2)、甘蔗花叶病毒(SCMV)和高粱花叶病毒(SrMV)在我国广泛发生,对许多经济作物造成严重危害。本实验运用电子显微镜和免疫胶体金标记技术系统研究了这三个病毒分别侵染寄主后产生的一系列细胞病理变化,分析讨论了病毒的复制场所、胞间转运机制等问题,获得的主要结果如下:
     1.BBWV-2的B935分离物(分离自中国)分别接种豌豆、蚕豆和昆诺藜,三种寄主上均呈现典型的花叶症状。采集不同侵染程度的感病叶片,经过化学固定、脱水和包埋后制作超薄切片,切片经染色后在透射电镜下观察。感病豌豆和蚕豆叶片细胞的主要病变特征包括:(1)细胞质中膜结构明显增生,形成大块含有膜结构、小泡结构以及电子致密物质的增生区域,该区域可能是病毒的复制区:(2)在细胞质和膜增生区域周围大量存在管状结构和结晶体,管状结构横切面显示由个17-19个粒子组成,直径约160nm左右,免疫金标记显示管状结构和结晶体均由病毒粒子组成;(3)线粒体数目明显增加,体积膨大变形,有的线粒体内含有结晶结构,在线粒体之间常夹有一些晶格状物质,免疫金标记证明为正在组装的病毒粒子,线粒体之间可能是病毒的装配部位;(4)在叶肉细胞的胞间连丝中观察到病毒样颗粒排列在小管中,该小管部分伸到细胞质内,免疫金标记显示这些颗粒可能为转运中的完整病毒粒子,BBWV-2的胞间运动模式与CPMV相似。
     2.应用Li-6400便携式光合作用系统测定了接种BBWV-2的B935分离物的蚕豆和健康蚕豆叶片的光合速率、二氧化碳浓度等生理指标,结果显示,受病毒感染后,寄主的光合速率有大幅度的下降,二氧化碳浓度显著升高,蒸腾速率和气孔导度变化不大。蚕豆叶片叶绿体结构的发生一些异常变化,叶绿体形状改变,基质明显增加,片层紊乱等。光合速率的大幅下降可能与叶绿体结构被破坏相关。
     3.BBWV-2的PV131分离物(分离自意大利)分别接种到蚕豆和昆诺藜健康幼叶上,10天左右嫩叶显现典型花叶症状。取显症叶片经树脂包埋后超薄切片,染色后透射电镜下观察。与B935分离物侵染蚕豆和豌豆相类似,PV131分离物在昆诺藜叶肉细胞中引起明显的膜结构增生,形成复制区,大块梭形结晶体和管状结构分布在细胞质中,但管状结构的横切面显示由个9粒子组成,直径约80nm左右,与B935分离物产生的管状结构不同。在蚕豆叶肉细胞中,仅仅观察到膜增生区域的存在,始终未观察到管子和结晶体等结构。
     4.运用超薄切片电镜技术比较观察了甘蔗花叶病毒(SCMV)和高粱花叶病毒(SrMV)侵染玉米叶片细胞的超微结构变化,结果显示:线状SCMV和SrMV粒子分散或成束分布在感病细胞的细胞质内,同时在细胞质中产生大量柱状内含体。
    
    SCMV引起风轮体、卷筒体和片层聚集体,属于Edw别心son等划分的第m型,一些
    成束的病毒粒子和内含体存在于筛管中。SrMV引起风轮体和卷筒体,属于第I型,
    一些内含体分布于细胞壁附近,有的直接与细胞壁胞间连丝相接,完整的柱状内含
    体存在筛管中,推测内含体在病毒的胞间运动中起定位和传输作用。两种病毒在细
    胞病理学效应方面的差异也可以作为诊断鉴定的一个参考依据。
Bean broad wilt virus (BBWV), Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV), reported in many regions of China, caused serious loses in economic crops. In this paper, the ultrastructural alteration of several host plants respectively infected with BBWV, SCMV and SrMV were systemically studied by transmission electron microscope (TEM) and immunological technique.
    1. The typical mosaic symptoms occurred on the leaves of Vicia faba, Pisum sativum and Chenopodium quinoa inoculated with the B935 isolate of BBWV2. Under the TEM, several similar ultrastructural changes were observed in the thin sections of the infected leaves of V. faba and P. sativum, such as membranous proliferation composed of the fibril-containing vesicles, virus-form tubular structures 160nm in diameter, crystals composed of virus particles, virion-containing plasmodesmata, as well as the lineable virus particles between the proliferous mitochondria. In addition, some chloroplasts were often disrupted in the B935-infected cells of P. sativum leaves. By contraries, the similar cytopathological changes never been found in thin sections of C.quinoa leaf tissue infected with B935 isolates.
    2. Several physiological parameters of health and B935-infected V.faba were measured, and the statistical data revealed that B935 infection caused the significant reduce of net photosynthetic rate, the noted increase of intercellular CO2 concentration, and little influences on transpiration rate and stomata conductance.
    3. The leaves of V.faba and C.quinoa were infected with PV131, one of the BBWV2 isolates from Italy, and the mosaic symptoms developed in 10d after infection. Checked the thin sections of infected leaf tissue by TEM, the membranous proliferation, virus-formed crystals and tubular structures 80nm in diameter, were found in parenchyma cells. In addition, the thin sections of PV131-infected leaves of V.faba were examined, howerve, only proliferation of membranes located in the cytoplasm.
    4. The ultrastructural alterations of maize infected with SrMV and SCMV, respectively, were examined under transmission electron microscope. A large number of filamentous SrMV and SCMV particles were observed to be present as scattered or in more or less dense bundles in the cytoplasm of infected cells. Three types of cylindrical inclusions (CIs), pinwheels, scrolls and laminated aggregates, located in the SCMV-infected cytoplasm, and
    
    
    the similar CIs occur in the SrMV-infected cytoplasm except for the absence of laminated aggregates. According to Edwardson, SrMV and SCMV were placed in subdivision I and III. In this paper, not only cytopathological alterations of maize infected with SrMV and SCMV were compared with each other, but also some ultrastructures possibly associated with the virus movement were analyzed.
引文
1. Allison AF, Thompson C, Ahluist P.1990. Regeneration of a functional RNA virus genome by recombination between deletion mutants and requirement for cowpea chlorotic mottle virus 3a and coat genes for systemic infection. Procession of National. Academic Science. USA, 87:1820-1824.
    2. Andrews JH, Shalla T A. 1974. The origin, development and conformation of amorphous inclusion body components in tobacco etch virus-infected cells. Phytopathology,. 64:1234-1237
    3. Atabekov JG, and Taliansky ME. 1990. Expression of a plant virus-coded transport function by different viral genomes. Advance of Virus Research.38: 201-248.
    4. Bellardi MG and RubiesAutonell C. 1997. First report of broad bean wilt fabavirus on Polygonum fagopyrum. Plant Disease, 81: 959-959
    5. Bertens P, Wellink J, Gokdbaeh R, van Kammen A. 2000. Mutational analysis of the cowpea mosaic virus movement protein. Virology, 267:199-208.
    6. Bienz K, Egger D, Pasamotes L. 1987. Association og polioviral proteins of the P2 genomic region with the viral replication complex and virus-induced membrane synthesis as visualized by electron microscopic immunocytochemistry and auto radiography. Virology. 160:220-226
    7. Blackman L M, Boevink P, Cruz S S, et al. 1998. The movement protein of cucumber mosaic virus traffics into sieve elements in minor veins of Nicotiana clevelandii. Plant Cell 10: 525-538.
    8. Bove, C, Mocquot, B. and Bove, JM. 1972. symp.Biol.Hung. 13:433
    9. Breman LL, Brown LG, Scott SW, Christie RG. 1995. First Report of Broad Bean Wilt Fabavirus in Florida. Plant Disease, 79: 1075-1075.
    10. Burroughs R; Goss JA; Sill WH Jr. 1966. Alterations in respiration of barley plants infected with bromegrass mosaic virus. Virology, 29 (4): 580-585.
    11. Carroll T W. 1970. Relation of barley stripe mosaic virus to plastids. Virology 42:1015-1022
    12. Carrington JC, Kasschau KD, Mahajan SK, Schaad MC.1996. Cell-to-cell and long-distance transport of viruses in plants. The Plant Cell 8,1669-1681.
    13. Castellano MA, Di Franco A, Martelli GP. 1987. Electron microscopy of two olive viruses in host tissues. Journal of submicroscopic cytology & pathology 19:495-508
    14. C.Michael Deom, Moshe Lapidot, and Roger N. Beachy. 1992. Plant virus movement proteins. Cell. 69:221-224
    15. Chant SR. 1967. Respiration rates and peroxidase activity in virus-infected Phaseolus vulgaris. Experientia. 23 (8): 676-7
    16. Chapman S, Hills G, Watts J Bail, Combed DC.1992.Mutational analysis of the coat protein gene of potato virus Ⅹ: effects on vision morphology and viral pathogen city. Virology. 191,223-230.
    17. Cheng C-P, Tzafrir I, Loekhart BEL, Olzewski NE. 1998. Tubules containing virions are present in plant tissues infected with Commelina yellow mottle badnavirus. Journal of General Virology. 79: 925-929
    
    
    18. Chiung-Hua Wang, Yau-Heiu Hsu, Dann-Ying liou, Wei-Cheng Huang, Na-Sheng Lin, Ban-Yang Chang. 1999. Identification of the RNA-binding sites of the triple gene block protein 1 of bamboo mosaic potexvirus. Journal of General Virology, 80:1119-1126.
    19. Daimay T, Rubino L, Burgyan J, Russo M. 1992. Replication and movement of a coat protein mutant of Cymbidium ringspot tombusvirus. MPM1, 5: 379-383.
    20. Deom C M, Lapidot M, and Beachy R N. 1992. Plant virus movement proteins. Cell 69: 221-224.
    21. De zoeten GA, Assink AM, Van Kammen A. 1974. Association of cowpea mosaic virus-induced double-stranded RNA with a cytopathological structure in infected cells. Virology, 59:341-355.
    22. Edwarddson J R. 1974. Some properties of the Potato Virus Y-Group. Florida Agricultural Experiment Station Monogr, 4:398
    23. Edwarson, J.R., Christie, R.G, and Ko, N.J. 1984. Potyvirus cylindrical inclusions: subdivision Ⅳ. Phytopathology. 74:1111-1174
    24. Edwardson J R. 1992. Inclusion bodies. Archives of Virology. (Suppl 5): 25-30
    25. Esara Y and Misawa T. 1975. Occurrence of abnormal protoplasts in tobacco leaves infected systemically with the ordinary strain of cucumber mosaic virus. Phytopathology. Z. 84:233-252
    26. Fenczik C A, Padgett H S, Holt C A, et al. 1995. Mutation analysis of the movement protein of odontoglossum ringspot virus to identify a host-range determinant. Mol Plant-Microbe Interact 8: 666-673.
    27. Flasinski S, Dzianott A, Pratt S, Bujjarski JJ.1995. Mutational analysis of the coat protein gene of brome mosaic virus: effects on replication and movement in barley and chenopodium hybridum. MPMI, 8:23-31.
    28. Franeki RIB, Milne RG and Hatta T. (Eds.) 1985. Comovirus group. In: Atlas of plant viruses Vol.Ⅱ. CRC Press, Boca Raton FL, 1-22
    29. Franssen H, Leunissen J, Goldbach R, et al. 1984. Homologous sequences in non-structural proteins from cowpea mosaic virus and picornaviruses. EMBO J, 3: 855-861
    30. Gardner W S. 1969. Ultrastructure of Zea mays leaf cells infected with Johnson-grass strain of sugarcane mosaic virus. Phytopathology, 59:1903
    31. Gergerieh RC and Scott HA. 1996. Comoviruses: transmission epidemiology and control. In Harrison BD and Murant AF Eds. The Plant Viruses, Vol.5. New York: Plenum Press, 77-98
    32. Gilbertson RL, Lucas WJ. 1996. How do viruses traffic on the vacuolar highway? Trends in Plant Science, 1:260-268
    33. Ghoshroy S, Lartey R, Sheng J, and Citovsky V.1997. Transport of proteins and nucleic acids through plasmodesmata. Annu. Rev. Plant Physiology. Plant Mol.Biol.48:27-50.
    34. Goldbach R and Wellink J. 1996. Comoviruses: molecular biology and replication. In Harrison BD and Murant AF Eds. The Plant Viruses, Vol.5. New York: Plenum Press, 35-76
    35. Goldbach R, Rezelman G, Van Kammen. 1980. Independent replication and expression of the bipartite genome of cowpea mosaic virus. Molecular Plant Virology, 2:83-120.
    
    
    36. Hall A E and Loomis R S. 1972. An explanation for the difference in photosynthetic capabilities of healthy and beet yellows virus-infected sugar beets. Plant physiology. 50:576-580
    37. Harrison B D and Roberts I M. 1968. Association of tobacco rattle virus with mitochondria. Journal of General virology. 3:121-124
    38. Harrison BD and Murant AF. 1996. Nepoviruses: ecology and control. In Harrison BD and Mutant AF Eds. The Plant Viruses, Vol.5. New York: Plenum Press, 211-228
    39. Hatta T and Franeki R I B. 1981. Cytopathic structures associated with tonoplasts of plant cells infected with cucumber mosaic and tomato aspermy viruses. Journal of General virology. 53: 343-346
    40. Hatta T and Franeki R I B. 1979. Enzyme cytochemical method for identification of cucumber mosaic virus particles in infected cells. Virology. 93:265-268
    41. Heaton LA, Lee TC, Wel N, Morris TJ. 1991. Point mutations in the turnip crinkle virus capsid protein affect the symptoms expressed by Nicotiana benthamian. Virology. 183: 143-150.
    42. Hull, R. 2002. Matthews' Plant Virology. Acadmic Press, San Diego. 13-45
    43. Hutter C S and Peat W E. The effect of tomato plant esperity virus on photosynthesis in the young tomato plant. Physiology of Plant Pathology. 13:517-524
    44. Ikegami M, Kawashima H, Murayama A, et al.1996. The nucleotide sequence of the coat protein gene of pachouli mild mosaic virus. Abstract xth International Congress of Virology, Jerusalem, 156
    45. Karin Seron, Anne-rise Haenni. 1996 Vascular movement of plant viruses. MPMI 9(6): 435-442.
    46. Kasteel DT, Perbal CM, Boyer JC, Wellink J, Goldbach RW, Manic A J, vanLent JWM. 1996. The movement proteins of cowpea mosaic virus and cauliflower mosaic virus induce tubular structures in plant and insect cells. Journal of General Virology, 77:2857-2864.
    47. Kasteel DT, J Welling RW Goldbach et al.1997. Isolation and characterization of tubular structures of cowpea mosaic virus. Journal of General Virology, 78:3167-3170.
    48. Kenneth W. Buck. 1999. Replication of tobacco mosaic virus RNA. Philosophical Transactions of the Royal Society of London B 354:613-627
    49. Kim KS, Fulton JP. 1971. Tubules with virus-like particles in leaf cells infected with bean pod mottle virus. Virology 43:329-337
    50. Kirn KS, Lee KW. 1992. Geminivirus-induced macrotubules and their suggested role in cell-to-cell movement. Phytopathology, 82 (6): 664-669
    51. Kitajima EW, Lauritis JA. 1969. Plant virions in plasmodesmata. Virology 37:681-685
    52. Kitajima EW and Lovisolo O. 1972. Mitochondria aggregates in Datura leaf cells infected with henbane mosaic virus. Journal of General Virology. 16:265-271
    53. Kormelink R, Storms M, Van Lent J, Peters D, Goldbach R. 1994. Expression and subcellular location of the NSm protein of tomato spotted wilt virus (TSWV), a putative viral movement protein. Virology 200:56-65
    54. Krass CJ, Ford R E. 1969. Ultrastructure of corn systemically infected with maize dwarf mosaic virus. Phytopatholog., 59:431
    
    
    55. Kreiah S, Strunk G and Cooper JI. 1994. Sequence analysis and location of capsid proteins within RNA-2 of strawberry latent ringspot virus. Journal of General Virology, 75:2527-2532
    56. Kuhn C W, Wyatt S D, Brantley B B. 1981. Genetic control of symptoms, movement, and virus accumulation in cowpea plants infected with cowpea chlorotic mottle virus. Phytopathology 71: 1310-1315.
    57. Kyung Soo Kiml.et al.1999. Ultrastructural aspects of cell-to-cell movement of plant virus. The biological Research Information Center (BRIC). Pohang 790-784, Korea.
    58. LaFleche D, Bove C, Dupont G, Mouches C, Astier T, Gamier M, Bove JM. 1972. Site of viral RNA synthesis on the chloroplast outer membrane system. In: Proc 8th FEBS Meeting Amsterdam RNA viruses/ribosomes, Vol 27. North Holland, Amterdam, PP43-71
    59. Laurel A et al.1996. Plasmodesmal cell-to-cell transport of proteins and nucleic acids. Plant Molecular Biology, 32:251-173.
    60. Lazarowitz SG, and Beachy RN.1999. Viral movement proteins as probes for intracellular and intercellular trafficking in plants. Plant Cell, 11: 535-548.
    61. Lawson R H, Hearon S S. 1971. The association of pinwbeel inclusions with plasmodesmata. Virology. 44:454-457
    62. Le Gall O, Candresse T and Dunez J. 1992. Transfer of the 3' non-translated region of grapevine chrome mosaic virus RNA-1 by recombination to tomato black ring virus RNA-2 in pseudorecombinant isolates. Journal of General Virology, 76:1285-1289
    63. Le Gall O, Candresse T and Dunez J. 1995. A multiple alignment of the capsid protein sequences of nepoviruses and comoviruses suggests a common structure. Archives of Virology, 140:2041-2053
    64. Lisa v, luisoni E, Boccardo G, Milne RG. 1982. Lamium mild mosaic virus: a virus distantly related to broad bean wilt. Annals of applied biology. 100:467
    65. Lisa V, Boccardo G, 1996. Fabaviruses: broad bean wilt and allied viruses. In: The Plant Viruses, Volume 5: Polyhedral Virions and Bipartite RNA Genomes (B. D. Harrison, and A. F. Murant, eds). New York: Plenum Press, pp. 229-250.
    66. Leila M. Blackman, Patra boevink et al. 1998.The Movement Protein of Cucumber Mosaic Virus traffics into sieve elements in minor veins of NIcotiana clevelandii. The Plany Cell. 10:525-537
    67. Lesemann D E. 1977.Virus group-specific and virus-specific cytological alternations induced by members of the tymovirus group. Phytopathology 90:315-336
    68. Lesemann D E. 1988. Cytopathology. In: Milne RG (ed) The plant viruses, vol 4.Plenum, blew York, pp 179-235
    69. Lesemann D E, Shukla D D, Tosic M, et al. 1992. Differential of the four viruses of the Sugarcane mosaic virus subgroup based on cytopathology. Archives of Virology. (Suppl 5): 353-361
    70. Lueas W J, and Wolf S. 1999. Conections between virus movements, macromolecular singling and assimilate allocation.Curr. Opin. Plant Biology. 2:192-197.
    71. Lueas W J, Gibertson RL.1994. Plasmodesmata in relation to viral movement within leaf tissue. Ann Rev of Phytopathol. 32,387-411.
    
    
    72. Mayo MA and Robinson DJ. 1996. Nepoviruses: molecular biology and replication. In Harrison BD and Mutant AF Eds. The Plant Viruses, Vol.5. New York: Plenum Press, 139-186
    73. Mutant AF, Jones AT, Martelli GP, et al. 1996. Nepoviruses: general properties, diseases and virus identification. In Harrison BD and Murant AF Eds. The Plant Viruses, Vol.5. New York: Plenum Press, 99-138
    74. Mutant AF, Roberts IM, Goold RA. 1973. Cytopathological changes and extractable infectivity in Nicotiana clevelandii leaves infected with carrot mottle virus. Journal of General Virology 21: 269-283
    75. Mushegian AR. 1993. The putative movement domain encoded by nepovirus RNA-2 is conserved in all sequenced nepoviruses. Archives of Virology, 135:437-442
    76. Ma Fengshan, Carol A. Peterson. 2001. Plasmodesmata: Dynamic channels for symplastic transport. Acta Botanica Sinica. 43(5):441-460
    77. Naderi M and Berger P H. 1997a. Effects of chloroplast targeted potatovirus Y coat protein on transgenic plants. Physiological and Molecular Plant Pathology 50:67-83
    78. Naderi M and Berger P H. 1997b. Pathogenesis-related protein la is induced in potato virus Y-infected plants as well as by coat protein targeted to chloroplasts. Physiological and Molecular Plant Pathology 51:41-44
    79. Paluksitis P, Reossinek M J and Dietzgen R G et al. 1992. Cucumber mosaic virus. In Maramorosch K, Murphy F A, Shatkin A J eds. Advances in Virus Research, Vol.41. San Diego: Academic Press, 281-348
    80. Petty ITD, Jackson AO. 1990. Mutational analysis of barley stripe mosaic virus RNA. Virology. 179:712-718.
    81. Qi YJ, Zhou XP, Li DB. 2000. Complete nucleotide sequence and infectious cDNA clone of the RNA1 of a Chinese isolate of broad bean wilt virus 2. Virus Genes. 20(3): 201-207
    82. Qi YJ, Zhou XP, Xue CY, Li DB. 2000. Nucleotide sequence and polyprotein processing sites of RNA2 of a Chinese isolate of broad bean wilt virus 2. Progress in Natural Science, 10(7): 680-686.
    83. Reinero A and Beachy R N. 1986. Association of TMV coat protein with chloroplast membranes in virus-infected leaves. Plant Molecular Biology 6:291-301
    84. Reinero A, Beachy R N. 1989. Reduced photosystem Ⅱ activity and accumulation of viral coat protein in chloroplast of leaves infected with tobacco mosaic virus. Plant Physiology 89:111-116
    85. Riechmann J L, Lain S, Garcia J A. 1992. Highlights and prospects of potyvirus molecular biology. Journal of General Virology, 73:1-6
    86. Roberts D A, Corbett M K. 1965. Reduced photosynthesis in tobacco plants infected with tobacco ring spot virus. Phytopathology 55:370-371
    87. Roberts I M, Wang D. 1998. Ultrastructural and Temporal observations of the Potyvirus cylindrical inclusion(CIs) show that the CI protein acts transiently in aiding virus movement, Virology. 245: 173-181
    88. Robinson D J, Harrison B D. 1989. Tobacco rattle virus. CMI/AAB Description of Plant Virus. No.346, 6
    
    
    89. Roger Hull, Sondra G. 1989. The movement of virus in plants. Annual Review of Phytopathology. 27:213-240.
    90. Russo M, Kishtah A A, Martelli G P. 1979. Unusal intracellular aggregates of broad wilt virus particles. Journal of general virology. 43:453-456
    91. Saito T, Yamanaka K, Okada Y.1990. Long-distance movement and viral assembly of tobacco mosaic mutants. Virology. 176,329-336.
    92. Schaad M C, Carrington J C. 1996. Suppression of long-distance movement of tobacco etch virus in a nonsusceptible host. Journal of Virology 70:2556-2561.
    93. Schoithof HB, Morris TJ, Jackson AO. 1993. The capsid protein gene of tomato bushy stunt virus is dispensable for systemic movement and can be replaced for localized expression of foreign genes. MPMI, 6: 309-322.
    94. Shmuel Wolf, Carl M. Deom, Roger N. Beaehy, William J. Lucas. 1989. Movement protein of Tobacco Mosaic virus modifies Plasmodesmata Size Exclusion Limit. Science. 246:377-379
    95. Shukla D D, Freukle M J, Mckern N M. 1992. Present status of sugarcane mosaic subgroup of potyviruses. Archive of Virology, (Suppl 5): 363-373
    96. Shuida D D, Ward C W. 1989. Structure of potyvirus coat proteins and its application in the taxonomy of the potyvirus group. 36:273-314
    97. Seron K, Haenni AL. 1996. Vascular movement of plant viruses. Mol Plant-Microbe Interact, 9(6):435-442.
    98. Stubbs L L. 1949. A destructive vascular wilt virus disease of broad bean (Vicia faba L.) in Victoria. Journal of dept. agriculture. Victoria Australia 45:323-332
    99. Syan Lent J, Wellink J, Col dbach R. 1990. Evidence for the involvement of the 58kD and 48kD proteins in the intercellular movement of cowpea mosaic virus. J Gen Virol, 71:219-223.
    100. Takamatsu N, Ishikawa M, Meshi T, Okada Y. 1987. Expression of bacterial chloramph-enicol acetytransferase gene in tobacco plants mediated by TMV-RNA. EMBO J. 6:307-311.
    101. Taliansky ME, Garcia-arenal F. 1995. Role of cucumovirus capsid protein in long distance movement within the infexted plant. Journal of Virology. 69: 916-922.
    102. Tomenius K, Oxelfelt P. 1982. Ultrastructure of pea leaf cells infected with three strains of red clover mottle virus. Journal of General Virology 61:143-147
    103. Toru fujiwara, Donna Giesmam-Cookmeyer, Biao Ding, et al. 1993. Cell-to-cell trafficking of macromolecules through Plasmodesmata potentiated by the Red Clover Necrotic Mosaic Virus movement protein. The Plant Cell. 5:1783-1794
    104. Uyemoto J K, Prowidenti R. Isolation and identification of two serotypes of broad bean wilt virus. Phytopathology. 1974, 64:1547-1548
    105. Ushiyama, R. And Matthews, R. E. F. 1970. Virology. 42:293
    106. Vaewhongs AA, Lommel SA. 1995. Virion formation is required for the long-distance movement of red clover necrotic mosaic virus in movement protein transgenic plants. Virology, 212:607-613.
    
    
    107. Van Regenmorte MHV, Fauquet CM, Bishop DHL, et al. 2000. Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses. Academic Press, New York, San Diego. 691-701
    108. Fall O, Kasteel DT, Verver J, Wellink J, Vankammen AB. 1993. Cis-and trans-acting elements in cowpea mosaic virus RNAreplication. Virology, 195:377-381.
    109. Vander Wel NN, Goldbach RW, van Lent JWM. 1998. The movement protein and coat protein of alfalfa mosaic virus accumulate in structurally modified plasmodesmata. Virology, 244:322-329.
    110. Van Regenmorte MHV, Fauquet CM, Bishop DHL, et al. 2000. Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses. Academic Press, New York, San Diego.
    111. Van Bokhoven H, Le Van Lent J, Storms M, van der Meer F, Welfink J, Goidbach R. 1991. Tubular structures involved in movement of cowpea mosaic virus are also formed in infected cowpea protoplasts. Journal of General Virology, 72:2615-2626.
    112. Verver J, Wellink J, Van Lent J, Gopinath K, Van Kammen A. 1998. Studies on the movement of cowpea mosaic virus using the jellyfish green fluorescent protein. Virology, 242(1):22-27.
    113. Waigmann E, Zambryski P. 1995. Tobacco mosaic virus movement protein-mediated protein transport between trichome cells. The Plant Cell 7: 2069-2079.
    114. Walkey DGA, Webb MJW. 1970. Tubular inclusion bodies in plants infected with viruses of the NEPO type. Journal of General Virology 7: 159-166
    115. Wetzel T, Dietzgen R G and Dale J L. 1994. Genomic organization of lettuce necrotic yellows rhabdovirus. Virology 200:401-412
    116. Weintraub M, 1972. Mitochondrial content and respiration in leaves with localized virus infections. Virology, 50 (3): 841-50
    117. Wellink J, Van Lent J, Goldbaeh R. 1988. Detection of viral proteins in cytopahtic structures in cowpea protoplasts infected with cowpea mosaic virus. Journal of General virology. 69:751-755
    118. Wellink J, Van Kamimen A. 1989. Cell-to-cell transport of cowpea mosaic virus requires both the 58k, 48k proteins and the capsid proteins. Journal of General Virology. 70: 2279-2286.
    119. Wellink J, Van Lent J, Verver J, Sijen T, Goldbach RW, Vankammen AB. 1993. The cowpea mosaic virus M RNA-encoded 48-kilodalton protein is responsible for induction of tubular structures in protoplasts. Journal of Virology, 64:3660-3664.
    120. Wijdeveld M M G, Goldbach R W, Verduin B J M, et al. 1988. Association of viral 126 kDa protein-containing X-bodies with nuclei in mosaic-diseased tobacco leaves. Archives of Virology 104: 225-239
    121. Wu JH, Shugarman PM. 1967. Effect of virus infection on rate of photosynthesis and respiration of a blue-green alga Plectonema boryanum. Virology. 32(1): 166-167
    122. Y.J. Qi, X. P. Zhou, X. Z. Huang, and G. X. Li. 2002. In vivo accumulation of Broad bean wilt virus 2 VP37 protein and its ability to bind single-stranded nucleic acid. Archives of Virology. 147: 917-928
    123. Zabel P, H Weenen-Swaans, A van Kammen. 1974. In vitro replication of cowpea mosaic virus RNA. I. Isolation and properties of the membrane-bound replicase. Journal of Virology, 14:1049-1055.
    
    
    124.Zaitlin M,Hull R. 1987.Plant virus-host interactions.Annual Review of Plant Physiology 38: 291-315
    125.安德荣,魏宁生,慕小倩.1992.玉米矮花叶病毒源鉴定和受侵叶片的超微结构.西北农业大学学报,20(2):67-72
    126.陈炯,陈剑平 著 2003.植物病毒种类分子鉴定.北京:科学出版社.
    127.董炜博,严敦余,郭兴启,竺晓平.1997.感染花生条纹病毒(PStV)后花生生理生化形状变化的研究.27(3):281-285
    128.洪健,薛朝阳,徐颖,周学平,李德葆.1999.受番茄花叶病毒侵染后寄主的超微结构研究.植物学报.41(12):1259-1263
    129.洪健,周雪平,李德葆编著.2001.植物病毒学图谱.北京:科学出版社.
    130.洪健 几种植物病毒引起的寄主植物细胞病理学变化.浙江农业大学学报.1990,16(2)
    131.黄遵锡,李红,陈文久.1995.感染烟草花叶病毒烟叶超微病理结构的观察.云南师范大学学报,15(2):58-67
    132.蒋军喜,陈正贤,李桂新.2003.我国12省市玉米矮花叶病病原鉴定及病毒致病性测定.植物病理学报33(4):307-312
    133.赖纯高,代庆阳,苏学辉.1998.柑桔病叶片中叶绿体的超微结构.四川师范学院学报(自然科学版)(3):304—306
    134.刘健,吴保仁,李学荣.1999.线粒体肌病的超微结构观察.电子显微学报 18:318—321
    135.吕佩源 宋春风 李向印 赵玉珍 刘贵生.2002.线粒体肌病超微结构特征研究.电子显微学报.21(6):919-922
    136.李红叶,洪健,周雪平,陈力耕.2002.葡萄扇叶病毒引起的寄主细胞病变研究.植物病理学报.32(1):65-70
    137.李红叶.博士学位论文.2001.《葡萄扇叶病毒分离物生物学特性和基因组结构研究》.杭州.
    138.刘青珍,李凌云,齐义鹏,杨复华.2001.RNA病毒基因组和转录复制多样性的分子基础.生物多样性.9(3):294-300
    139.戚益军 周雪平 1999.侵染大豆的蚕豆萎蔫病毒研究 应用与环境生物学报 5(1):69-72
    140.戚益军,周雪平,薛朝阳,李德葆.2000.蚕豆萎蔫病毒中国分离物RNA2全序列及多聚蛋白切割位点.自然科学进展.10(9):805—810
    141.青玲,吴建祥,周雪平 2000.蚕豆萎蔫病毒单克隆抗体制备及检测应用.微生物学报.40(2).166-173
    142.文才艺,吴元华.1999.马铃薯Y病毒脉坏死株系(PVY^N)的侵染对烟草光合作用和呼吸作用的影响.襄樊学院学报.20(2):34-36
    143.王春梅,施定基,朱水芳.2000.黄瓜花叶病毒对烟草叶片和叶绿体光合活性的影响.植物学报,42(4):388-392
    
    
    144.王伯辉,朱秋珍,莫磊兴.2003.广西甘蔗新病害——甘蔗黄叶综合症.广西蔗糖:31(2):12-13
    145.吴建祥 青玲.1999.蚕豆萎蔫病毒单克隆抗体研制.浙江农业大学学报 25(2):147-150
    146.徐均焕,李德葆,盛方镜,方月鲜.不同抗性的榨菜在芜菁花叶病毒感染后细胞超微结构的研究.中国病毒学.1996.11(1):61-67
    147.许蕾 薛平 李春岩 雷建章 刘瑞春.2002.线粒体肌病与线粒体脑肌病的酶组织化学和超微结构改变.中华神经科杂志.35(4).-227-230
    148.张海保,朱西儒,刘鸿先.1997.感染束顶病毒后香蕉过氧化物酶和多酚氧化酶活性变化(简报).植物生理学通讯.33(2):117-119
    149.周雪平,李德葆.1996.蚕豆萎焉病毒纯化及病毒蛋白质和基因组组分分析.病毒学报.12(4):364-370
    150.周雪平,戚益军,薛朝阳.2001.蚕豆萎焉病毒2中国分离物全基因组结构及可能的基因表达方式.生物物理与生物化学学报.33(1):46-52
    151.周雪平,余永杰,李德葆.1997.蚕豆萎蔫病毒研究现状及展望.见:刘仪主编植物病毒与病毒病防治研究.中国农业科技出版社,北京.51-54
    152.朱水芳,Francki R I B.1992.黄瓜花叶病毒衣壳蛋白存在于被其侵染的烟草叶绿体中.中国病毒学,7(3):328-333
    153.朱水芳,叶寅,赵丰.1992.黄瓜花叶病毒外壳蛋白进入叶绿体与症状发生的关系.植物病理学报 22(3):229-233

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700