大豆疫霉根腐病抗性的遗传分析及基因定位的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由大豆疫霉(Phytophthora sojae)引起的大豆疫霉根腐病(Phytophthora root rot,PRR)是一种毁灭性的大豆病害,在大豆主要生产国美国、巴西、阿根廷、中国等均有发生,对大豆生产造成很大的危害,培育和种植抗病品种是防治该病害最经济、安全、有效的途径。
     大豆对疫霉根腐病存在完全抗性和部分抗性,完全抗性是小种专化性抗性,通过限制大豆疫霉的侵染来实现的,是由Rps基因控制的,迄今已鉴定并定名了14个抗病基因,它们分布在4条大豆连锁群的8个位点上。然而,大豆疫霉变异迅速、复杂,自从1948年首次发现此病害以来,已鉴定六十多个生理小种和许多未定名的分离物,所有已知抗病基因均被“击败”。而大多数品种抗源单一,常使抗病品种在推广8~15年后就会“丧失”原有的抗性。因此,迫切需要拓宽新的抗病基因。迄今为止,各国的抗性品种选育主要集中在完全抗性品种的选育,但完全抗性品种在大面积推广种植后会因新的致病小种的流行而丧失抗性,并且单基因抗性品种的大面积推广容易对大豆疫霉产生选择压力从而产生新的生理小种。部分抗性(partial resistance)是另一类具有非小种专化性的数量抗性,能够减轻和减缓新生理小种产生的压力。黄淮地区是我国的大豆主产区之一。本研究旨在筛选出黄淮地区的优异抗源,发掘新的抗病基因,明确大豆疫霉根腐病抗性的遗传机制,对新的抗病基因进行分子作图,从而为抗病育种提供理论指导和物质基础,推动大豆抗疫霉根腐病育种的发展。
     1、抗性鉴定。利用7个具有不同毒力公式的大豆疫霉菌株,对黄淮夏大豆主产区的96个大豆品种(系)和一套含已知13个Rps基因的大豆鉴别寄主进行了接种鉴定,96个大豆品种(系)对7个大豆疫霉菌株共产生38种反应型,有4种反应型分别与单个抗病基因的反应型一致,有10种反应型与2个已知基因组合的反应型相同,有5种反应型与3个已知基因组合的反应型相同,其它反应型为新的类型。根据“基因对基因”学说,抗病基因的推导结果有7个品种可能含有Rps3a,有4个品种可能含有Rps3b,有1个品种可能含有Rps3c,有5个品种可能含有Rps7,有一些品种可能含有国际上尚未命名的新的抗病基因,这些抗源品种是我国大豆抗疫霉根腐病育种的有效抗源。
     2、根部接种法及部分抗性的抗源筛选。用根部接种法接种已知抗性水平的3个大豆品种对大豆疫霉根腐病的部分抗性,结果表明本方法所获鉴定结果稳定、可靠、效率较高,建议作为我国鉴定大豆种质资源对大豆疫霉根腐病部分抗性的基本方法。另外,用大豆疫霉菌株PNJ1接种鉴定38份黄淮地区大豆栽培品种和地方品种,其中高抗品种10个,占鉴定品种的26.3%。
     3、遗传分析。利用分别具有完全抗性和部分抗性的的品种配置4个杂交组合,在分别采用下胚轴伤口接种法和根部接种法接种大豆疫霉菌株PNJ1条件下,研究两类抗性的遗传模式。结果表明,大豆对疫霉根腐病完全抗性和部分抗性分属不同遗传体系,完全抗性由1对主基因控制,抗病对感病表现为显性;部分抗性由1对加性主基因+加性-显性多基因控制,F_2代主基因和多基因遗传率分别为41.31%~74.84%和15.60%~50.34%,F_(2:3)代主基因和多基因遗传率分别为54.21%~77.05%和13.52%~38.24%。两类抗性都有育种价值,并且在早世代选择是有效的。选育聚合有完全抗性和部分抗性的品种是使大豆获得疫霉根腐病高水平抗性和持久抗性的最佳途径。
     4、基因定位。大豆品种豫豆25和郑92116具有良好的抗大豆疫霉根腐病特性,经基因推导发现它们可能含有多个抗性基因组合或者含有新的抗病基因。用豫豆25与感病材料NG6255、郑92116与NH_5分别杂交构建了两个F_(2:3)群体,用大豆疫霉菌株对这两个群体进行抗性分析,通过SSR结合BSA的方法进行了分子作图,再结合系谱分析,结果显示豫豆25和郑92116的抗性是由同一个显性单基因控制,该基因可能为新的抗病基因,暂定名为RpsYu25,根据SSR标记的位置,该基因被定位在大豆连锁群N上。
     5、RGA分析。根据水稻抗白叶枯病Xa21基因的富含亮氨酸重复区域(LRR)和番茄抗细菌性斑点病的Pto基因编码蛋白激酶的DNA序列,设计2对引物用于扩增48个品种中的抗病基因同源序列,经聚丙烯酰胺凝胶电泳和聚类分析,结果表明供试品种间具有较丰富的RGA多态性,从48个大豆品种的抗病基因同源序列中,共扩增出53条谱带,各品种之间谱带较清晰且呈现明显的多态性,以相似系数0.746聚类,48个大豆品种可以分成7类。尽管RGA聚类和抗性表型聚类的类与类之间没有一一对应关系,但抗谱广的品种,能较好地聚在一类,如丰收黄、科丰36、即墨油豆等。因此,综合利用抗性表型和RGA分析可以为大豆疫霉根腐病抗病基因鉴定、品种的培育和布局提供一定的理论依据。
Phytophthora root rot(PRR),caused by Phytophthora sojae M.J.Kaufmann & J.W. Gerdemann,is one of the most devastating diseases in soybean[Glycine max(L.) Merr.]in the main soybean production countries such as USA,Brazil,Argentina and China. Utilization of resistant varieties is the most economical and environmentally safe method for controlling this disease.
     Two types of resistance to Phytophthora root rot have been described in soybean. Specific resistance confers immunity or near immunity to the plant through a hypersensitive response and is mediated by Rps genes.Fourteen genes at 8 loci(Rps1 to Rps8) for resistance to PRR have been designated and mapped to four molecular linkage groups in soybean:F,G,J and N,respectively.Single allele resistance has provided adequate disease management;however,following deployment of each single Rps gene,races of P.sojae were subsequently identified that had a susceptible interaction with the Rps gene.Single allele deployed in a soybean cultivar is only effective for 8 to 15 years,depending on inoculum density and environmental conditions.Continuous and enhanced uses of stable Rps genes in soybean cultivars against P.sojae races has created selection pressures for the evolution of new pathogenic P.sojae races that can overcome resistance conferred by these genes.P.sojae evolves constantly,and the number of physiological races of this oomycete pathogen is rapidly increasing.Partial resistance limits the lesion growth rate of the pathogen in host tissue,and it is understood to be quantitatively inherited.Huanghuai valley is one of main soybean production areas in China.The main goals of this study were:(1) to investigate the distribution and diversity of Phytophthora-resistant soybean and identify sources that confer resistance to multiple races for implementation into breeding programs; (2) to discover genetic mechanism of resistance to P.sojae;(3) to map resistant gene.The results of this study will be helpful for the development of resistant cultivars in this area.
     1.Resistance identification.96 soybean cultivars or lines from Huanhuai valley were evaluated for their responses to 7 strains of P.sojae using the hypocotyls inoculation technique.96 cultivars or lines elicited 38 different reaction types with the 7 strains of the pathogen.Among them 4 reaction types accorded to that of single gene,ten reaction types were consistent with two gene combinations,five reaction types were consistent with three gene combinations and the others were new reaction types.The 7 of 96 cultivars probably carried gene Rps3a,The 4 cultivars probably carried gene Rps3b,The 1 cultivar probably carried gene Rps3c,while 5 cultivars probably carried gene Rps7.Some cultivars or lines possibly carry new Rps genes that are effective to control Phytophthora root rot of soybean in China.These accessions may provide sources of resistance for control of Phytophthora rot of soybean in the future.
     2.Method of partial resistance to Phytophthora root rot and screening of soybean cultivar resistance.Three soybean cultivars with known resistance were evaluated for partial resistance to P.sojae with root inoculation.The result was that the root inoculation was simple,rapid and reliable and could be used as basal identification method of partial resistance of soybean to Phytophthora root rot.38 accessions from Huanghuai basin were evaluated for partial resistance to P.sojae using root inoculation technique.The results showed that 10 cultivars(26.3%) were high resistant to PNJ1 of P.sojae.
     3.Inheritance analysis.In the present study,four crosses between materials with complete or partial resistance were used to reveal the inheritance of resistance.The results showed that the complete resistance and partial resistance were controlled by different genetic systems:the former by a single dominant gene(Rps),while the latter by one additive major gene plus additive-dominant polygene.The heritability values of resistance in development were about 90%,those of major and polygene were 41.31%~74.84%and 15.60%~50.34%in F_2,and 54.21%~77.05%and 13.52%~38.24%in F_(2:3),respectively. Both kinds of resistance can be used in soybean improvement,and it would be effective to conduct selection in early generations for high resistance in breeding,combining partial resistance with specific Rps genes to provide long term management of Phytophthora root rot as well as to avoid the boom-and-bust cycle of single gene deployment.
     4.Gene Mapping.Chinese soybean cultivar(line) Yudou25 and Zheng92116 had the same reaction to the 7 P.sojae isolates and might contain novel resistance loci or alleles.In order to further identify the allele(s) for resistance to P.sojae in Yudou25 and Zheng92116 and to map these allele(s) to a linkage group,two soybean populations,Yudou25×NG6255 and Zheng92116×NH5,were evaluated following inoculation with P.sojae and with SSR markers.Results indicated that the resistance in Yudou25 and Zheng92116 was conferred by a same single dominant gene,and it maybe a new resistance gene,temporarily designated RpsYu25,located on molecular linkage group N in two populations.
     5.RGA analysis.Most known plant disease-resistance(R) genes include nucleotide binding site(NBS) or leucine-rich repeats(LRRs) and serine/threonine protein kinase(STK) in their encoded products domains.Two primers,XLRRfor/XLRRrev and Pto-kin1/Pto-kin2,were designed based on these conserved domains.By polymerase chain reaction(PCR) and denatured polyacrylamide-gel electrophoresis techniques,disease resistance gene analogs(RGA) have been amplified on 48 soybean materials.The RGA analysis of 48 cultivars produced 53 amplification bands,39 of the 53(73.6%) bands showed polymorphic,and they could be divided into 7 groups at 0.746 similarity coefficient. Although there is no parallelism relationship between group and group in two different types of the clustering,the varieties,such as Fengshouhuang,Kefeng36,and Jimoyoudou with broad spectrum can be fallen into the same group.The result indicated RGAP (resistance gene analog polymorphism) technique,combining the resistant spectrum, provides a useful and efficient way to improve the efficiency of parent materials selection in soybean breeding and to accelerate the process of developing soybean cultivars with resistance.
引文
1 陈长卿,康振生,王晓杰,等.大豆疫霉的分子检测[J].西北农林科技大学学报(自然科学版),2005,33(3):73-77.
    2 陈品三.大豆疫霉根腐病及与线虫的关系和防治措施[J].植保技术与推广,1994,2:38-39.
    3 陈庆河,翁启勇,王源超,等.福建省大豆疫病病原鉴定及其核糖体DNA-ITS序列分析[J].植物病理学报,2004,34(2):112-116.
    4 陈万权,胡长程.我国28个小麦品种抗叶锈基因的推导[J].作物学报,1993,19(3):268-275.
    5 丁俊杰.黑龙江省大豆主要病害研究进展[J].中国农学通报,2003,19(1):75-80.
    6 窦坦德,李宝笃,沈崇尧.快速检测大豆疫霉菌的酶联免疫吸附技术[J].植物检疫,1997,11(3):138-142.
    7 方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001.
    8 盖钧镒,章元明,王健康.植物数量性状遗传体系[M].北京科学出版社,2003.
    9 高秀兰,种炎,李文利,等.从日本进境大豆种子中检出大豆疫病菌[J].植物检疫,1997,11(4):235.
    10 韩晓增,何志鸿,张增敏.大豆主要病虫害防治技术[J].大豆通报,1998,6:5-6.
    11 韩英鹏,李文滨,Kang F Y,等.耐大豆疫霉根腐病QTL定位的研究[J].大豆科学,2006,25(1):23-27.
    12 黄振刚,靳相成,马玉华,等.呼伦贝尔盟大豆疫病病原菌鉴定[J].内蒙古农业科技,1999,4:21.
    13 胡喜平,丁俊杰,马淑梅,等.大豆疫霉病抗性遗传规律的研究及抗源创新[J].中国油料作物学报,2004,26(1):78-80.
    14 霍云龙.大豆抗疫霉根腐病基因鉴定及分子标记[D].华中农业大学硕士论文,2005.
    15 李宝英,顾建锋,徐瑛,等.宁波局截获大豆疫病的体会[J].植物检疫,2003,17(1):51-52.
    16 李宝英,马淑梅.大豆疫霉病研究初报[J].大豆科学,1996,15(2):164-165.
    17 李宝英,马淑梅.大豆疫霉根腐病的发生与防治研究[J].中国油料作物学报,1999,21(4):47-50.
    18 李宝英,马淑梅,张举梅.聚氨基葡聚糖防治大豆根腐病的初步研究[J].大豆科学,1997,16(3):269-273.
    19 李长松,路兴波,刘同金,等.大豆疫霉根腐病菌生理小种的鉴定及品种抗病性筛选[J].中国油料作物学报,2001,23(2):60-62.
    20 李启新,陈长法,杜琦.青岛局首次从进口美国大豆中截获大豆疫霉菌[J].植物检疫,1999,13(2):115.
    21 刘丽君,吴俊江,高明杰.大豆抗疫霉病菌的生理生化机制[J].中国油料作物学报,2005,27(1):81-83.
    22 吕慧颖,孔凡江,许修宏.东北三省大豆种质资源对大豆疫霉根腐病的抗性表现[J].中国油料作物学报,2001,23(4):16-18.
    23 马淑梅,丁俊杰.大豆疫霉病发生危害及影响其发生因素的探讨[J].植物保护,1999,25(5):8-11.
    24 马淑梅,李宝英.大豆疫霉根腐病菌生理小种鉴定结果初报[J].大豆科学,1999,18(2):151-153.
    25 马淑梅,李宝英,丁俊杰.大豆疫霉根腐病抗病资源筛选及抗性遗传研究[J].大豆科学,2001,20(3):197-199.
    26 牛永春,乔奇,吴立人.豫鲁皖三省重要小麦品种抗条锈基因推导[J].植物病理学报,2000,30(2):122-128.
    27 彭金火.大豆疫霉的土壤诱集检测[J].植物检疫,1998,12(4):198-203.
    28 秦国勋,方贤星,夏新媛,等.加强对进口大豆的检验检疫[J].植物检疫,2000,15(5):308-310.
    29 曲娟娟.大豆疫霉根腐病抗病基因的RAPD标记研究[D].东北农业大学硕士论文,2001.
    30 沈崇尧,苏彦纯.中国大豆疫病的发现及初步研究[J].植物病理学报,199l,21(4):298.
    31 司权民,张新心,段霞瑜,等.小麦抗白粉病品种的基因分析与归类研究[J].植物病理学报,1992,22(4):349-355.
    32 苏彦纯,沈崇尧.大豆疫霉病菌在中国的发现及其生物学特性的研究[J].植物病理学报,1993,23(4):341-347.
    33 王建康,盖钧镒.数量性状主基因-多基因混合遗传的P_1、F_1、P_2、F_2、F_(2:3)联合分析方法[J].作物学报,1998,24(6):651-659.
    34 王立安,张文利,王源超,等.大豆疫霉的ITS分子检测[J].南京农业大学学报,2004,27(3):38-41.
    35 王寿南,汪霞玲.上海局再次截获大豆疫霉病菌[J].植物检疫,1999,13(6):379.
    36 王晓鸣,Schmitthenner A F,马书君.黑龙江省大豆疫霉根腐病的调查[J].植物保护,1998,24(3):9-11.
    37 汪霞玲,王寿南.上海局首次从美国进口大豆上截获大豆疫霉菌[J].植物检疫,1998,12(4):197.
    38 王晓鸣,朱振东,马淑梅,等.大豆疫霉选择性分离技术研究[J].植物病理学报.1998,28(1):78.
    39 王子迎,王源超,张正光,等.土壤中大豆疫霉菌诱捕方法的改进[J].植物病理学报,2005,35(6):557-559.
    40 王佐魁,陈中宽,闰任沛,等.呼盟农区大豆新病害-大豆疫病[J].内蒙古农业科技,2000,3:43-44.
    41 文景芝,李兆林,周艳玲.大豆疫霉根腐病传播途径研究[J].大豆科学,2000,19(3):223-228.
    42 文景芝,张明厚.黑龙江省大豆疫病病原菌的鉴定[J].中国油料作物学报,1998,20(4):324-328.
    43 文景芝,张晓玲,辛敏.用多克隆抗体检测纯培养和植物体内的大豆疫霉菌[J].东北农业大学学报,2002,33(3):209-212.
    44 吴炳芝,段文学,孙毅民.大豆疫霉根腐病防治研究初报[J].大豆科学,2001,20(4):309-311.
    45 向齐君,盛宝钦,段霞瑜,等.若干小麦抗白粉病品系的有效抗病基因的测定[J].作物学报,1996,22(6):741-744.
    46 许修宏,吕慧颖,杨庆凯,等.大豆疫霉根腐病抗源筛选[J].大豆科学,1999,18(2):147-150.
    47 杨秀芬,杨怀文,简恒.嗜线虫致病杆菌代谢物拮抗大豆疫霉[J].大豆科学,2002,21(1):52-55.
    48 臧忠婧,左豫虎,刘惕若,等.大豆疫霉菌的分离、鉴定及菌株致病力的测定[J].黑龙江八一农垦大学学报,2000,12(1):37-42.
    49 曾士迈,张树榛.植物抗病育种的流行学研究[M].北京:科学出版社,1998.
    50 张大凯,金林.辽宁局从进口榨油用商品大豆中多次截获检疫性有害生物[J].植物检疫,2001,15(3):159.
    51 张淑珍,徐鹏飞,武小霞,等.大豆疫霉根腐病菌毒素的提取及生物活性测定[J].中国农学通报,2005,21(3):252-254.
    52 章元明,盖钧镒.数量性状分离分析中分布参数估计的IECM算法[J].作物学报,2000,26(6):699-706.
    53 智海剑.大豆对大豆花叶病毒抗侵染和抗扩展特性的鉴定、遗传和利用研究[D].南京农业大学博士论文,2005.
    54 周明华,杜国兴,陈正桥,等.进口大豆中大豆疫霉的检测及检疫监管[J].植物检疫,2000,14(6):374-37.
    55 周肇蕙,严进,苏彦纯,等.大豆疫病的检疫研究及病原菌的分离鉴定[J].植物检疫,1995,9(5):257-261.
    56 周肇慧,严进.大豆疫霉根腐病种子带菌和传病研究[J].中国农业大学学报(增刊),1998,3:54-60.
    57 朱军.运用混合线性模型定位复杂数量性状基因的方法[J].浙江大学学报(自然科学版),1999,33(3):327-335.
    58 朱振东.大豆疫霉根腐病的发展和防治研究进展[J].植保技术与推广,2002,22(7):40-42.
    59 朱振东,王晓鸣.一种适用于大豆疫霉菌研究的培养基[J].植物病理学报,1998,28(3):214.
    60 朱振东,王晓鸣,常汝镇,等.黑龙江省大豆疫霉菌生理小种鉴定及大豆种质的抗性评价[J].中国农业科学,2000,33(1):62-67.
    61 朱振东,王化波,王晓鸣,等.中国大豆疫霉菌分布及毒力多样性研究[J].中国农业科学,2003,36(7):793-799.
    62 朱振东,王化波,王晓鸣,等.黑龙江省主要栽培大豆品种(系)对大豆疫霉根腐病的多抗性评价[J].植物遗传资源学报,2004,5(1):22-25.
    63 左豫虎,薛春生.环境条件对大豆幼苗疫病发生的影响[J].华北农学报,2002,17(4):93-95.
    64 Athow K L.Fungal diseases.Soybeans:Improvement,Production and Uses.J.R.Wilcox,ed.American Society of Agronomy,Madison,W I,1987.
    65 Abney T S,Melgar J C,Richards T L,et al.New races of Phytophthora sojae with Rpsl-d virulence[J].Plant Dis.,I997,81(6):653-655.
    66 Barreto D,Stegman de Gurfinkel B,and Fortugno C.Races ofPhytophthora sojae in Argentina and reaction of soybean cultivars[J].Plant Dis.,1995,79:599-600.
    67 Bernard R L,Smith P E,Kaufmarm M J,et al.Inheritance of resistance to Phytophthora root and stem rot in soybean[J].Agron.Journal,1957,49:391.
    68 Bhat R G and Schmitthenner A F.Genetic crosses between Physiologic races of Phytophthora sojae[J].Exp.Mycol.,1993,17:122-129.
    69 Bhattacharyya M K,Gonzales R A,Kraft M,et al.A copia-like retrotransposon Tgmr closely linked to the Rps-lk allele that confers race-specific resistance of soybean to Phytophthora sojae[J].Plant Mol.Bio.,1997,34:255-264.
    70 Bhattacharyya M K,Narayanan N N,Gao H,et al.Identification of a large cluster of coiled coilnucleotide binding site-leucine rich repeat-type genes from the Rpsl region containing Phytophthora resistance genes in soybean[J].Theor.Appl.Genet.,2005,111:75-86.
    71 Bhattacharyya M K and Ward E W B.Biosynthesis and metabolism of glyceollin I in soybean hypocotyls following wounding or inoculation with Phytophthora megasperma f.sp.glycinea[J].Physiol.Mol.Plant P.,1987,31:387-405.
    72 Bonhoff A,Rieth B,Golecki J,et al.Race cultivar-specific differences in callose deposition in soybean roots following infection with Phytophthora megasperma f.sp.Glycinea[J].Planta,1987,172:101-105.
    73 Brazier C M.Observations on the sexual mechanism in Phytophthora palmivora and related species [J].Trans.Brit.Mycol.Soc.,1972,58:237-251.
    74 Brown-Guedira G L,Thompson J A,Nelson R L,et al.Evaluation of genetic diversity of soybean introductions and North American ancestors using RAPD and SSR markers [J].Crop Sci., 2000, 40:815-823.
    
    75 Buraham K D, Dorrance A E, Francis D M, et al. Rps8, a new locus in soybean for resistance to Phytophthora sojae [J]. Crop Sci., 2003, 43: 101-105.
    
    76 Burnham K D, Dorrance A E, and VanToai T T. Quantitative trait loci for partial resistance to Phytophthora sojae in soybean [J]. Crop Sci., 2003, 43(5): 1610-1617.
    
    77 Burnham K D, Francis D, Dorrance M, et al. Genetic Diversity patterns among Phytophthora resistant soybean plant introductions based SSR markers [J]. Crop Sci., 2002, 42: 338-343.
    
    78 Buzzell R I and Anderson T R. Inheritance and race reaction of a new soybean Rpsl allele [J]. Plant Dis., 1992,76:600-601.
    
    79 Buzzele R I and Anderson T R. Plant loss response of soybean cultivars to Phytophthora megasperma f. sp. glycinea under field conditions [J]. Plant Dis., 1982, 66: 1146-1148.
    
    80 Byrum J R, Kimbirauskas P M, Shoemaker R C, et al. Identification of a RAPD marker linked to the Rps4 gene in soybean [Glycine max (L.)Merr.] [J]. Soybean Genet. Newsl., 1993, 20: 112-117.
    
    81 Canaday C H and Schmitthenner A F. Isolating Phytophthora megasperma f. sp. glycinea from soil with a baiting method that minimizes Pythium contamination [J]. Soil Biol. Biochem., 1982, 14:67-68.
    
    82 Chen D W and Zentmyer G A. Production of sporangia of Phytophthora cinnamomi in axenic culture [J]. Mycologia, 1970, 62: 397-402.
    
    83 Demirbas A, Rector B G, Lohnes D G, et al. Simple sequence repeat markers linked to the soybean Rps genes for Phytophthora resistance [J]. Crop Sci., 2001, 41: 1220-1227.
    
    84 Diers B W and Boyse F J. Michigan soybean performance report[C]. Michigan Soybean Promotion Committee, Frankenmuth, MI, 1997.
    
    85 Diers B W, Mansur L, Imsande J, et al. Mapping Phytophthora resistance loci in soybean with restriction fragment length polymorphism markers [J].Crop Sci., 1992, 32: 377-383.
    
    86 Dorrance A E, McClure S A, and deSilva A. Pathogenic diversity of Phytophthora sojae in Ohio soyhean fields [J]. Plant Dis., 2003, 87: 139-146.
    
    87 Dorrance A E, McClure S A, and Martin S K St. Effect of partial resistance on Phytophthora stem rot incidence and yield of soybean in Ohio [J]. Plant Dis., 2003, 87: 308-312.
    
    88 Dorrance A E and Schmitthenner A F. New sources of resistance to Phytophthora sojae in the soybean plant introductions [J]. Plant Dis., 2000, 84: 1303-1308.
    
    89 Doupnik B. Soybean production and disease loss estimates for north central United States from 1989 to 1991 [J]. Plant Dis., 1993,77: 1170-1171.
    90 Drenth A, Whisson S C, Maclean D J, et al. The evolution of races of Phytophthora sojae in Australia [J]. Phytopathology, 1996, 86: 163-169.
    
    91 Dubin H J, Johnson R, and Stubbs R W. Postulated genes for resistance to stripe rust in select CIMMYT and related wheat [J]. Plant Dis., 1989, 73: 472-475.
    
    92 Edwards M D, Stuber C W, and Wendel J F. Molecular-marker-facilitated investigation of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action [J].Genetics, 1987,116:113-125.
    
    93 Enkerli K, Hahn M G, and Mims C W. Ultrastructure of compatible and incompatible interaction of soybean roots infected with the plant pathogenic oomycete Phytophthora sojae [J]. Can. J. Bot.,1997,75: 1493-1508.
    
    94 Erwin D C and Mccormich W H. Germination of zoospores produced by Phytophthora megasperma var. sojae [J]. Mycologia, 1971,63: 972-977.
    
    95 Flor H H. Host-parasite interaction in flax rust-its genetics and other implications [J].Phytopathology, 1955, 45(12): 680-685.
    
    96 Flor H H. Current status of the gene for gene concept [J]. Ann. Rev. Phytopathology, 1971, 7:295-296.
    
    97 Forster H, Tyler B M, and Coffey M D. Phytophthora sojae races have arisen by clonal evolution and by rare outcrosses [J]. Mol. Plant Microbe In., 1994, 7: 780-791.
    
    98 Gao H Y, Narayanan N, Lori Ellison, et al. Two classes of highly similar coiled coil-nucleotide binding-leucine rich repeat genes isolated from the Rps1-k locus encode Phytophthora resistance in soybean [J]. Physiol. Mol. Plant P., 1987, 31(3): 407-419.
    
    99 Gardner M E, Hymowitz Xu S J, et al. Physical map location of the Rps1-k allele in soybean [J].Crop Sci., 2001, 41: 1435-1438.
    
    100 Glover K D and Scott R A. Heritability and phenorypic variation of tolerance to Phytophthora root rot of soybean [J]. Crop Sci., 1998, 38: 1495-1500.
    
    101 Goodwin S B, Sujkowski L S, and Fry W E. Widespread distribution and probable origin of resistance to metalaxyl in clonal genotypes of Phytophthora infestans in the United States and Western Canada [J]. Phytopathology, 1996, 86: 793-800.
    
    102 Gordon S G, Martin S K St, and Dorrance A E. Rps8 maps to a resistance gene rich region on soybean molecular linkage group F [J]. Crop Sci., 2006,46: 168-173.
    
    103 Graham M Y and Graham T L. Rapid accumulation of anionic peroxidases and phenolic polymers in soybean cotyledon tissues following treatment with Phytophthora megasperma f. sp.glycinea wall glucan [J]. Plant Physiol., 1991, 97(4): 1445-1455.
    104 Grube R C, Radwanski E R, and Jahn M. Comparative genetics of disease resistance within the Solanaceae [J]. Genetics, 2000, 155: 873-887.
    
    105 Haas J H and Buzzell R I. New races 5 and 6 of Phytophthora megasperma var. sojae and different reactions of soybean cultivars for races 1 to 6 [J]. Phytopathology, 1976, 66: 1361-1362.
    
    106 Hansen E M and Maxwell D P. Species of the Phytophthora megasperma complex [J]. Mycologia,1991, 83(3): 376-381.
    
    107 Hegstad J M, Kyle D E, and Nickell C D. Pod inoculation technique with Phytophthora to evaluate soybean populations for Rps alleles in field plantings [J]. Crop Sci., 1996, 36 (6): 1706-1708.
    
    108 Hegstad J M, Nickell C D, Vodkin L O. Identifying resistance to Phytophthora sojae in selected soybean accessions using RFLP techniques [J].Crop Sci., 1998, 38: 50-55.
    
    109 Henry R N and Kirkpatrick T L. Two new races of Phytophthora sojae, causal agent of Phytophthora root and stem rot of soybean, identified from Arkansas soybean fields [J]. Plant Dis.,1995, 79: 1074.
    
    110 Heun M and Fischbeck G. Identification of wheat powdery mildew resistance genes by analyzing host-pathogen interaction [J]. Plant Breeding, 1987, 98: 124-129.
    
    111 Hildebrand A A. A root and stalk rot of soybean caused by Phytophthora megasperma Drechsler var.sojae [J]. Can. J. Bot., 1959, 37: 927-937.
    
    112 Hilty J W and Schmitthenner A E. Phytopathogenic and cultural variability of single wospore isolates of Phytophthora megasperma Var. sojae [J]. Phytopathology, 1962, 52: 859-862.
    
    113 Hobe M A and Schmitthenner A F. Direct isolation of new races of Phytophthora megasperma var.sojae from NW Ohio soils. (Abstr.) [J] Phytopathology, 1981,71: 226.
    
    114 Ho H H, and Hickman C J. Asexual reproduction and behavior of zoopores of Phytophthora megasperma var. sojae [J]. Can. J. Bot., 1967, 45: 1963-1981.
    
    115 Jackson T A, Kirkpatrick T L, and Rupe J C. Races of Phytophthora sojae in Arkansas soybean fields and their effects on commonly grown soybean cultivars [J]. Plant Dis., 2004, 88: 345-351.
    
    116 Jee H, Kim W, and Cho W. Occurance of Phytophthora root rot on soybean (Glycine max) and indentification of the causal fungus [J]. RAD Journal of Crop Protection. 1998, 40(1): 16-22.
    
    117 Jimenez B and Lockwood J L. Laboratory method of assessing field tolerance of soybean seedlings to Phytophthora megasperma var.sojae [J]. Plant Dis., 1980, 64(8): 775-777.
    
    118 Johson R. The concept of durable resistance [J]. Phytopathology, 1979, 69: 198-199.
    
    119 Kaitany R C, Hart L P, and Safir G R. Virulence composition of Phytophthora sojae in Michigan [J]. Plant Dis., 2001,85: 1103-1106.
    
    120 Kao C H, Zeng Z B, and Teasdale R D. Multiple interval mapping for loci [J]. Genetics, 1999, 152: 1203-1216.
    
    121 Kasuga T, Salimath S S, Shi J S R, et al. High resolution genetic and physical mapping of molecular markers linked to the Phytophthora resistance gene Rps1-k in soybean [J]. Mol. Plant Microbe In., 1997,10(9): 1035-1044.
    
    122 Kaufmann M J and Gerdemann J W. Root and stem rot of soybeans caused by Phytophthora f. sp.sojae [J]. Phytopathology, 1958, 48: 201-208.
    
    123 Keeling B L. Four new Physiologic race of Phytophthora megasperma f. sp. glycinea [J]. Plant Dis.,1982, 66: 334-335.
    
    124 Keeling B L. Phytophthora root and stem rot: Isolation, testing procedures, and seven new physiologic races[C]. World Soybean Research Conference II. F. T. Corbin, ed. West view Press,Boulder, Colo, 1980.
    
    125 Kleih H H. Ecology of the Phytothphora disease of soybeans [J]. Phytopathology, 1959, 49:380-383.
    
    126 Kuan T L and Erwin D C. Formae speciales differentiation of Phytophthora megasperma isolates from soybean and alfalfa [J]. Phytopathology, 1980, 70: 333-338.
    
    127 Kurle J E and Araby E M. Changing composition of Phytophthora sojae in Minnesota soils. (Abstr) [J] Phytopathology, 2001, 91: 51.
    
    128 Kyle D E, Nickell C D, Nelson R L, et al. Response of soybean accessions from provinces in southern China to Phytophthora sojae [J]. Plant Dis., 1998, 82: 555-559.
    
    129 Kyle D E and Nickell C D. Genetic analysis of tolerance to Phytophthora sojae in the soybean culture Jack [J]. Soybean Genetic Newsl., 1998,25: 124-125.
    
    130 Lander E S, and Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics, 1989,121: 185-199.
    
    131 Lander E S, Green P, Abrahamson J, et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations [J]. Genomics,1987,1:174-181.
    
    132 Laviolette F A and Athow K L. Physiologic races of Phytophthora megasperma f. sp. glycinea in Indiana, 1973-1979 [J]. Plant Dis., 1981, 65: 884-885.
    
    133 Laviolette F A and Athow K L. Three new races of Phytophthora megasperma f. sp. glycinea [J].Phytopathology, 1977, 67: 267-268.
    
    134 Laviolette F A and Athow K L. Two new physiologic races of Phytophthora megasperma f.sp.glycinea [J]. Plant Dis., 1983, 67: 497-498.
    
    135 Layton A C, Athow K L, and Laviotette F A. New physiologic race of Phytophthora megasperma f.sp.glycinea [J]. Plant Dis., 1986, 70: 333-338.
    
    136 Layton A C and Kuhn D N. In planta formation of heterokaryons of Phytophthora megasperma f.sp. Glycinea [J]. Phytopathology, 1990, 80: 602-606.
    
    137 Leitz R A, Harttnan G L, Pederson W L, et al. Races of Phytophthora sojae on soybean in Illinois [J]. Plant Dis., 2000, 84:487.
    
    138 Linda L. Inoculation of soybean seedlings with zoospores of Phytophthora megasperma var. sojae for pathogenicity and race determination [J]. Phytopathology, 1978, 68: 1769-1773.
    
    139 Liu R H and Meng J L. MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data [J]. Hereditas (Beijing) 2003, 25: 317-321.
    
    140 Lockwood J L and Chen S D. Race determination of Phytophthora megasperma var. sojae using differential soybean varieties inoculated with zoospores or incubated on flooded soil samples [J].Plant Dis., 1978, 62: 1687-1690.
    
    141 Loegering W Q and Burton C H. Computer-generated hypothetical genotypes for reaction and pathogenicity of wheat cultivars and cultures of Puccinia graminis tritici [J]. Phytopathology, 1971,64: 1380-1384.
    
    142 Lohnes D G, Nickell C D, and Schmitthenner A F. Origin of soybean alleles for Phytophthora resistance in China [J]. Crop Sci., 1996, 36: 1689-1692.
    
    143 Long M and Keen N T. Genetic evidence for diploidy in Phytophthora megasperma var. sojae [J].Phytopathology, 1977, 67: 675-677.
    
    144 Malvick D K and Grunden E. Traits of soybean-infecting Phytophthora populations from Illinois agricultural fields [J]. Plant Dis., 2004, 88: 1139-1145.
    
    145 Margulis L, Corliss J O, Melkonian M, et al. Hand book of Protoctista. Jones and Barlett, Boston,1989.
    
    146 Martin G B, Williams J G, and Tanksley S D. Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines [J]. Proc.Natl. Aci. USA 1991, 88: 828-832.
    
    147 McBlain B A and Schmitthenner A F. Evaluation of recurrent selection for Phytophthora tolerance in soybean. Ohio Agricultural Research and Extension Center Bull. Ohio Agricultural Research and Development Center, Wooster, 1991.
    
    148 McBlain B A, Hacker J K, Zimmerly M M, et al. Tolerance to Phytophthora rot in soybean: II.Evaluation of three tolerance screening methods [J]. Crop Sci., 1991, 31: 1412-1417.
    
    149 McBlain B A, Zimmerly M M, Schmitthenner A F, et al. Tolerance to Phytophthora rot in soybean:I. Studies of the cross 'Ripley' × 'Harper' [J]. Crop Sci., 1991, 31: 1405-1411.
    150 Meng X Q, Shoemaker R C, and Yang X B. Analysis of pathogenicity and genetic variation among Phytophthora sojae isolates using RAPD [J]. Mycol. Res., 1999, 103(2): 173-178.
    
    151 Michelmore R W, Paran I, and Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations [J]. Proc. Natl. Acad. USA.1991,1991, 88: 9828-9832.
    
    152 Miguel E, Vega-Sanchez, Margaret G, et al. Spatial and temporal expression analysis of defense-related genes in soybean cultivars with different levels of partial resistance to Phytophthora sojae [J]. Physiol. Mol. Plant P, 2005, 66: 175-182.
    
    153 Morgan F L and Hartwig E E. Physiologic specialization in P.me.var.sojae [J]. Phytopathology,1965, 55: 1277-1279.
    
    154 Morrison R H. Inoculation of detached cotyledons for screening soybeans against two races of Phytophthora megasperma var. sojae [J]. Crop Sci., 1978, 18: 1089-1091.
    
    155 Newhook F J, Waterhouse G M, and Stamps D J. Tabular key to the species of Phytophthora.Mycological Commonw. Mycol. Inst., Kew, Surrey, England, 1978.
    
    156 Niu X T, Yang X B, Lundeen N, et al. Changes in Phytophthota sojae races in Iowa soybean fields (Abstr.) [J]. Phytophthology, 2003, 93: 266.
    
    157 Olah A F and Schmitthenner A F. Glyceolin accumulation in soybean lines tolerant to Phytophthora megasperma f. sp. glycinea [J]. Phytopathology, 1985, 75(5): 542-546.
    
    158 Olah A F and Schmitthenner A F. A Growth chamber test for measuring Phytophthora root rot tolerance in soybean seedling [J]. Phytopathology, 1985,75(5): 546-548.
    
    159 Patterson D J and Sogin M L. Eukaryotic origins and protistan diversity. The Origin and Evolution of the Cell. H. Harman and K. Matsuno, eds. World Scientific, Singapore, 1992.
    
    160 Pazdernik D L, Hartman G L, Huang Y H, et al. A greenhouse technique for assessing Phytophthora root rot resistance in Glycine max and G. Soja [J]. Plant Dis., 1997, 81(10):1112-1114.
    
    161 Phillip W P and Allen J W. Soybean disease loss estimates for the Southern United States, 1994 to 1996 [J]. Plant Dis., 1998, 82: 114-116.
    
    162 Rennie B D, Buzzell R I, Anderson T R, et al. Evaluation of four Japanese soybean cultivars for Rps alleles conferring resistance to Phytophthora megasperma f. sp. glycinea [J]. Can. J. Plant Sci.,1992,72:217-220.
    
    163 Rose J L, Irwin J A G, Ryley M J, et al. Reaction of soybean cultivars to races of Phytophthora megasperma f. sp. glycinea present in Queensland [J]. Aust. J. Agric. Res., 1982, 33:763-771.
    
    164 Ryley M J, Obst N R, Irwin J A G, et al. Changes in the racial composition of Phytophthora sojae in Australia between 1979 and 1996 [J]. Plant Dis., 1998, 82: 1048-1054.
    
    165 Ryley M J, Obst N R, and Stovold G E. A new race of Phytophthora megasperma f. sp. glycinea on soybean in Australia [J]. Australas. Plant Path., 1991, 20: 97-102.
    
    166 Sandhu D, Schallock K G, Rivera-Velez N, et al. Soybean Phytophthora resistance gene Rps8 maps closely to the Rps3 region [J]. J. Hered., 2005, 96 (5): 536-541.
    
    167 Sandu D, Gao H Y, Cianzio S, et al. Deletion of a disease resistance nucleotide-binding-site leucine-rich-repeat-like sequence is associated with the loss of the Phytophthora resistance gene Rps4 in soybean [J]. Genetics, 2004,168: 2157-2167.
    
    168 Schmitthenner A F. Evidence for a new race oi Phytophthora megasperma var. sojae pathogenic to soybean [J]. Plant Dis., 1972, 56: 536-539.
    
    169 Schmitthenner A F and Bhat R G. Useful methods for studying Phytophthora in the laboratory [J].Ohio Agricultural Research and Development Centter. Special. Circular, 1994, 143: 7-8.
    
    170 Schmitthenner A F. Problems and progress in control Phytophthora root rot of soybean [J]. Plant Dis., 1985, 69(4): 362-368.
    
    171 Schmitthenner A F, Hobe M, and Bhat R G. Phytophthora sojae races in Ohio over a 10-year interval [J]. Plant Dis, 1994, 78: 269-276.
    
    172 Schmitthenner A F, Sinclair J B, and Backman P A. Compendium of Soybean Diseases [M]. Third Edition. St. Paul, MN: APS Press. The American Phytopathological Society, 1989.
    
    173 Schmitthenner A, Van Doren D M. Integrated control of root rot of soybean caused by Phytophthora megasperma f. sp. glycinea. Ecology and Management of Soilborne Plant Pathogens.American Phytopathological Society, 1985.
    
    174 Schmitthenner A F, Walker A K. Tolerance versus resistance for the control of Phytophthora root rot in soybeans[C]. Proc. Soybean Seed Res. Conf., 19th. H. D. Loden and D. Wilkinson, eds. American Trade Association, Washington, D C, 1979.
    
    175 Schwenk F W and Sim T. Race 4 of P. sojae from soybean proposed. Plant Disease Rep., 1974, 58:352-354.
    
    176 Shan W X, Cao M, leung D, et al. The Avrlb locus oi Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b [J]. Mol. Plant Microbe In., 2004, 17(4): 394-403.
    
    177 Skotland C B A. Phytophthora damping-off disease of soybean [J]. Plant Disease Reporter, 1995,39: 682-683.
    
    178 Song Q J, Marek L F, Shoemaker R C, et al. A new integrated genetic linkage map of the soybean [J].Theor. Appl. Genet., 2004, 109: 122-128.
    179 Tautz D, Trick M, and Dover G A. Cryptic simplicity in DNA is a major source of genetic variation [J]. Nature, 1986, 322: 652-656.
    
    180 Tooley P W and Grau C R. Identification and quantitative characterization of rate-reducing resistance to Phytophthora megasperma f. sp. glycinea. in soybean seedlings [J]. Phytopathology,1982, 72: 727-733.
    
    181 Vedenyapina E G, Safir G R, Niemira B A, et al. Low concentrations of the isoflavone genistein influence in vitro asexual reproduction and growth of Phytophthora sojae [J]. Phytopathology,1996, 86: 144-148.
    
    182 Wagner R E, Wickinson T H. A new physiologic race of Phytophthora sojae on soybean [J]. Plant Dis., 1992,76:212.
    
    183 Walker A K and Schmitthenner A F. Comparison of field and green house evaluation for tolerance to Phytophthora rot in soybean. [J]. Crop Sci., 1984,24:487-489.
    
    184 Walker A K and Schmitthenner A F. Heritability of tolerance to Phytophthora rot in soybean [J].Crop Sci., 1984, 24: 490-491.
    
    185 Ward E W B, Cahill D M, and Bhattacharyya M K. Abscisic acid suppression of phenylalanine ammonialyase activity and mRNA, and resistance of soybeans to Phytophthora megasperma f. sp.Glycinea [J]. Plant Physiol., 1989, 91: 23-27.
    
    186 Ward E W B. The interaction of soybeans with Phytophthora megasperma f. sp. glycinea:Pathogenicity[C]. Biological Control of Soilborne Plant Pathogens. B. Hornby, ed. C.A.B.International, Wallingford, England, 1990.
    
    187 Waterhouse G M. Key to the species of Phytophthora de Bary.Commonw. Mycol. Inst,Mycological Paper. 1963, 92: 1-22.
    
    188 Weng C, Yu K, Anderson T R, et al. Mapping genes conferring resistance to Phytophthora root rot of soybean, Rpsla and Rps7 [J]. J. Hered., 2001, 92: 442-446.
    
    189 White D M, Partridge J E, and Williams J H. Race of Phytophthora megasperma f. sp. glycinea on soybean in eastern Nebraska [J]. Plant Dis., 1983, 67: 1281-1284.
    
    190 Wrather J A, Anderson T R, Arsyad D M, et al. Soybean disease loss estimates for the top ten soybean-producing countries in 1994 [J]. Plant Dis., 1997, 81: 107-110.
    
    191 Wrather J A, Chamber, A Y, Fox J A, et al. Soybean disease loss estimates for the southern United States, 1974 to 1994 [J]. Plant Dis., 1995,79: 1076-1079.
    
    192 Wrather J A, Stienstra W C, and Koenning S R. Soybean disease loss estimates for the top ten soybean-producing countries in 1998 [J]. Can. J. Plant Pathol., 2001,23: 115-121.
    
    193 Wrather J A, Stienstra W C, Koenning S R. Soybean disease loss estimates for United States from 1996 to 1998 [J].Can. J. Plant Pathol., 2001,23: 122-131.
    
    194 Xiang Q J, Duan X Y, Sheng B Q, et al. The identification of resistance genes of several Chinese landraces [J]. Powdery Mildew and Rusts Bulletin, 1995, 23(2): 14-17.
    
    195 Yang X B, Ruff R L, Meng X Q, et al. Races of Phytophthora sojae in Iowa soybean fields [J].Plant Dis., 1996, 80: 1418-1420.
    
    196 Yoshikawa M and Sugimoto K. A specific binding site on soybean membranes for a phytoalexin elicitor released from fugal cell walls by β-1, 3-endoglucanase [J]. Plant and Cell Physiol., 1993,34(8): 1229-1237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700