杀菌剂对禾谷镰孢菌DON毒素产生和小麦衰老生理的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Fusarium graminearum(有性态为Gibberella zeae)可以引起小麦赤霉病,产生DON毒素污染谷物,对人类和牲畜健康造成极大威胁。为此,我国政府制定标准规定:在食用小麦面粉中DON的毒素含量不得超过1mg kg-1。为了防治小麦赤霉病并减轻其造成的DON毒素污染,人们从综合防治角度开发了许多防治策略,而化学防治在整个防控体系中起着非常重要的作用。在中国,苯并咪唑类杀菌剂多菌灵已被用于防治小麦赤霉病达40年之久。但是,由于多菌灵的单位点专化作用机理,F. graminearum已对该杀菌剂产生严重抗药性,并导致了化学防治效果的下降甚至丧失。因此,寻找和开发多菌灵的替代药剂是我们现在所面临的严峻挑战。而且有关多菌灵抗性产生后对F.graminearum DON毒素产生的影响的研究未见报道,而这些信息对于准确评估F.graminearum对多菌灵产生抗性的风险是必需的。此外,人们对杀菌剂影响小麦衰老过程的关注也较少。基于以上情况,本文的主要研究结果如下所述。
     利用实时定量PCR(RQ-PCR)和配备电子捕获检测器的气相色谱(GC-ECD)评估新型杀菌剂氰烯菌酯、戊唑醇、戊·福混剂(25%)、嘧菌酯、多菌灵和福美双在大田接种条件下对小麦赤霉病和DON毒素污染的控制效果。测定指标有:病花率(%)、禾谷镰孢菌侵染菌量(Tri5 DNA)和总DON毒素含量(包括DON.3-ADON和15-ADON).结果显示总DON毒素含量与病花率或禾谷镰孢菌侵染菌量成正相关关系。杀菌剂氰烯菌酯、戊唑醇和戊·福混剂(25%)能够明显降低病花率、禾谷镰孢菌侵染菌量和总DON毒素污染水平。但是与对照相比,嘧菌酯、多菌灵和福美双并不能有效降低病花率、禾谷镰孢菌侵染菌量和总DON毒素污染水平;嘧菌酯和多菌灵处理甚至明显加剧了总DON毒素污染程度,原因可能在于嘧菌酯和多菌灵提高了单位禾谷镰孢菌侵染菌量总DON毒素产生的能力。总之,杀菌剂氰烯菌酯、戊唑醇和戊·福混剂(25%)既能够有效防治小麦赤霉病的发生又能降低总DON毒素污染水平。
     测定了67株F. graminearum菌株在摇培液体培养基或大田麦穗上的产DON能力,菌株包括30株对多菌灵抗性的田间菌株、30株对多菌灵敏感的田间菌株、3株对多菌灵抗性的点突变体(β2-微管167位密码子突变)、3株对多菌灵敏感的点突变体(β2-微管240位密码子突变)和突变体的出发菌株ZF21。此外,试验还测定了这67个菌株在小麦上的病花率和谷粒中F. graminearum DNA的侵染量(AFgDNA).无论是液体摇培还是田间麦穗接种试验,结果表明多菌灵抗性基因会增加F. graminearum菌株的产DON能力。尽管多菌灵抗性基因不会改变F. graminearum菌株在小麦上的病花率,但却可以增加谷粒中F. graminearum DNA的侵染量。在离体摇培条件下,多菌灵抗性F.graminearum菌株中毒素合成基因Tri5的表达得到增强;F. graminearum菌株产DON能力与Tri5的表达水平呈指数关系。此外,小麦赤霉病病花率和谷粒中总DON含量与F.graminearum DNA侵染量比值之间却没有明显关系。这些结果表明,谷粒中总DON含量是由谷粒中F. graminearum的菌丝量决定的,而不受F. graminearum菌株产DON能力强弱的影响。
     大田条件下,在小麦生长期[ZGS]57(小麦出穗率3/4),按照推荐剂量叶面喷施4种杀菌剂氰烯菌酯(2-氰基-3-氨基-3-苯基丙烯酸乙酯)(新型杀菌剂)、嘧菌酯(甲氧基丙烯酸酯类)、戊唑醇(三唑类)和多菌灵(苯并咪唑类)处理小麦植株(品种,南农9918),评估杀菌剂对冬小麦衰老过程生理生化和谷物产量的影响。杀菌剂处理显著增加旗叶叶绿素(CHL)和可溶性蛋白(SP)含量,减少丙二醛含量(MDA)和电解质渗透。此外,杀菌剂处理也明显增加超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)的活性,与之相应的是提高了小麦旗叶中过氧化氢(H2O2)的含量和降低了超氧阴离子(O2-)的含量。所有结果表明,杀菌剂处理能够延缓小麦衰老,原因在于杀菌剂处理可以提高抗氧化酶的活性以保护小麦免受活性氧(AOS)的危害。与未处理对照相比,杀菌剂处理可增加小麦谷物产量。在所有测试杀菌剂中,氰烯菌酯、嘧菌酯和戊唑醇表现出类似的延缓小麦衰老和增加小麦产量的作用,但是氰烯菌酯的效果是最好的
Fusarium graminearum (teleomorph, Gibberella zeae) causes head blight of cereals and contaminates grains with deoxynivalenol (DON) toxin that are harmful to humans and domesticated animals. To safeguard human health, the People's Republic of China Ministry of Health advises a limit of less than 1 mg kg-1 for finished flour products. Various strategies have been developed to control Fusarium head blight (FHB) and to reduce DON contamination of cereals, with chemical control having an important role in an integrated FHB control program. Benzimidazole fungicides, particularly carbendazim (MBC), have been used to control FHB in China for over 40 years. However, F. graminearum has seriously developed resistance to MBC with a site-specific mode of action, leading to inefficacy of this fungicide. Therefore, there is a challenge now to find alternative fungicides for MBC in China. Besides, there are no data on the effect of MBC-resistance on DON production by F. graminearum strains. These data are needed to assess the risk of resistance of F. graminearum to MBC. Moreover less attention has been addressed towards the effect of fungicide on the senescence process of wheat treated with the fungicides. So the major results of the present study are shown as below.
     We used real-time quantitative PCR (RQ-PCR) and gas chromatography with electron capture detector (GC-ECD) to evaluate the efficacies of JS399-19, tebuconazole, a mixture of tebuconazole and thiram, azoxystrobin, MBC, and thiram on the development of FHB and DON contamination of winter wheat after artificial inoculation under field conditions with Fusarium graminearum. The incidence of spikelets infected (ⅡS), amount of F. graminearum Tri5 DNA (Tri5 DNA), and total DON [containing DON,3-acetyl-(3-ADON) and 15-acetyl-deoxynivalenol (15-ADON)] concentration were quantified in 2006 and 2007. A strong positive correlation was found betweenⅡS or Log10Tri5 DNA and total DON concentration in the harvested grain. The JS399-19, tebuconazole, and the mixture of tebuconazole and thiram significantly reducedⅡS of FHB, amount of Tri5 DNA, and total DON within the grain. Azoxystrobin, MBC, and thiram had no effect on the occurrence of F. graminearum compared with those of the untreated controls. Surprisingly, azoxystrobin and MBC significantly increased the total DON content in the harvested grain because they might have stimulated the amount of total DON production per Tri5 DNA. The fungicides JS399-19, tebuconazole, and the mixture of tebuconazole and thiram were the most effective in controlling FHB and reducing DON contamination of the wheat.
     Sixty-seven strains were evaluated for DON production in shake culture or in the field. The strains included 60 field strains (30 MBC-resistant and 30 MBC-sensitive), three MBC-resistant site-directed mutants at codon 167 inβ2-tubulin, three MBC-sensitive site-directed mutants at codon 240 inβ2-tubulin, and their MBC-sensitive progenitor strain ZF21. The incidence of infected spikelets and the amount of F. graminearum DNA in field grain (AFgDNA) also were evaluated for all strains. MBC resistance increased DON production ability in shake culture or in the field. Although MBC resistance did not change the incidence of infected spikelets, it did increase AFgDNA. Tri5 gene expression increased in MBC-resistant strains grown in shake culture. We found a significant exponential relationship between DON production ability and Tri5 gene expression in shake culture. However, no association existed between the the incidence of infected spikelets and the ratio of total DON content to the amout of F. graminearum DNA in field grain. These indicated that total DON content was determined by the amount of F. graminearum mycelia in field grain and not influenced by the DON production ability of F. graminearum.
     The impact of four fungicides JS399-19 (2-cyano-3-amino-3-phenylancryic acetate) (a novel fungicide), azoxystrobin (a strobilurin), tebuconazole (a triazole) and MBC (a benzimidazole), applied as foliar spray at the recommended field rate, on the physiology and biochemistry of the senescence process and grain yield was studied in winter wheat (Triticum aestivum L. cv.'Nannong No.9918') under natural environmental conditions. Fungicide treatments to wheat plants at growth stage [ZGS] 57 (3/4 of head emerged) significantly increased the CHL and SP content and decreased the MDA content and electrolyte leakage. Additionally, activities of the antioxidative enzymes SOD, CAT and POD in flag leaves of the fungicide-treated plants were also higher than that in untreated plants. These coincided with elevated levels of H2O2 and reduced level of O2- in the fungicide-treated plants. The results suggested that the fungicide-induced delay of senescence was due to an enhanced antioxidant enzyme activity protecting the plants from harmful active oxygen species (AOS). Because all fungicides can induce the delay of wheat senescence, fungicide-treated wheat shown higher grain yield than untreated wheat. Of all tested fungicides, JS399-19, azoxystrobin and tebuconazole showed similar effects on delaying senescence of wheat and enhancing the grain yield of wheat, but JS399-19 was more efficient in general.
引文
1. Parry DW, Jenkinson P, McLeod L. Fusarium ear blight (scab) in small grain cereals-a review [J]. Plant Pathol,1995,44:207-238
    2. McMullen M, Jones R, Gallenberg D. Scab of wheat and barley:are-emerging disease of devastating impact [J]. Plant Dis,1997,81:1340-1348
    3. Goswami RS, Kistler HC. Heading for disaster:Fusarium graminearum on cereal crops [J]. Mol Plant Pathol,2004,5:515-525
    4. 陆维忠,程顺和,王裕中.小麦赤霉病研究[M].北京:科学出版社,2001:2-39
    5. Chen LF, Bai GH. Proceedings of the international symposium on wheat improvement for scab resistance [C]. Suzhou and Nanjing, China, Raupp WJ, Ma ZQ, Chen PD, et al. Eds. Nanjing Agricultural University, Jiangsu, PR China,2000:258-273
    6. Gilbert J, Tekauz A. Recent developments in research on Fusarium head blight of wheat in Canada [J]. Can J Plant Pathol,2000,22:1-8
    7. 武爱波,赵纯森,瞿波,等.镰刀菌毒素及其分子生物学研究进展[J].华中农业大学学报,2003,22(5):516-521
    8. 俞刚,陈利锋,姚红燕,等.脱氧雪腐镰刀菌烯醇在小麦赤霉病病程中的作用[J].植物病理学报,2003,33(1):40-43
    9. 袁善奎.玉蜀黍赤霉(Gibberella zeae)对多菌灵的抗药性遗传研究[D].南京:南京农业大学,2003:32
    10. Starkey DE, Ward TJ. Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity [J]. Fungal Genetics Biology,2007,44:1191-1204
    11. Cromey MG, Shorter SC, Lauren DR, et al. Cultivar and crop management influences on Fusarium head blight and mycotoxins in spring wheat (Triticum aestivum) in New Zealand [J]. Crop Hortic Sci,2002,30:235-247
    12.全国小麦赤霉病研究协作组.我国小麦赤霉病穗部镰刀菌种类、分布和致病性[J].上海师范大学学报,1984,3:69-82
    13. Gale LR,Chen LF, Hernick CA, et al. Population analysis of Fusarium graminearum from wheat fields in eastern China [J]. Phytopathology,2002,92:1315-1322
    14. Sutton JC. Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum [J]. Can J Plant Pathol,1982,4:195-209
    15. Bai GH, Shaner G. Scab of wheat:prospects for control [J]. Plant Dis,1994,78(8):760-766
    16. Champeil A, Dore T, Fourbet JF. Fusarium head blight:epidemiological origin of the effects of cultural practices on head blight attacks and the production of mycotoxins by Fusarium in wheat grains [J]. Plant Sci,2004,166:1389-1415
    17.姚金保,陆维忠.中国小麦抗赤霉病育种研究进展[J].江苏农业学报,2000,16(4):242-248
    18.王裕中,Mllier.中国小麦赤霉病菌优势种-禾谷镰刀菌产毒素能力的研究[J].真菌学报,1994,13(3):229-234
    19. Bai GH, Plattner R, Desjardins A, et al. Resistance to Fusarium head blight and deoxynivalenol accumulation in wheat [J]. Plant Breeding,2001,120:1-6
    20. Fernando WGD, Miller JD. Daily and seasonal dynamics of airborne spores of Fusarium graminearum and other Fusarium species sampled over wheat plots [J]. Can J Bot,2000,78: 497-505
    21. Pugh GW, Johann H, Dickson JG. Factors affecting infection of wheat heads by Gibberella saubinetii [J]. J Agric Res,1933,46:771-797
    22. Strange RN, Smith H. A fungal growth stimulant in anthers which predisposes wheat to attack by Fusarium graminearum [J]. Physiol Plant Pathol,1971,1:141-150
    23. Dill-Macky R, Jones RK. Effects of previous crop and tillage on Fusarium head blight of wheat [J]. Phytopathology,1999,89:21
    24. Windels CE, Kommedahl T. Population differences in indigenous Fusarium Species by corn culture of prairie soil [J]. Am J Bot,1974,61:141-145
    25. Sturz AV, Johnston HW. Characterization of Fusarium colonization of spring barely and wheat produced on stubble and fallow soil [J]. Can J Plant Pathol,1985,7:270-276
    26. Celetti MJ, Johnston HW, Kimpinski J, et al. Incidence of soil-borne plant pathogens isolate from barely and winter wheat, arid other crops in the rotation, on Prince Edward Island [J]. Plant Pathol, 1990,39:606-611
    27.全国小麦赤霉病研究协作组.小麦品种资源抗赤霉病性鉴定研究[J].作物品种资源,1984,4:1-7
    28.王裕中,杨新宁,肖庆璞,等.小麦赤霉病抗性鉴定技术的改进及其抗源的开拓[J].中国农业科学,1982,5:67-71
    29.王雅平,王进先,刘伊强.小麦品种对赤霉病抗扩展性的遗传研究[J].作物学报,1992,18(5):373-379
    30. Miller JD, Young JC, Sampson DR. Deoxynivalenol and fusarium head blight resistance in spring cereals [J]. J Phytopathology,1985,113:359-367
    31.姚金保,葛永福,王书文,等.小麦品种苏麦3号抗赤霉病基因的染体定位研究[J].作物学报, 1997,23(4):450-453
    32. Poppenberger B, Berthiller F, Lucyshyn D, et al. Detoxification of the Fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana [J]. J Biol Chem,2003, 278(48):47905-47914
    33. Lemmens M, Scholz U, Berthiller F, et al. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat [J]. Mol Plant-Microbe Interact,2005,18(12):1318-1324
    34. Fernandez MR. The effect of Trichoderma harzianum on fungal pathogens infesting wheat and black oat straw [J]. Soil Biol Biochem,1992,24:1031-1034
    35. Strange RN, Majer JR, Smith H. The isolation and identification of choline and betaine as two major components in anther and wheat gene that stimulate Fusarium graminearum in vitro [J]. Physiol Plant Pathol,1974,4:277-290
    36. Khan NI, Schisler DA, Boehm MJ, et al. Biological control of scab of wheat incited by Gibberella zeae.In:Proceedings of the 1998 National Fusarium Head Blight Forum [C]. Michigan:Michigan State University East Lansing,1998:45-46
    37. Jenczmionka NJ, Maier FJ, Losch AP, et al. Mating, conidation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmkl [J]. Curr Genet,2003,43:87-95
    38. Proctor RH, Hohn TM, McCormick SP. Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene [J]. Mol Plant-Microbe Interact,1995,8(4):591-601
    39.郑元梅.福建小麦赤霉病的致病菌种及其致病性的研究[J].植物病理学报,1983,2:53-59
    40.徐雍皋,陈利锋,方中达.玉蜀黍赤霉致病力分化的研究[J].南京农业大学学报,1986,3:41-45
    41. Ittu M, Miedaner T. Effect of environmental conditional on the aggressiveness of German and Romanian Fusarium graminearum isolates toward wheat and deoxynivalenol production [J]. Mitteilungen Bio Bundesanstale Land-Forstwirtsch,2000,377:92
    42. Bai GH, Desjardins AE, Planner RD. Deoxynivalenol-nonproducing Fusarium graminearum causes intial infection, but does not cause disease spread in wheat spikes [J]. Mycopathologia,2001,153: 91-98
    43. Gilbert J, Abramson D, Clear R, et al. Proceedings of the international symposium on wheat improvement for scab resistance[C]. Suzhou and Nanjing, China, Raupp WJ, Ma ZQ, Chen PD, et al. Eds. Nanjing Agricultural University, Jiangsu, PR China,2000:218-224
    44.徐雍皋,方中达.玉蜀黍赤霉对小麦品种致病力的测定方法和致病力的分化[J].植物病理学 报,1982,12(4):53-56
    45. Dicksons JG. Second progress report on the Fusarium blight (scab) of wheat [J]. Phytopathology, 1921,11(1):35
    46. Schroeder HW. Factors affecting resistance of wheat to scab caused by Gibberella zeae (Schw.) Petch. St. Paul [M]. MN:University of Minnesota,1955
    47.陈利锋,徐雍皋.小麦赤霉病菌直接侵入现象的电镜观察[J].南京农业人学学报,1989,12(2):127-128
    48. Prisch C, Vance CP, Bushnell WR, et al. Systemic expression of defence response gnes in wheat spikes as a response to Fusarium geaminearum infection [J]. Physiol Mol Plant Pathol,2001,58: 1-12
    49. Wanjiru WM, Kang ZS, Buchenauer H. Importance of cell wall degrading enzymes produced by Fusarium graminearum during infection of wheat heads [J]. Eur J Plant Pathol,2002,108:803-810
    50.康振生,黄丽丽,Buchenauer H,等.禾谷镰刀菌在小麦穗部侵染过程的细胞学研究[J].植物病理学报,2004,34(4):329-335
    51. Chen LF, McCormick SP, Hohn TM. Altered regulation of 15-acetyldeoxynivalenol production in Fusarium graminearum [J]. Appl Environ Microbiol,2000,66(5):2062-2065
    52. Yang GH, Jarvis BB, Chung YJ, et al. Apoptosis induction by the satratoxins and other trichothence mycotoxins:relationship to ERK, p38 MARK, and SAPK/JNK activation [J]. Toxicol App Pharmacol,2000,164:149-160
    53. Dari J. Fusarium toxins in field corn:I:Time course of fungal growth and production of deoxynivalenol and other mycotoxins [J]. Can J Bot,1983:3080-3087.
    54.薛伟龙,陆仕华,魏春妹,等.DON在小麦赤霉病菌早期侵染中的作用[J].上海农业学报,1991,7:30-34
    55. Savard ME, Sinha RC, Seaman WL, et al. Sequential distribution of the mycotoxin deoxynivalenol in wheat spikes after inoculation with Fusarium graminearum [J]. Can J Plant Pathol,2000,22: 280-285
    56.俞刚,陈利锋,Xie WP,等.禾谷镰孢单端孢霉烯族毒素在小麦组织中的积累[J].植物病理学报,2002,2(32):142-146
    57.王裕中,Miller JD.小麦品种对禾谷镰刀菌毒素的抗性研究[J].植物病理学报,1989,19(2):105-108
    58.刘惕若,薛国兴,张匀华,等.小麦品种对赤霉病的抗性与抗病害扩展力的研究[J].植物病理学报,1988,18(2):113-118
    59.董金皋,李树正.植物病原菌毒素研究进展(第一卷)[M].北京:中国科学技术出版社,1997
    60.王广金,孙光祖,李学湛,等.小麦赤霉病菌毒素对小麦抗病突变体及其亲本细胞超微结构的影响[J].植物病理学报,1997,27(3):217-219
    61.刘宗镇,陆仕华,黄晓敏,等.DON毒素的类生长激素活性与小麦赤霉病[J].上海农业学报,1993,9(2):92-96
    62.姚泉洪,刘宗镇,黄晓敏,等.脱氧雪腐镰刀菌烯醇与2,4-D之间在小麦愈伤组织分化,植株K+吸收和运输上的拮抗[J].上海农业学报,1991,7(1):56
    63.余华.小麦抗赤霉病鉴定技术及其在育种中的应用[J].麦类作物,1997,17(3):22-24
    64.廖玉才,余毓君.小麦地方品种望水白抗赤霉病的遗传分析[J].华中农学院学报,1985,4(2):6-14
    65.程顺和,杨士敏,张伯桥,et al.小麦对赤霉病的抗扩展性鉴定方法的研究[J].中国农业科学,1994,27(2):45-49
    66. Hare MC, Parry DW, Baker MD. The relationship between wheat seed weight, infection by Fusarium culmorum or Microdochium nivale, germination and seedling disease [J]. Eur J Plant Pathol,1999,105:859-866
    67. Simpson DR, Rezanoor HN, Parry DW, et al. Evidence for differential host preference in Microdochium nivale var. majus and Microdochium nivale var. nivale [J]. Plant Pathol,2000,49: 261-268
    68. Nicholson P, Lees AK, Maurin N, et al. Development of a PCR assay to identify and quantify Microdochium nivale var. nivale and Microdochium nivale var. majus in wheat [J]. Physiol Mol Plant Pathol,1996,48:257-271
    69. Diamond H, Cooke BM. Towards the development of a novel in vitro strategy for early screening of Fusarium ear blight resistance in adult winter wheat plants [J]. Eur J Plant Pathol,1999,105: 363-372
    70. Urban M, Daniels S, Mott E, et al. Arabidopsis is susceptible to the cereal ear blight fungal pathogens Fusarium graminearum and Fusarium culmorum [J]. Plant J,2002,32:961-966
    71. Placinta CM, D'Mello JPF. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins [J]. Anim Feed Sci Tech,1999,78:21-37
    72. Zhang JB, L HP. Determination of the trichothecene mycotoxin chemotypes and associated geographical distribution and phylogenetic species of the Fusarium graminearum clade from China [J]. Mycol Res,2007,111:967-975
    73. Anklam E, Stroka J, Boenke A. Acceptance of analytical methods for implementation of EU legislation with a focus on mycotoxins [J]. Food Control,2002,13:173-183
    74. Larsen JC, Hunt J, Perrin I, et al. Workshop on trichothecenes with a focus on DON:summary report [J].Toxicol Lett,2004,153:1-22
    75. Bechtel DB, Kaleikau LA, Gaines RL, et al. The effects of Fusarium graminearum infection on wheat kernels [J]. Cereal Chem,1985,62(3):191-197
    76. Seitz LM, Yamazaki WT, Clements RL, et al. Distribution of deoxynivalenol in soft wheat mill streams [J], Cereal Chem,1985,62(6):467-469
    77. Niessen LM, Vogel RF. Group specific PCR-detection of potential trichothecene-producing Fusarium-species in pure cultures and cereal samples [J]. System Appl Microbiol,1998,21: 618-631
    78. Miller JD, Greenhalgh R, Wang Y, et al. Trichothecene chemotypes of three Fusarium species [J]. Mycologia,1991,83:121-130
    79.石晓燕,邓福友.禾谷镰刀菌液体培养产毒条件研究初报[J].河北农业大学学报,1992,15(4):34-38
    80.徐达道,王加生.单端孢霉烯族毒素T-2、DON及NIV研究[J].生理科学研究进展,1988,19(2):103-109
    81.王会艳,张祥宏,杨永滨,等.脱氧雪腐镰刀菌烯醇对体外培养人外周血单核细胞增殖及肿瘤坏死因子分泌的影响[J].卫生研究,2000,29(6):387-389
    82.林林,孙树秋.脱氧雪腐镰刀菌烯醇致Vero细胞核基因组DNA损伤修复的慧星实验观察[J].中国地方病防治杂志,2004,19(3):139--141
    83. Zhang XH, Xie TX, Li SS. Contamination of fungi and mytoxins in foodstuffs in high risk area of esophageal cancer [J]. Biomed Environ Sci,1998,11(2):140-146
    84.中华人民共和国国家标准:小麦、面粉、玉米及玉米粉中脱氧雪腐镰刀菌烯醇限量标准,GB16329-1996.中国标准出版社,1996
    85. WHO. Gems/Food regional diets, Food safety issues. Food safety department Revision, September 2003
    86.李斌,郭红卫.镰刀菌毒素DON, NTV的细胞毒性和致突变、致畸、致癌研究进展[J].癌变·畸变·突变,1999,11(4):206-207
    87.庞炜,王治伦,吕社民,等.真菌毒素DON研究进展[J].中国地方病防治杂志,1996,11(6):349-351.
    88.魏润蕴.小麦中脱氧镰刀菌雪腐烯醇(DON)的薄层色谱测定[J].卫生研究,1986,15(5):39-46
    89. Hohn TM, Beremand MN. Regulation of trichodiene synthase in Fusarium sporotrichioides and Gibberella pulicaris(Fusarium sambucinum) [J]. Appl Environ Microbiol,1989,55:1500-1503
    90. Hohn TM, Beremand PD. Isolation and nucleotide sequence of a sesquiterpene cyclase gene from the trichothecene-producing fungus Fusarium sporotrichioides [J]. Gene,1989,79:131-138
    91. Hohn TM, Desjardins, AE, McCormick SP. The Tri4 gene of Fusarium sporotrichioides encodes a cytochrome P450 involved in trichothecene biosynthesis [J]. Mol Gen Genet,1995,248:95-102
    92. Alexander NJ, McCormick SP, Hohn TM. TRI12, a trichothecene efflux pump from Fusarium sporotrichiodes:gene isolation and expression in yeast [J]. Mol Gen Genet,1999,261:977-984
    93. Andrew GT, Gulnara FG, Andrew WP. A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression [J]. Appl Environ Microbiol,2001,67(11):5294-5302
    94. Brown DW, WcCormick SP, Alexander NJ, et al. A genetic and biochemical approach to study trichothecene diversity in Fusarium sporotrichioides and Fusarium graminearum [J]. Fungal Genet Biol,2001,32:121-144
    95. Lee T, Han HK, Kim HK. Tri13 and Tri7 determine deoxynivalenol-and nivalenol-producing chemotypes of Gibberella zeae [J]. Appl Environ Microbiol,2002,68(5):2148-2154
    96. Meek IB, Peplow AW, Charles AJ, et al. Tril encodes the cytochrome P450 monooxygenase for C-8 hydroxylation during trichothecene biosynthesis in Fusarium sporotrichioides and resides upstream of another new Tri gene [J]. Appl Environ Microbiol,2003,69:1607-1613
    97. McCormick SP, Hohn TM, Desjardins AE. Isolation and characterization of Tri3, a gene encoding 15-O-acetyltransferase from Fusarium sporotrichiodes [J]. Appl Environ Microbiol,1996,62(2): 353-359
    98.陈利锋.镰孢菌单端孢霉烯族毒素的生物合成(综述)[J].农业生物技术学报,1998,6(1):85-88
    99. Proctor RH, Hohn TM, McCormick SP. Restoration of wild-type virulence to TRI5 disruption mutants of Gibberella zeae via gene reversion and mutant complementation [J]. Microbiology,1997, 143(8):2583-2591
    100. Proctor RH, Hohn TM, McCormick SP, et al. Tri6 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides [J]. Appl Environ Microbiol,1995,61(5):1923-1930
    101. Alexander NJ, McCormick SP, Larson TM, et al. Expression of Tri15 in Fusarium sporotrichioides [J]. Curr Genet,2004,45:157-162
    102. Lee T, Oh DW, Kim HS. Identification of deoxynivalenol-and nivalenol-producing chemotypes of Gibberella zeae by using PCR [J]. Appl Environ Microbiol,2001,67(7):2966-1972
    103. McCormick SP, Alexander NJ. Fusarium Tri8 encodes a trichothecene C-3 esterase [J]. Appl Environ Microbiol,2002,68(6):2959-2964
    104. Brown DW, WcCormick SP, Alexander NJ, et al. Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species [J]. Fungal Genet Biol,2002,36: 224-233
    105. Tag AG, Garifullina GF, Peplow AW, et al. A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression [J]. Appl Environ Microbiol,2001,67:5294-5302
    106. Alexander NJ, Hohn TM, McCormick SP. The TRI11 gene of Fusarium sporotrichidides encodes a cytochrome P-450 monoxygenase required for C-15 hydroxylation in trichothecene biosynthesis [J]. Appl Environ Microbiol,1998,64:221-225
    107. Peplow AW, Tag AG, Garifullina GF, et al. Identification of new genes positively regulated by Tri10 and a regulatory network for trichothecene mycotoxin production [J]. Appl Environ Microbiol, 2003,69:2731-2736
    108. McCormick SP, Alexander NJ, Trapp SE, et al. Diruption of TRI101, the gene encoding trichothecene 3-O-acetyltransferase, from Fusarium sporotrichioides [J]. Appl Environ Microbiol, 1999,65(12):5252-5256
    109. Kimura M, Matsumoto G, Shingu Y, et al. The mystery of the trichothecene 3-O-acetyltransferase gene-analysis of the region around Tri101 and characterization of its homologue from Fusarium sporotrichioides [J]. FEBS Lett,1998,435:163-168
    110. Kimura M, Tokai T, Takahashi-Ando N, et al. Molecular and genetic studies of Fusarium trichothecene biosynthesis:pathways, genes, and evolution [J]. Biosci Biotechnol Biochem,2007, 71:2105-2123
    111.董金皋,王江柱,朱烯.真菌毒素生物测定方法研究概况Ⅲ酶及代谢水平的生物测定[J].河北农业大学学报,1992,17(2):95-98
    112. Gutleb AC, Morrison E, Murk AJ. Cytotoxicity assays for mycotoxins produced by Fusarium strains:a review [J]. Environ Toxicol Phar,2002,11:309-320
    113. Widestrand J, Lundh T, Pettersson H, et al. A rapid and sensitive cytotoxicity screening assay for trichothecenes in cereal samples [J]. Food Chem Toxicol,2003,41:1307-1313
    114. Krska R, Baumgartner S, Josephs R. The state of the art in the analysis of type-A and-B trichothecene mycotoxins in cereals [J]. Fresenius J Anal Chem,2001,371:285-299
    115. Cahill LM, Kruger SC, McAlice BT, et al. Quantification of deoxynivalenol in wheat using an immunoaffinity column and liquid chromatography [J]. J chromatography,1999,859:23-28
    116. Martins LM, Martin HM. Determination of in wheat-based breakfast cereals marketed in Portugal [J]. J Food Protect,2001,64(11):1848-1850
    117. losephs RD, Schuhmacher R, Krska R. International interlaboratory study for the determination of the Fusarium mycotoxins zearalenone and deoxynivalenol in agricultural commodities [J]. Food Addit Contam,2001,18(5):417-430
    118. Mateo JJ, Llorens A, Mateo R. Critical study of and improvements in chromatographic methods for the analysis of type B trichothecenes [J]. J Chromatogr A,2001,918:99-112
    119. Edwards SG, O'Callaghan J, Dobson-Alan DW. PCR-based detection and quantification of mycotoxigenic funfi [J]. Mycol Res,2002,106(9):1005-1025
    120. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR [J]. Nucleic Acids Res,2001,29:45
    121. Doohan FM, Weston G, Rezanoor HN, et al. Development and use of a reverse transcription-PCR assay to study expression of Tri5 by Fusarium species in vitro and in plants [J]. Appl Environ Microbiol,1999,65:3850-3854
    122. Ponts N, Pinson-Gadais L, Barreau C, et al. Exogenous H2O2 and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum [J]. FEBS Lett,2007,581: 443-447
    123. Feng J, Akira K, Takashi N. Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture [J]. FEMS Microbiol Lett,2008,285: 212-219
    124. Taira T, Ohnuma T, Yamagami T, et al. Antifungal activity of rye (Secale cereale) seed chitinases: the different binding manner of class I and class II chitinases to the fungal cell walls [J]. Biosci Biotechnol Biochem,2002,66:970-977
    125. Mitterbauer R, Adam G. Saccharomyces cerevisae and Arabidopsis thaliana:useful model systems for the identification of molecular mechanisms involved in resistance of plants to toxins [J]. Eur J Plant Pathol,2002,108:699-703
    126. Wang YZ, Miller JD. Effects of Fusarium graminearum metabolites on wheat tissue in relation to Fusarium head blight resistance [J]. J Phytopathology,1988,122:118-125
    127. Mesterhazy A. Types and components of resistance to Fusarium head blight of wheat [J]. Plant Breeding,1995,114:377-386
    128.叶钟音,周明国.江淮地区小麦赤霉病菌对多菌灵耐药性的测定[J].植物保护学报,198512(3):188-189
    129.顾宝根,刘经芬.小麦赤霉病对多菌灵耐药的研究[J].南京农业大学学报,1990,13(1):57-61
    130.周明国,叶钟音,刘经芬.杀菌剂抗性研究进展[J].南京农业大学学报,1994,17(3):33-41
    131.周明国.我国几种植物病害的抗药性监测情况[J].农药科学与管理.1999,20(3):39-40
    132.王建新,周明国.小麦赤霉病对多菌灵抗药性监测技术研究[J].植物保护学报,2002,29(1):73-77
    133.周明国,王建新.禾谷镰孢菌对多菌灵的敏感基线及抗药菌株生物学性质研究[J].植物病理 学报,2001,31(4):365-370
    134.王建新,周明国.禾谷镰刀菌对多菌灵抗药性的快速监测技术研究[C].周明国主编.中植物病害化学防治研究(第一卷),北京:中国农业科技出版社,1998:325-328
    135.陈长军.禾谷镰刀菌(Fusarium graminearum)对多菌灵的抗药性基因的克隆[D].南京:南京农业大学,2004:36-37
    136.顾宝根,刘经芬.小麦赤霉病菌对多菌灵抗药性的研究.Ⅱ.抗性检测和诱导[J].南京农业大学学报,1990,13(1):57-61
    137.周明国,王建新,陆悦健,等.小麦赤霉病菌对多菌灵抗药性变异研究[J].南京农业大学学报,1994,17:106-112
    138. Davidse LC. Benzimidazole fungicide:mechanism of action and biological impact [J]. Ann Rev Phytopathology,1986,24:43-65
    139.袁善奎.玉蜀黍赤霉(Gibberella zeae)对多菌灵的抗药性遗传研究[J].遗传学报,2003,30(5):474-478
    140. Ma Z, Yoshimura M, Michailides TJ. Identification and characterization of benzimidazole resistance in Monilinia fructicola from stone fruit orchards in California [J]. Appl Enviro Microbiol, 2003,69:7145-7152
    141. McKay GJ, Egan D, Morris E, et al. Identification of benzimidazole resistance in Cladobotryum dendroides using a PCR-based method [J]. Mycol Res,1998,102:671-676
    142. Baraldi E, Mari M, Chierici E, et al. Studies on thiabendazole resistance of Penicillium expansum of pears, pathogenic fitness and genetic characterization [J]. Plant Pathol,2003,52:362-370
    143. Koenraadt H, Somerville SC, Jones AL. Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi [J]. Phytopathology,1992,82:1348-1354
    144. Ma Z, Yoshimura M, Holtz BA, et al. Characterization and PCR-based detection of benzimidazole resistant isolates of Monilinia laxa in California [J]. Pestic Manag Sci,2005,56:567-571
    145.李红霞.禾谷镰孢菌β-微管蛋白基因克隆及其与多菌灵抗药性关系的分析[J].微生物学报,2003,43(4):424--429
    146.王建新,周明国,陆悦健,等.小麦赤霉病菌抗药性群体动态及其治理药剂[J].南京农业大学学报,2002,25(1):43-47
    147.祁之秋,王建新,陈长军,等.现代杀菌剂抗性研究进展[J].农药,2006,45(10):655-659
    148.沈成国.植物衰老生理与分子生物学[M].北京:中国农业出版社,2001:4
    149. Nooden LD, Guiamet JJ, John I. Senescence mechanisms [J]. Physiol Plant,1997,101:746-753
    150. Gan S, Amasino RM. Making sense of senescence:molecular genetic regulation and manipulation of leaf senescence [J]. Plant Physiol,1997,113:313-319
    151. Christensen S, Weigel D. Plant development:the making of a leaf [J]. Curr Biol,1998,8:643-645
    152. Thomas H, Smart CM. Crops that stay green [J]. Annl Appl Biol,1993,123:193-219
    153. Leopold AC. Aging, senescence and turnover in plants [J]. Bioscience,1975,25:659-662
    154. Molisch H. The longevity of plants [M]. London:Science Press,1938
    155. Blackmam PG, Daries WJ. Age-related changes in stomatal response to cytokinis and abscisic acid [J].Ann Bot-London,1984,54:121-125
    156.Fridovich I, Beauchamp C. Superoxide dismutase:improved assays and an assay applicable to acrylamide gels [J]. Anal biochem,1971,44(2):276-287
    157. Johe GS. Oxygens tress and superoxide dismutase [J]. Plant Physiol,1993,101:7-12
    158.Harman D. Prolongation of the nomal lifespan by radiation protection chemicals [J]. J Gerontol, 1957,12:257
    159. Kaiser N. Edehnan IS. Calcium dependence of glucocorticoid-induced lymphocytolysis [J]. Proc Natl Acad Sci,1977,74:638-642
    160. Yoshida Y. Nuclearcontrol of chloroplast activity in Elodea leaf cells [J]. Proto Plasma,1961,54: 476-492
    161.Rabinowich HD, Skllan D, Budowski P. Photo-oxidative damage in the ripring tomato fruit protective role of superoxide dismutase [J]. Physiol Plant,1982,54:369-374
    162.潘瑞炽,董愚得.植物生理学(第三版)[M].北京:高等教育出版社,1995:310
    163.段留生,田晓莉.作物化学控制原理与技术[M].北京:中国农业大学出版社,2005:74
    164.朱中华,段留生,冯雪梅,等.内源激素对小麦叶片衰老调控的系统分析[J].作物学报,1998,24(2):176-181
    165. Lee R, Wang C, Chen S. Leaf senescence in rice plants:cloning and characterization of senescence up-regulated genes [J]. J Exp Bot,2001,52:1117-1121
    166. Gan S, Amasino RM. Cytokinins in plant senescence:from spray and pray to clone and play [J]. BioEssays,1996,18:557-565
    167. Oh SA, Park JH, Lee GI, et al. Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana [J]. Plant J,1997,12:527-535
    168. Yoshida S, Ito M, Nishida I, et al. Isolation and RNA gel blot analysis of genes that could serve as potential molecular markers for leaf senescence in Arabidopsis thaliana [J]. Plant Cell Physiol, 2001,42:170-178
    169. Lers A, Khalchitski A, Lomaniec E, et al. Senescence-induced RNases in tomato [J]. Plant Mol Bio, 1998,36:439-449
    170. Vicentini F, Matile P. Gerontosomes, a multi-functional type of peroxisome in senescent leaves [J]. J Plant Physiol,1993,142:50-56
    171. Bellis LD, Tusgeki R, Nishimura M. Glyxoxylate cycle enzymes isolated from petals of pumpkin during senescence [J]. Plant Cell Physiol,1991,32:1227-1235
    172. Veljovic-Jovanovic S, Kukavica B, Stevanovic B, et al. Senescence-and drought-related changes in peroxidase and superoxide dismutase isoforms in leaves of amonda serbica [J]. J Exp Bot,2006,57: 1759-1768
    173. Dhindsa RS, Dhindsa PP, Reid M. Leaf senescence and lipid peroxidation:Effects of some phytohormones, and scavengers of free radicals and singlet oxygen [J]. Plant Physiol,1982,56: 453-457
    174. Li BL, Mei HS. Relationship between oat leaf senescence and activated oxygen metabolism [J]. Acta Phytophysiol Sin,1989,15:6-12
    175. Leshem YY, Wurzburger J, Grossman S, et al. Cytokinin interaction with free radical metabolism and senescence:Effects on endogenous lipoxygenase and purine oxidation [J]. Plant Physiol,1981, 53:9-12
    176. Gooding MJ, Dimmock JPRE, France J, et al. Green leaf area decline of wheat flag leaves:the influence of fungicides and relationships with mean grain weight and grain yield [J]. Ann Appl Biol, 2000,136:77-84
    177. Pellissier M, Lacasse NL, Cole H. Effectiveness of benzimidazole, benomyl and thiabendazole in reducing ozone injury to pinto bean [J]. Phytopathology,1972,62:580-582
    178. Buchenauer H, Grossman F. Triadimefon:mode of action in plants and fungi [J]. Neth J Plant Phathol,1977,83:93-103
    179. Wu YX, Von-Tiedemann A. Physiological effects of azoxystrobin and epoxiconazole on senescence and the oxidative status of wheat [J]. Pestic Biochem Phys,2001,71:1-10
    180. Bertelsen JR, De-Neergaard E, Smedegaard-Petersen V. Fungicidal effects of azoxystrobin and epoxiconazole on phyllosphere fungi, senescence and yield of winter wheat [J]. Plant Pathol,2001, 50:190-205
    181. Wu YX, Von-Tiedemann A. Impact of fungicides on active oxygen species and antioxidant enzymes in spring barley(Hordeum vulgare L.) exposed to ozone [J]. Environ Pollut,2002,116:37-47
    182. Cromey MG, Butler RC, Mace MA, et al. Effects of the fungicides azoxystrobin and tebuconazole on Didymella exitialis, leaf senescence and grain yield in wheat [J]. Crop Prot,2004,23: 1019-1030
    183. WHO. Food Safety Unit, Programme of Food Safety and Food Aid:Regional per capita consumption of raw and semi-processed agricultural commodities.1998
    184. Matthies A, Buchenauer H. Effect of tebuconazole (Folicur) and prochloraz (Sportac) treatments on Fusarium head scab development, yield and deoxynivalenol (DON) content in grains of wheat following artificial inoculation with Fusarium culmorum [J]. J Plant Dis Protect,2000,107:33-52
    185. loos R, Belhadj A, Menez M, et al. The effects of fungicide on Fusarium spp and Microdochium nivale and their associated trichothecene mycotoxins in French naturally-infected cereal grains [J]. Crop Prot,2005,24:894-902
    186. Hormdock S, Fehrmann H, Beck R. Effects of field application of tebuconazole on yield, yield components and the mycotoxin content of Fusarium infected wheat grain [J]. J Phytopathol,2000, 148:1-6
    187. Gilbert J, Abramson D, McCallum B, et al. Comparison of Canadian Fusarium graminearum isolates for aggressiveness, vegetative compatibility, and production of ergosterol and mycotoxins [J]. Mycopathologia,2001,153:209-215
    188. Doohan FM, Parry DW, Nicholson P. Fusarium ear blight of wheat:the use of quantitative PCR and visual disease assessment in studies of disease control [J]. Plant Pathol,1999,48:209-217
    189. Edwards SG, Pirgozliev SR, Hare MC, et al. Quantification of trichothecene-producing Fusarium species in harvested grain by competitive PCR to determine efficacies of fungicides against Fusarium head blight of winter wheat [J]. Appl Environ Microbiol,2001,67:1575-1580
    190. Zadoks JC, Chang TT, Konzak CF. A decimal code for the growth stages of cereals [J]. Weed Res, 1974,14:415-421
    191. Dyer RB, Kendra DF, Brown DW. Real-time PCR assay to quantify Fusarium graminearum wild-type and recombination mutant DNA in plant material [J]. J Microbiol Meth,2007,67: 534-542
    192. Goswami RS, Kistler HC. Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice [J]. Phytopathology,2005,95: 1397-1404
    193. Boyacioglu D, Hettiarachchy NS, Stack RW. Effects of three systemic fungicides on deoxynivalenol (vomitoxin) production by Fusarium graminearum in wheat [J]. Can J Plant Sci,1992,72:93-101
    194. Haidukowski M, Pascale M, Perrone G, et al. Effect of fungicides on the development of Fusarium head blight, yield and deoxynivalenol accumulation in wheat inoculated under field conditions with Fusarium graminearum and Fusarium culmorum [J]. J Sci Food Agri,2004,82:191-198
    195. Liu WZ, Langseth W, Skinnes H, et al. Comparison of visual head blight ratings, seed infection levels, and deoxynivalenol production for assessment of resistance in cereals inoculated with Fusarium culmorum [J]. Eur J Plant Pathol,1997,10:589-595
    196. Simpson DR, Weston GE, Turner JA, et al. Differential control of head blight pathogens of wheat by fungicides and consequences for mycotoxin contamination of grain [J]. Eur J Plant Pathol,2001, 107:421-431
    197. Li HK, Diao YM, Wang JX, et al. JS399-19, a new fungicide against wheat scab [J]. Crop Prot, 2008,27:273-278
    198. Schnerr H, Vogel RF, Niessen L. Correlation between DNA of trichothecene producing Fusarium species and deoxynivalenol concentrations in wheat-samples [J]. Lett Appl Microbiol,2002,35: 121-125
    199. D'Mello JPF, Macdonald AMC, Postel D, et al. Pesticide use and mycotoxin production in Fusarium and Aspergillus phytopathogens [J]. Eur J Plant Pathol,1998,104:741-751
    200. Pirgozliev SR, Edwards SG, Hare MC, et al. Effect of dose rate of azoxystrobin and metconazole on the development of Fusarium head blight and the accumulation of deoxynivalenol (DON) in wheat grain [J]. Eur J Plant Pathol,2002,108:469-478
    201. Covarelli L, Turner AS, Nicholson P. Repression of deoxynivalenol accumulation and expression of Tri genes in Fusarium culmorum by fungicides in vitro [J]. Plant Pathol,2004,53:22-28
    202. Li ZZ, Niu W, Qiao XW, et al. Anti-oxidant response of Cucumis sativus L. to fungicide carbendazim [J]. Pestic Biochem Physiol,2007,89:54-59
    203. Chen Y, Chen CJ, Wang JX, et al. Induction and characterization of nitrate nonutilizing mutants of Fusarium graminearum resistant to fungicide JS399-19 [J]. Sci Agric Sin,2007,40:735-740
    204. Nelson PE, Toussoun TA, Marasas WFO. Fusarium species-an illustrated manual for identification [M]. University Park, PA, USA:Pennsylvania State University Press.1983:193
    205. Nicholson P, Simpson DR, Weston G, et al. Detection and quantification of Fusarium culmorum and Fusarium graminearum in cereals using PCR assay [J]. Physiol Mol Plant Pathol,1998,53:17-37
    206. Walker SL, Leath S, Hagler WM, et al. Variation among isolates of Fusarium graminearum associated with Fusarium head blight in North Carolina [J]. Plant Dis,2001,85:404-410
    207. Qu B, Li HP, Zhang JB, et al. Comparison of genetic diversity and pathogenicity of Fusarium head blight pathogens from China and Europe by SSCP and seedling assays on wheat [J]. Plant Pathol, 2008,57:642-651
    208. Desjardins AE. Fusarium mycotoxins:chemistry, genetics, and biology [M]. St. Paul, MN: American Phytopathological Society Press.2006:260
    209. Mullenborn C, Steiner U, Ludwig M, et al. Effect of fungicides on the complex of Fusarium species and saprophytic fungi colonizing wheat kernels [J]. Eur J Plant Pathol,2008,120:157-166
    210. Yuan SK, Zhou MG. A major gene for resistance to carbendazim, in field isolates of Gibberella zeae [J]. Can J Plant Pathol,2005,27:58-63
    211. Wicks T. Tolerance of the apple scab fungus to benzimidazole fungicides [J]. Plant Dis Rep,1974, 58:886-889
    212. Catherine A, Michel G, Pierre L. Mutations of the β-tubulin gene associated with different phenotypes of benzimidazole resistance in the cereal eyespot fungi Tapesia yallundae and Tapesia acuformis [J]. Pestic Biochem Physiol,1999,64:17-31
    213. Jung MK, Oakley BR. Identification of an amino acid substitution in the benA,β-tubulin, gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity [J]. Cell Motil Cytoskeleton,1990,17:87-94
    214. Chen CJ, Wang JX, Luo QQ, et al. Characterization and fitness of carbendazim resistant strains of Fusarium graminearum (wheat scab) [J]. Pest Manag Sci,2007,62:1201-1207
    215. Miller JD, Taylor A, Greenhalgh R. Production of deoxynivalenol and related compounds in liquid culture by Fusarium graminearum [J]. Can J Microbiol,1983,29:1171-1178
    216. Dean JD, Goodwin PH, Hsiang T. Comparison of relative RT-PCR and northern blot analyses to measure expression of β-1,3-Glucanase in Nicotiana benthamiana infected With Colltotrichum destructivum [J]. Plant Mol Bio Rep,2002,20:347-356
    217. Mirocha CJ, Abbas HK, Windels CE, et al. Variation in deoxynivalenol,15-acetyldeoxynivalenol, 3-acetyldeoxynivalenol, and zearalenone production by Fusarium graminearum isolates [J]. Appl Environ Microbiol,1989,55:1315-1316
    218. Cumagun CJR, Rabensteinb F, Miedanera T. Genetic variation and covariation for aggressiveness, deoxynivalenol production and fungal colonization among progeny of Gibberella zeae in wheat [J]. Plant Pathol,2004,53:446-453
    219. Shao HB, Liang ZS, Shao MA, et al. Changes of some physiological and biochemical indices for soil water deficits among 10 wheat genotypes at seedling stage [J]. Colloids Surf B:Biointerfaces, 2005,42:107-113
    220. Jing RL, Chang XP. Genetic diversity in wheat (T. aestivum) germplasm resources with drought resistance [J]. Acta Botany Boreal-Occident Sinica,2003,23:410-416
    221. Foyer CH, Lelandais M, Kunert KJ. Photooxidative stress in plants [J]. Plant Physiol,1994,92: 696-717
    222. Drazkiewicz M, Skorzynska-Polit E, Krupa Z. Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana [J]. BioMetals,2004,17:379-387
    223. Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends Plant Sci,2002,7:405-410
    224. Wang H, Huang Z, Chen Q. Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance [J]. Plant Mol Bio,2004,51:1-10
    225. Liu XA, Vance-Baird WM. Identification of a novel gene, HAABRC5, from Helianthus annuus (Asteraceae) that is upregulated in response to drought, salinity, and abscisic acid [J]. Am J Bot, 2004,91:184-191
    226. Kreps JA, Wu YJ, Chang HS. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress [J]. Plant Physiol,2002,130:2129-2141
    227. Hegedus A, Erdei S, Horvath G. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedling under cadmium stress [J]. Plant Sci,2001,160:1085-1093
    228. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem,1976,72:248-254
    229. Zhao H, Dai TB, Jing Q, et al. Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivar [J]. Plant Growth Regul,2007,51:149-158
    230. Ekmekci Y, Terzioglu S. Effects of oxidative stress induced by paraquat on wild and cultivated wheats [J]. Pestic Biochem Physiol,2005,83:69-81
    231. Lu W, Xu XM, Zhang RX, et al. Effece of adding acetic acid on improvement of determination of superoxide anion content in plants [J]. J Nanjing Norm Uni (Nat Sci) 2004,27(1):82-84
    232. Lin ZF, Li SX, Lin GZ, et al. Relationship between cumulation of H2O2 and membrane lipid peroxidation in senescent leaf and chloroplast [J]. Acta Photophysiol Sin,1988,14(1):16-22
    233. Han QM, Kang ZS, Duan SK. The control effects of two fungicides, tebuconazole and metconazole to Fusarium head blight of wheat [J]. Acta phytophyl Sin,2003,30(4):339-440
    234. Siranidou E, Buchenauer H. Chemical control of Fusarium head blight on wheat [J]. J Plant Dis Prot,2001,108:231-243
    235. Liu X, Huang B. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass [J]. Crop Sci,2000,40:503-510
    236. Hadrami AE, Kone D, Lepoivre P. Effect of juglone on active oxygen species and antioxidant enzymes in susceptible and partially resistant banana cultivars to black leaf streak disease [J]. Eur J Plant Pathol,2005,113:241-254
    237. Wang AG, Lou GH. Quantitative relation between the reaction of hydroxyl-amine and superoxide anion radicals in plants [J]. Plant Physiol Commun,1990,6:55-57
    238. Pastori GM, Del-Rio LA. Natural senescence of pea leaves:An activated oxygen mediated function for peroxisomes [J]. Plant Physiol,1997,113:411-418
    239. Asada K. Ascorbate peroxidase-a hydrogen peroxide scavenging enzyme in plants [J]. Plant Physiol, 1992,85:235-241
    240. Trippi VS, Gidrol X, Pradet A. Effects of oxida tive stress caused by oxygen and hydrogen peroxide on energy metabolism and senescence in oat leaves [J]. Plant Cell Physiol,1989,30: 157-162

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700