棉花黄萎病菌T-DNA插入突变体表型特征及侧翼序列分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花黄萎病(Verticllium wilt)是由大丽轮枝菌(Verticillium dahliae kleb)引起的土传维管束病害,每年在世界范围内给棉花生产造成重大损失。多年来,国内外学者对大丽轮枝菌的致病机理进行了大量研究,但有关其致病的分子机制研究却非常滞后。本研究以我国落叶型棉花黄萎病菌VD991为野生型菌株,通过农杆菌介导的遗传转化,获得了大量大丽轮枝菌的T-DNA插入突变体,并进行了转化条件优化、突变体表型鉴定和插入位点侧翼序列的分析等研究,建立了大丽轮枝菌T-DNA插入突变和致病相关基因筛选研究的技术平台,为开展黄萎病菌致病的分子机制研究奠定了基础。
     在Mullins建立的尖孢镰刀菌(Fusarium oxysporum)转化方法基础上进一步优化了介导黄萎病菌T-DNA插入突变的条件,获得插入突变体2628个。经过分子验证和连续继代培养,证明这些突变体的抗性遗传稳定。部分突变体的表型鉴定结果表明:(1)VD991在正常恒温培养时并不产生微菌核,突变后部分突变体由菌丝型变成了菌核型,在培养5-7天开始产生大量微菌核,这部分突变体约占7.3%左右;(2)无论在MM还是PDA固体培养基上,突变体的生长速度普遍小于野生型菌株。在摇瓶培养条件下,大部分突变体产孢量的高峰在培养后第5-6天;菌丝型突变体的产孢能力和野生型接近或略低,而大部分菌核型突变体的产孢能力都高于野生型VD991,最高的达到VD991的4.9倍;(3)胞外酶检测结果表明:在平板培养时,VD991可以产生胞外蛋白酶、淀粉酶、纤维素酶和果胶酶,并能在以几丁质为惟一碳源的查比克培养基上生长。筛选出不能在MM培养基上正常生长的营养缺陷型突变体8个,不能利用脱脂奶粉的突变体3个,不能利用可溶性淀粉的突变体5个,果胶酶分泌降低的突变体7个;(4)利用棉花幼苗孢子悬浮液茎部穿刺和灌根接种方法,对部分突变体的致病性进行了鉴定,筛选出致病力减弱的突变体6个。
     采用hiTAIL-PCR的方法,获得了30个突变体T-DNA插入位点的右侧序列,与公布的大丽轮枝菌VDLs.17和黑白轮枝菌VaMs.102基因组序列比对结果表明:(1)侧翼序列与大丽轮枝菌VDLS.17DNA序列的一致性,均在95-100%之间,与黑白轮枝菌VaMs.102的一致性较低,为87-94%,说明VDLs.17基因组可以用作VD991功能基因研究的参考序列;(2)VD991和VDLs.17序列之间,除存在大量的单碱基差异和缺口外,有少数基因序列间表现出片段的插入和重新排序;(3)有7个突变体T-DNA插在基因编码区,13个突变体插入在基因编码序列上游500bp以内,这可能直接影响了下游基因的表达;(4)根据插入位置和表型分析,5个突变体T-DNA插入位点下游基因可以作为功能基因研究的候选基因;(5)突变体H20侧翼序列在大丽轮枝菌VDLs.17中未找到匹配序列,而在黑白轮枝菌VaMs.102基因组中存在一致性88%的同源序列,这在进化上是如何形成的值得进一步研究;(6)将30个突变体的T-DNA插入位置进行对比,发现它们插入位点不同,并广泛分布在所有8个染色体上,进一步证明了T-DNA插入事件的随机性。
Verticillium dahliae is the causal agent of the soil-borne vascular wilt disease, which results in severe yield and quality losses in cotton worldwide every year. Over the years, many studies were done by the domestic and foreign scholars on about the pathogenic mechanism of Verticillium dahliae, but little achievements were obtained. In this study, using the defoliated Verticillium wilt strain VD991as a wild type strain, a large number of mutants were constructed by the method of Agrobacterium tumefaciens mediaed transformation (ATMT). Subsequently, the optimizing of transformation protocol, the identification of mutants phenotype and their pathogenicity, and the flanking sequences of T-DNA insertional sites were studied. Accordingly, the technical platform on studying the T-DNA insertional mutation and the cloning of the pathogenicity related genes were built in our laboratory. This was a foundation for the study of pathogenic molecular mechanisms in Verticillium dahliae.
     Based on the transformation method of Fusarium oxysporum described by Mullins, the parameters of T-DNA insertional mutation for Verticillium dahliae were optimized.2628T-DNA insertional mutants were obtained and the stability of resistance heredity was testified by series culture and molecular verification. Some of the mutants were selected for the phenotype identification, the results indicated that:(1) VD991did not produce microsclerotia when cultivating at normal temperature on PDA. Some mutants, accounted for7.3%, changed from the original mycelial type into a sclerotium type, and producing large amount of microsclerotia at5-7d post cultivation.(2) The growth rate of mutants was slightly slower than that of wild-type strains on either MM or PDA medium. In shake-flask cultivation, the sporulation peak of most mutants was at5-6d post-inoculation. The sporulation capacity of mycelial type mutants was close to or slightly lower than that of wild-type, however, the sporulation capacity of sclerotium type mutants were higher than that of VD991, even up to4.9times.(3) The determination results of extracellular enzyme showed that VD991could produce extracellular protease, amylase, cellulase and pectinase, and it could grow on Czapek medium appending chitin as only carbon sources. Eight auxotrophic mutants that could not grow well on MM medium, three mutants that could not use skimmed milk powder, five mutants that could not make use of soluble starch and seven mutants with pectinase secretion reduced were selected.(4) Using the inoculation methods of root-dipping and stem puncturing with spore suspensions on cotton seedlings, the virulence of some mutants were identified. Six mutants that virulence reduced comparing with VD991were screened.
     The right flanking sequences of T-DNA insertional sites of30mutants were obtained by using the method of hiTAIL-PCR, and the results BLAST to the database of Verticillium dahliae VDLs.17and Verticillium albo-atrum VaMs.102genomes indicated that:(1) The flanking sequences showed95-100%identity over its full length to the corresponding site of VDLs.17, and87-94%identity to that of VaMs.102. Therefore, the genome sequence of VDLs.17could be used as a conference sequence for the functional genome research.(2) Between the sequences of VD991and VDLs.17, with the exception of the existence of a large number of single base differences and gaps, there are a small number of gene sequences showed fragments insertion and rearrangement;(3) There were7mutants with T-DNA inserted in coding region, thirteen mutants with insertional sites located in the range of500bp upstream of start codon may have direct impact on the expression of its downstream genes.(4) The downstream genes of T-DNA insertional sites of5mutants could serve as candidate genes for functional genetic research.(5) The matching sequence to H20flanking sequence could not be found in Verticillium dahliae VDLs.17, but it existed in Verticillium albo-atrum VaMs.102and shared homologous of88%. Further study should be done on how it happened on evolution.(6) Comparing the T-DNA insertional sites of30mutants showed that they were different from each other, and widely distributed in all8chromosomes. This demonstrated that the T-DNA insertional events happened randomly.
引文
[1]Pegg GF, Brady BL.2002. Verticillium wilts, Oxford, UK:CABI publishing.
    [2]Karapapa VK, Bainbridge BW, Heale JB.1997. Morphological and molecular characterisation of Verticillium longisporum comb, nov., pathogenic to oil seed rape. Mycol. Res.101:1281-1297.
    [3]张绪振,张树琴,陈吉棣,李庆基,陈壁,姚跃文.1981.我国棉花黄萎病“种”的鉴定.植物病理学报,11:13-18.
    [4]杨家荣,赵小明.1999.棉花黄萎病菌的遗传变异.西北农业大学学报,1999,27:101-106.
    [5]Schnathorst WC, Mathre DE.1966. Host range and differentiation of a severe form Verticillium albo-atrum in cotton. Phytopathology,56:1156-1161.
    [6]陆家云,曹以勤,王克荣.1987.棉花黄萎病菌不同致病类型在江苏的分布.植物保护学报,11:47-52.
    [7]石磊岩,王莉梅.1997.北方棉区黄萎病菌RAPD分析.植物保护,23:3-7.
    [8]宋晓轩,朱荷琴,郭金城.1997.棉花黄萎病菌Verticillium dahliae Kleb.安阳菌系致病力分化研究.中国农业科学,30:13-18.
    [9]Puhalla JE.1979. Classification of isolates of Verticillium dahliae based on heterokaryon incompatibility. Phytopathology,69:1186-1189.
    [10]Puhalla JE, Hummel M.1983. Vegetative compatibility groups within Verticillium dahliae. Phytopathology,73:1305-1308.
    [11]Correll JC, Gordon TR, McCain AH.1988. Vegetative compatibility and pathogenicity of Verticillium albo-atrum. Phytopathology,78:1017-1021.
    [12]Joaquim TR, Rowe RC.1990. Reassessment of vegetative compatibility relationships among strains of Verticillium dahliae using nitrate non-utilizing mutants. Phytopathology,80:1160-1166.
    [13]李延军,菲利蒲,李庆基.1990.中国棉花黄萎病菌营养体亲和性的研究. 陈其瑛,李典谟,曹赤阳主编:棉花病虫害综合防治及研究进展.北京:中国农业出版社,1364-1369.
    [14]王克荣,罗向群,孟爱中.1994.中国大丽轮枝菌营养体亲和群.南京农业大学学报,17(增刊):128-133.
    [15]顾本康,夏正俊,陆迅.1993.江苏省大丽轮枝菌营养体亲和性研究.棉花学报,5:79-86.
    [16]Talboys PW.1958. Association of tylosis and hyperplasia of the xylem with vascular invasion of the hop by Verticillium albo-atrum. Trans Brit Mycol Soc, 41:249-260.
    [17]陈旭升,陈永萱,黄骏麒.1998.黄萎病菌致萎毒素引起棉苗维管系统变化的电镜观察.棉花学报,10:111-112.
    [18]Neumann MJ, Dobinson KF.2003. Sequence tag analysis of gene expression during pathogenic growth and microsclerotia development in the vascular wilt pathogen Verticillium dahliae. Fung. Genet. Biol.38:54-62.
    [19]Klimes A, Dobinson KF.2006. A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen Verticillium dahliae. Fungal Genet Biol.43:283-294.
    [20]Rauyaree P, Ospina-Giraldo MD, Kang S, Bhat RG, Subbarao KV, Grant SJ, Dobinson KF.2005. Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae. Curr Genet.48:109-116.
    [21]Leal JA.1962. Lack of pectic enzyme production by non-pathogenic species of Verticillium. Nature,195:1328-1329.
    [22]Mussell HW.1973. Endopolygalacturonase:Evidene for involvement in Verticillium wilt of cotton.Phytopathology,63:62-71.
    [23]Cooper RM.1980. Cellwall degrading enzymes of vascular wilt fungi. Ⅲ, Possible involvement of endopectin lyase in Verticillium wilt of tomato. Physiol Plant Pathol,16:285-300.
    [24]Keen NT.1971. Endopolygalacturonase:Evidence against involvement in Verticillium wilt of cotton. Phytopathology,61:198-203.
    [25]Puhalla JE, Howell CR.1975. Significance of endopolygalacturonase activity to symptom expression of Verticillium wilt in cotton, assessed by use of mutants of Verticillium dahliae Kleb. Physiol Plant Pathol,7:147-152.
    [26]Howell CR.1976. Use of enzyme deficient mutants of Verticillium dahliae to assess the importance of pectolytic enzyme in symptom expression of Verticillium wilt of cotton. Physiol Plant Pathol,9:279-283.
    [27]Durrands PK, Cooper RM.1988. The role of pectinases in vascular wilt disease as determined by defined mutants of Verticillium albo-atrum. Physiol Mol Plant Pathol,32:363-371.
    [28]吕金殿.1990.棉花黄萎病菌致萎毒素研究I,II.棉花病虫害综合防治及研究进展.中国农业科技出版社,354-361.
    [29]Meyer RA.1994. Phytotoxic protein lipopolysaccharide complex produced by Verticillium dahliae. Phytochemistry,35:1449-1453.
    [30]Dobinson KF, Lecomte N.1997. Production of an extracellular trypsin-like protease by the fungal plant pathogen Verticillium dahliae. Cand J Microbiol, 43:227-233.
    [31]陈旭升,陈永萱,黄骏麒.1998.棉花黄萎病菌株VD8外泌毒蛋白的生化特性.江苏农业学报,14:126-128.
    [32]陈旭升,陈永萱,黄骏麒.2000.棉花黄萎病菌致萎峰蛋白质氨基酸组分及其有关生化特性分析.江苏农业学报,16:10-14.
    [33]Wang JY, Cai Y, Gou JY, Mao YB, Xu YH, Jiang WH, Chen XY.2004. VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Appl Environ Microbiol,70:4989-4995.
    [34]Bundock P, Dulk RA, Beijersbergen AGM.1995. Trans-kingdom T-DNA transferfrom Agrobacterium tumefaciens to Saccharomyces cerevisiae. The EMBOJ,14:3206-3214.
    [35]de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG.1998. Agrobacterium tumefaciens mediated transformation of filamentous fungi. Nature Biotechnology,16:839-842.
    [36]Michielse CB, Hooykaas PJ, van den Hondel CA, Ram AF.2005. Agrobacterium-mediated transformation as a tool for functional genomics in fungi. Curr Genet 48:1-17.
    [37]Meyer V, Mueller D, Strowig T, Stahl U.2003. Comparison of different transformation methods for Aspergillus giganteus. Curr Genet,43:371-377.
    [38]Mullins ED, Chen X, Romaine P, Raina R, Geiser DM, Kang S.2001. Agrobacterium-mediated transformation of Fusarium oxysporum:an efficient tool for insertional mutagenesis and gene transfer. Phytopathology, 91:173-180.
    [39]Rho HS, Kang S, Lee YH.2001. Agrobacterium tumefaciens mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol Cells, 12:407-411.
    [40]Campoy S, Perez F, Martin JF, Gutierrez S, Liras P.2003. Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer. Curr Genet,43:447-452.
    [41]Takahara H, Tsuji G, Kubo Y, Yamamoto M, Toyoda K, Inagaki Y, Ichinose Y, Shiraishi T.2004. Agrobacterium tumefaciens mediated transformation as a tool for random mutagenesis of Colletotrichum trifolii. J Gen Plant Pathol, 70:93-96.
    [42]Michielse CB, Ram AFJ, Hooykaas PJJ, Hondel CAMJJ van den.2004b. Role of bacterial virulence proteins in Agrobacterium mediated transformation of Aspergillus awamori. Fungal Genet Biol,45:571-578.
    [43]迟彦,周东坡,平文祥,李姗姗,朱婧,2005.根癌农杆菌介导的真菌遗传转化及其应用.菌物学报,24:612-619.
    [44]Fincham JRS.1989. Transformation in fungi. Microbiology Review, 3:148-170.
    [45]Wang J, Holden W, Leong SA.1988. Gene transfer system for the phytopathogenic fungus Ustilago maydis. Proc Natl Acad Sci USA, 85:865-869.
    [46]Hensel M, Holden DW.1996. Molecular genetic approaches for the study of virulence in both pathogenic bacteria and fungi. Microbiology, 142:1049-1058.
    [47]Kemken F, Kuck U.1996. Restless, an active Ac-like transposon from the fungus Tolypocladium inflation, structure, expression, and alternative RNA splicing. Mol Cell Biol,16:6563-6572.
    [48]Daboussi MJ, Djaballi A, Gerlinger C.1989. Transformation of seven species of filamentous fungi using nitrate reductase gene of Aspergillus nidulans. Curr Genetics,15:453-456.
    [49]Riggle PJ, Kumamoto CA.1998. Genetic analysis in fungi using restriction enzyme-mediated integration. Curr Opin Microbiol,1:395-399.
    [50]Granado JD, Kertesz-Chaloupkova K, Aebi M, Kues U.1997. Restriction enzyme-mediated DNA integration in Coprinus cinereus. Mol Gen Genet, 256:28-36.
    [51]Lu S, Lyngholm L, Yang G, Bronson C, Yoder OC, Turgen BG.1994. Tagged mutations at the Tox1 locus of Cochliobolus heterostrophus by restriction enzyme-mediated integration. Pro Natl Aca Sci USA,91:12649-12653.
    [52]Yun SH, Turgeon BG, Yoder OC.1998. REMI-induced mutants of Mycosphaerella zeaemaydis lacking the PM-toxin are deficient in pathogenesis to corn. Physiol Mol Plant Pathol,52:53-66.
    [53]Combier JP, Melayah D, Raffier C, Gay G, Marmeisse R.2003. Agrobacterium tumefaciens-mediated transformation as a tool for insertional mutagenesis in the symbiotic ectomycorrhizal fungus Hebeloma cylindrosporum. FEMS Microbiol Lett,220:141-148.
    [54]Tsuji G, Fujii S, Fujihara N, Hirose C, Tsuge S, Shiraishi T, Kubo Y.2003. Agrobacterium tumefaciens-mediated transformation for random insertional mutagenesis in Colletotrichum lagenarium. J Gen Plant Pathol,69:230-239.
    [55]Gouka RJ, Gerk C, Hooykaas PJ, Bundock P, Musters W, Verrips CT, De-Groot MJ.1999. Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotech, 17:598-601.
    [56]Zwiers LH, De Waard MA.2001. Efficient Agrobacterium tumefaciens mediated gene disruption in the phytopathogen Mycosphaerella graminicola. Curr Genet,39:388-393.
    [57]Zhang A, Lu P, Dahl-Roshak AM, Paress PS, Kennedy S, Tkacz JS, An Z. 2003. Efficient disruption of a polyketide synthase gene (pksl) required for melanin synthesis through Agrobacterium-mediated transformation of Glarea lozoyensis. Mol Genet Genomics,268:645-655.
    [58]Dobinson KF, Grant SJ, Kang S.2004. Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae. Curr Genet, 45:104-110.
    [59]Yanisch-Perron C, Vieira J, Messing J.1985. Improved M13 phage cloning vectors and host strains:nucleotide sequences of the M13mp18 and pUC19 vectors. Gene,33:103-119.
    [60]Hooykaas PJJ, Roobol C, Schilperoort RA.1979. Regulation of the transfer of Ti-plasmids of Agrobacterium tumefaciens. J Gen Microbiol,110:99-109.
    [61]Liu D, Coloe S, Baird R, Pederson J.2000. Rapid mini-preparation of fungal DNA for PCR. J Clin Microbiol,38:471.
    [62]徐荣旗.2006.野油菜黄单孢菌野油菜致病变种新的依赖于Ⅲ型分泌系统的效应物的鉴定.广西大学博士论文,导师:唐纪良.
    [63]陈天寿.1995.微生物培养基的制造与应用.北京:中国农业出版社,424.
    [64]石磊岩.1987.棉花抗黄萎病苗期鉴定方法.植物保护,13:427.
    [65]Liu YG, Chen Y.2007. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences. Biotechniques,43:649-656.
    [66]Michielse CB, Ram AF, Hooykaas PJ, Hondel CA,2004a. Role of bacterial virulence proteins in Agrobacterium-mediated transformation of Aspergillus awamori. Fungal Genet Biol,41:571-578.
    [67]Leclerque A, Wan H, Abschutz A, Chen S, Mitina GV, Zimmermann G, Schairer HU.2003. Agrobacterium-mediated insertional mutagenesis (AIM) of the entomopathogenic fungus Beauveria bassiana. Curr Genet,45:111-119.
    [68]Hanif M, Pardo AG, Gorfer M, Raudaskoski M.2002. T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr Genet,41:183-188.
    [69]Malca I, Erwin DC, Moje W, Jones B.1966. Effects of pH and carbon and nitrogen sources on the growth of Verticillium albo-atrum. Phytopathology 56:401-406.
    [70]Copper RM, Wood RKS.1975. Regulation of synthesis of cell-wall degrading enzymes by Verticillium albo-atrum and Fusarium oxysporum f. sp lycopersice. Physiological plant pathology,5:135-156.
    [71]Butler MJ, Day AW.1998. Fungal melanins:a review. Can J Microbiol, 44:1115-1136.
    [72]Hawke MA, Lazarovits G.1995. The role of melanin in the survival of microsclerotia of Verticillium dahliae. Phytoparasitica,23:54.
    [73]Howard RJ, Valent B.1996. Breaking and entering:host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol, 50:491-512.
    [74]朱荷琴,宋晓轩,简桂良.2004.棉花黄萎病菌致病力变异生理机制的初步研究.棉花学报,16(5):275-279.
    [75]Ochman H, Gerber AS, Hartl DL.1988. Genetic applications of an inverse polymerase chain reaction. Genetics,120:621-623.
    [76]Arveiler B, Porteous DJ.1991. Amplification of end fragments of YAC recombinants by inverse polymerase chain reaction. Technique,3:24-28.
    [77]Akiyama K, Watanabe H, Tsukada S.2000. A novel method for constructing gene-targeting vectors. Nucleic Acids Res,28:E77.
    [78]Shyamala V, Ames GF-L.1989. Genomic walking by single-specific-primer polymerase chain reaction:SSP-PCR. Gene,84:1-8.
    [79]Warshawsky D, Miller L.1994. A rapid genomic walking technique based on ligation-mediated PCR and magnetic separation tech-nology. Biotechniques, 16:792-798.
    [80]Moynihan TP, Markham AF, Robinson PA.1996. Genomic analysis of human multigene families using chromosome-specific Vectorette PCR. Nucleic Acids Res,24:4094-4095.
    [81]Sterky F, Holmberg A, Alexandersson G.1998. Direct sequencing of bacterial artificial chromosomes (BACs) and prokaryotic genomes by biotin-capture PCR. J Biotechnol,60:119-129.
    [82]Kilstrup M, Kristiansen KN.2000. Rapid genome walking:A simplified oligo-cassette mediated polymerase chain reaction using a single genome-specific primer. Nucleic Acids Res,28:E55.
    [83]Yan YX, An CC, Li L.2003. T-linker-specific ligation PCR (T-linker PCR): An advanced PCR technique for chromosome walking or for isolation of tagged DNA ends. Nucleic Acids Res,31:E68.
    [84]Parker JD, Rabinovitch PS, Burmer GC.1991. Targeted gene walking polymerase chain reaction. Nucleic Acids Res,19:3056-3060.
    [85]Liu YG, Mitsukawa N, Oosumi T.1995. Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J,8:457-463.
    [86]Terauchi R, Kahl G.2000. Rapid isolation of promoter sequences by TAIL-PCR:The 5-flanking regions of Pal and Pgi genes from yams (Dioscorea). Mol Gen Genet,263:554-560.
    [87]Ooms G, Bakker A, Mdendnk L.1982. T-DNA organization in homogeneous and heterogeneous octopine-type crown gall tissue of Nicotiana cabucum. Cell, 30:589-597.
    [88]Virts E, Gelvin S.1985. Analysis of transfer of tumor-inducing plasmids from Agrobacterium tumefaciens to petunia protoplasts. J Bact,162:1030-1038.
    [89]Mamneau B, Voelker T, Sanders RA.1994. On defining T-DNA. Plant Cell, 6:1032-1033.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700