关于网络舆论演进的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
互联网的飞速发展使之逐渐成为社会舆论传播的新势力。网络舆情能够在很大程度上反映宏观舆情的真实状况,因而受到从政府到企业的广泛关注。近年来,网络舆论对现实社会已经和即将产生什么样的影响,如何实现有效的网络舆论预测及引导等问题正在成为社会科学领域和自然科学领域中的研究热点。然而,已有的模型虽然能够很好地解释舆论演进中存在的一些现象,但大多没有考虑网络结构的影响,也不具有预测演进趋势的能力。
     本论文结合当前对舆论演进行为、预测技术和引导机制等的需求,对网络舆论的相关问题进行初步探索,主要内容包括:网络结构特性对话题传播和观点交换的影响、网络舆论演进的特征以及网络舆论演进趋势的预测等。论文的研究工作得到了高等学校科技创新工程重大项目培育资金项目(No.707006)“网络舆情传播与预警关键技术研究”的支持。论文的主要创新点如下:
     ①研究了网络拓扑结构对话题传播过程的影响,重点考察了网络的全连通性、小世界效应和无标度特性对话题的传播速度、群体观点的稳定性的影响,以及初始就持有观点的个体的数量和分布特征与传播过程的关系,得出一些对舆论引导有参考意义的结论,如当网络平均节点度较大时,节点的异质性结构对话题的传播有明显的阻碍作用;增大网络的簇系数可以在一定程度上加快话题的传播速度;影响话题传播速度的网络拓扑特性间存在制约关系等。
     ②研究了舆论演化过程所处的网络结构特性对观点交换过程的影响,给出了表征个体观点分散程度的参量的定义和描述群体观点变化趋势的参量的定义。得到的主要结论包括:网络的小世界效应和同质结构能够使个体间产生充分的信息交换,有利于观点的统一;网络的无标度特征会使观点的聚合过程加长,一般情况下持非大众观点的个体会始终存在;对于异质结构的网络,较高的分簇水平可以加速观点的交换过程,缩短观点的稳定时间等等。
     ③对网络舆论演进过程的一些特征进行了分析,发现话题不同发展阶段呈现出某种意义上的同质性。如果将这种特征看作演进系统的惯性,惯性的存在将是对舆论演进趋势进行预测的重要基础;热点话题阅读次数与发布时间之间具有相关性,这关系到序列整体的发展趋势和对舆论干预方式的选择。
     ④对网络舆论演进趋势的预测进行了初步的探索。提出并研究了基于时间序列理论的网络舆论发展趋势预测方法。数值分析和实证研究表明,使用时间序列的分析方法,能够对舆论演化的短期过程进行预测。
Internet is gradually becoming the new forces of social opinion propagation. Public opinion on the Internet can in large measure reflect the real condition of macroscopic consensus, so it has caused wide public concern of governments and enterprises. Recent years, it is becoming the hotspot in the domain of both social sciences and natural sciences that how public opinion on the Internet has impacted or will impact on real society and how to predict or guild the opinion effectively. However, most presented models do not consider the influence of network topology although they can explain some phenomenon occurred in the evolution of opinion well. These models can not be used to predict opinion evolution tendency.
     In this thesis, network opinion related issues are initially studied in pace with the demand for opinion evolution behaviors, prediction technologies and guiding mechanisms, and main contents include the influences of network topology characteristic on topic propagation and viewpoint exchange, the feature of network opinion evolution, and the prediction of opinion evolution tendency. The research work of this thesis is supported by Cultivating Fund Project for Major State Projects, University Technological Innovations Plan - 'Research on key technologies of internet opinion propagation and warning' (No. 707006). The main innovations in this thesis are outlined as following:
     1. The influence of network topology on propagation of topic is studied, and the effects of some kinds of networks, which include completely connected network, small world network and scale-free network, on propagation velocity of topic and stability of community consensus are mainly inspected. It is also considered that the relationship between the number and distribution characteristic of individuals holding consensus in an initial stage and the propagation process. Some helpful conclusions for opinion guidance are reached. For example, heterostructure of nodes is a deterrent to topic propagation when average degree of nodes is larger; increasing clustering coefficient of network can pick up propagation speed; there is mutual check between network topology characteristics which influence topic propagation speed.
     2. The influence of network topology on process of consensus exchange is researched. The definition of parameter, which represents the dispersion degree of individual consensus, and parameter used to describe the changing tendency of community opinion, are introduced. The principal conclusions include, small world property and homojunction of network can lead to enough information exchange which is benefit for reaching unified consensus; scale-free property of network can prolong the process of consensus polymerization which leads to the condition that minority will exist throughout; for networks with heterostructure higher clustering level can speed up viewpoint exchange process and shorten the time that opinion reaches at steady state.
     3. Some features of process of network opinion evolution are analyzed. It is found that variant stages of topic development show homogeneity in a sense. If consider this homogeneity as the inertia of evolution system, the existence of inertia should be an important basis for the prediction of evolution tendency. Further more, the hits and deployment time of hot topic have correlation, which has a bearing on the tendency of the whole series and the selection to opinion guiding methods.
     4. Prediction methods to the tendency of network opinion evolution are also initially studied and the way to predict network opinion tendency based on time series analysis theories is present. The results of data analysis and empirical work show that the opinion evolution tendency for short periods can be able to predict by using the method of time series analysis.
引文
[1]匡文波.网民分析.北京:北京大学出版社,2003.
    [2]Holyst J.A.,Kacperski K.,Schweitzer F.Social impact models of opinion dynamics.World Scientific Publishing Company;2001.
    [3]R.Hegselmann,U.Mueller,K.G.Troitzsch.Modeling and simulation in the social sciences from the philosophy of science point of view.Dordrecht:Kluwer,1996.
    [4]D.Stauffer.The Sznajd model of consensus building with limited persuasion.Int.J.Mod.Phys.C,2002,13(3):315-317.
    [5]D.Stauffer.Monte Carlo simulations of Sznajd models.Journal of Artificial Societies and Social Simulation(JASSS),2002,5(1):4.
    [6]D.Stauffer.Modeling Cooperative Behavior in the Social Sciences.America 2005 p.56.
    [7]F.Schweitzer,J.A.Holyst.Modelling collective opinion formation by means of active Brownian particles.Eur.Phys.J.B,2000,15:723-732.
    [8]N.E.Friedkin,E.C.Johsen.Social influence and opinions.J.Math.Soc.,1990,15:193-206.
    [9]P.Sobkowicz.Opinion formation in networked societies with strong leaders.arXiv/cond-mat/0311521 2003
    [10]A.A.Moreira,J.S.Andrade Jr.,D.Stauffer.Sznajd Social Model on Square Lattice with Correlated Percolation.Int.J.Mod.Phys.C,2001,12(1):39-42.
    [11]C.Schulze.Long-range interactions in Sznajd consensus model,arXiv/cond-mat/02093412002
    [12]D.Sornette,Wei-Xing Zhou.Importance of Positive Feedbacks and Over-confidence in a Self-Fulfilling Ising Model of Financial Markets.Physica A,2006,370:704-726.
    [13]T.Kaizoji,S.Bornholdt,Y.Fujiwara.Dynamics of Price and Trading Volume in a Spin Model of Stock Markets with Heterogeneous Agents.Physica A,2002,316:441-452.
    [14]E.Callen,D.Shapero.A Theory of Social Imitation.Physics Today,1974,27(7):23-28.
    [15]S.Galam.Sociophysics:a Personal Testimony.Physica A,2004,336:49-55.
    [16]S.Galam,Y.Gefen,Y.Shapir.A Mean Behavior Model for the Process of Strike.J.Math.Soc.,1982,9:1-13.
    [17]Wei-Xing Zhou,D.Sornette.Self-fulfilling Ising Model of Financial Markets.arXiv/physics/0503230 2005
    [18]F.A.Rodrigues,L.da ECosta.Surviving opinions in Sznajd models on complex networks.arXiv/physics/0505158 2005
    [19]F.Slanina,H.Lavicka.Analytical results for the Sznajd model of opinion formation.Eur.Phys.J.B,2003,35:279-288.
    [20] R.Hegselmann, U.Krause. Opinion dynamics and bounded confidence models, analysis, and simulation. Journal of Artificial Societies and Social Simulation (JASSS), 2002,5(3):2-34.
    [21] K.Sznajd-Weron, J.Sznajd. Opinion evolution in closed community. Int. J. Mod. Phys. C, 2000,11(6):1157-1165.
    [22] C.Schulze. Sznajd opinion dynamics with global and local neighbourhood. Int. J. Mod. Phys. C, 2004,15(6):867-872.
    [23] K.Sznajd-Weron. Sznajd model and its application. ACTA Physica Polonica B, 2005,36(8):2537-2547.
    [24] S.Fortunato. The Sznajd consensus model with continuous opinions. arXiv/cond-mat/0407353 2004
    [25] GDeffuant, D.Neau, F.Amblard, GWeisbuch. Mixing beliefs among interacting agents. Advances in Complex Systems, 2000,3:87-98.
    [26] GWeisbuch. Bounded confidence and social networks. Eur. Phys. J. B, 2004,38:339-343.
    [27] S.Boccaletti, V.Latora, Y.Moreno, M.Chavez, D.-U.Hwang. Complex networks: structure and dynamics. Physics Reports, 2006,424:175-308.
    [28] B.Shen, Y.Liu. An opinion formation model with two stages. Int. J. Mod. Phys. C, 2007,18(8):1231-1242.
    [29] B.Latan? The Psychology of Social Impact. Am. Psychologist, 1981,36:343-356.
    [30] GToscani. Kinetic models of opinion formation. Comm. Math. Sci., 2006,4:481.
    [31] D.Stauffer. How to convince others. 2003 p. 690-700.
    [32] GWeisbuch, GDeffuant, F.Amblard, J.P.Nadal. Interacting agents and continuous opinion dynamics. Complexity, 2002,7(3):55-63.
    [33] S.Fortunato. On the consensus threshold for the opinion dynamics of Krause-Hegselmann. arXiv:cond-mat/0408648 2004
    [34] S.Fortunato, D.Stauffer. Computer simulations of opinions and their reactions to extreme events. arXivxond-mat/0501730 2005
    [35] C.Schulze. Adverstising in the Sznajd Marketing Model. Int. J. Mod. Phys. C, 2003,14(95).
    [36] GWeisbuch. Bounded Confidence and Social Networks. arXiv/cond-mat/0311279 2003
    [37] S.Fortunato, V.Latora, A.Pluchino, A.Rapisarda. Vector Opionion Dynamics in a Bounded Confidence Consensus Model. Int. J. Mod. Phys. C, 2005,16(10):1535-1552.
    [38] R.Axelrod. The dissemination of culture: a model with local convergence and global polarization. The Journal of Conflict Resolution, 1997,41(2):203-226.
    [39] S.Galam. Majority rule, hierarchical structures and democratic totalitarism: a statistical approach. J. of Math. Psychology, 1986,30:426-434.
    [40] S.Galam. Political paradoxes of majority rule voting and hierarchical systems. Int. J. General Systems, 1991,18:191-200.
    [41]S.Galam.Real space renormalization group and totalitarian paradox of majority rule voting.Physica A,2000,285:66-76.
    [42]S.Galam.Social paradoxes of majority rule voting and renormalization group.J.of Stat.Phys.,1990,61:943-951.
    [43]S.Galam.Dictatorship from majority rule voting.Eur.Phys.J.B,2000,18:183-186.
    [44]S.Galam.Appication of statistical physics to politics.PhysicaA,1999,274:132-139.
    [45]S.Galam.Stability of leadership in bottom-up hierarchical organizations.Journal of Social Complexity,2006,2:62-75.
    [46]S.Galam,J.D.Zucker.From individual choice to group decision making.Physica A,2000,287:644-659.
    [47]R.Florian,S.Galam.Optimizing conflicts in the formation of strategic alliances.Eur.Phys.J.B,2000,16:189-194.
    [48]S.Galam,A.Mauger.On reducing terrorism power:a hint from physics.Physica A,2003,323:695-704.
    [49]C.Borghesi,S.Galam.Chaotic,staggered,and polarized dynamics in opinion forming:the contrarian effect.Phys.Rev.E,2006,73(066118):1-9.
    [50]S.Galam.Global physics:from percolation to terrorism:guerilla warfare and clandestine activities.Physica A,2003,330:139-149.
    [51]S.Galam.Local dynamics vs.social mechanisms:a unifying frame.Europhys.Lett.,2005,70:705-711.
    [52]S.Galam.Rational group decision making:a random field Ising model at T=0.Physica A,1997,238:66-80.
    [53]S.Galam,F.Jacobs.The role of inflexible minorities in the breaking of democratic opinion dynamics.Physica A,2007,381:366-376.
    [54]S.Galam.Sociophysics:a review of Galam models,arXiv:0803 1800vl 2008
    [55]S.Galam.Heterogeneous beliefs,segregation,and extremism in the making of public opinions.Phys.Rev.E,2005,71:046123-046127.
    [56]L.Behera,F.Schweitzer.On spatial consensus formation:Is the Sznajd model different from a voter model,arXiv/cond-mat/0306576 2003
    [57]E.Ben-Naim,L.Frachebourg,P.L.Krapivsky.Coarsening and persistence in the voter model.Phys.Rev,E,1996,53(4):3078-3087.
    [58]I.Doruic,H.Chate,J.Chave,H.Hinrichsen.Critical Coarsening without Surface Tension:The Universality Class of the Voter Model.Phys.Rev.Lett.,2001,87(4):045701-045704.
    [59]F.Wu,B.A.Huberman.Social structure and opinion formation,arXiv/cond-mat/0407252 2004
    [60]L.R.Fontes,R.H.Schonmann,V.Sidoravicius.Stretched exponential fixation in stochastic Ising models at zero temperature.Comm.Math.Phys.,2002,228:495-518.
    [61]P.L.Krapivsky,S.Redner.Dynamics of majority rule in two-state interacting spins systems. Phys.Rev.Lett.,2003,90:238701.
    [62]C.Castellano,D.Vilone,A.Vespignani.Incomplete ordering of the voter model on small-world networks.Europhys.Lett.,2003,63:153-158.
    [63]K.Suchecki,V.M.Eguiluz,M.San Miguel.Conservation laws for the voter model in complex networks.Europhys.Lett.,2005,69:228-232.
    [64]D.Vilone,A.Vespignani,C.Castellano.Ordering phase transition in the one-dimensional Axelrod model.Eur.Phys.J.B,2002,30:399-406.
    [65]P.Contucci,S.Ghirlanda.Modeling Society with Statistical Mechanics:an Application to Cultural Contact and Immigration.arXiv/cont-physics/060662 2006
    [66]C.Castellano,M.Marsili,A.Vespignani.Nonequilibrium Phase Transition in a Model for Social Influence.Phys.Rev.Lett.,2000,85(16):3536-3539.
    [67]K.Klemm,V.M.Eguiluz,R.Toral,M.San Miguel.Nonequilibrium transitions in complex networks:A model of social interaction.Phys.Rev.E,2003,67(2):026120-026125.
    [68]J.A.Holyst,K.Kacperski,F.Schweitzer.Schweitzer.Phase transitions in social impact models of opinion formation.Annual Reviews of Computational Physics,2001,9:252.
    [69]E.Ben-Naim.Opinion dynamics:rise and fall of political parties.Europhys.Lett.,2005,69(5):671-677.
    [70]A.Nowak,J.Szamrej,B.Latane.From private attitude to public opinion:A dynamic theory of social impact.Psychological Review,1990,97:362-376.
    [71]G.A.Kohring.Ising Models of Social Impact:The Role of Cumulative Advantage.J.Phys.I France,1996,6:301-308.
    [72]Y.-S.Tu,A.O.Sousa,L.-J.Kong,M.-R.Liu.Sznajd model with synchronous updating on complex networks,arXiv:cond-mat/0501629 2005
    [73]J.Bonnekoh.Monte carlo simulations of the Ising and the Sznajd model on growing Barabasi-Albert networks.Int.J.Mod.Phys.C,2003,14:1231.
    [74]A.O.Sousa.Consensus formation on a triad scale-free network.Physica A,2005,348:701-710.
    [75]D.Stauffer,H.Meyer-Ortmanns.Simulation of consensus model of Deffuant et al.on a Barab(?)si-Albert network.Int.J.Mod.Phys.C,2004,15(2):241-246.
    [76]S.Fortunato.Damage spreading and opinion dynamics on scale free networks.Physica A,2005,384:947-951.
    [77]P.-P.Li,D.-F.Zheng,P.M.Hui.Dynamics of opinion formation in a small-world network.Phys.Rev.E,2006,73:056128-056132.
    [78]沃纳.塞弗林.传播理论:起源、方法与应用.北京:华夏出版社,2000.
    [79]钟瑛.网络传播理论.北京:清华大学出版社,2005.
    [80]Y.N.Xiao,L.S.Chen.Modeling and analysis of a predator-prey model with disease in the prey.Math.Biosei.,2001,171(1):59-82.
    [81]马知恩,周义仓,王稳地,靳祯.传染病动力学的数学建模与研究.北京:科学出版 社,2004.
    [82]Bo Shen.Research on Some Key Issues of Traffic Flow in Urban Traffic Networks.Beijing Jiaotong University,Beijing 100044,P.R.China:2008.
    [83]周涛,傅忠谦,牛永伟,et al.复杂网络上传播动力学研究综述.自然科学进展,2005 May 1,15(5):513-5.
    [84]Barrat A.Comment on "small-world networks:evidence for a crossover pricture".arXiv:cond-mat/9903323 1999
    [85]Barthelemy M.,Amaral L.A.N.Small-world networks:evidence for a crossover picture.Phys.Rev.Lett.,1999,82:3180-3183.
    [86]Newman M.E.J.The structure and function of complex networks.SIAM Review,2003,45:167-256.
    [87]Nishikawa T,Motter AE,Lai YC,Hoppensteadt FC.Smallest small-world network.Phys.Rev.E Stat.Nonlin.Soft.Matter Phys.,2002 Oct,66(4 Pt 2):046139.
    [88]Watts D.J.,Strogatz S.H.Collective dynamics of small world networks.Nature,1998,393:440-442.
    [89]Watts D.J.Networks,dynamics and the small world phenomenon.Am.J.Sociol.,1999,105(2):493-527.
    [90]Barabasi A.L.,Albert R.Emergence of scaling in random networks.Science,1999,286:509-512.
    [91]Bollobas B.,Riordan O.Mathematical Results on Scale-free Random Graphs.Handbook of Graphs and Networks 2002:1-34.
    [92]Bosiljka Tadic,G.J.Rodgers.Packet transport on scale free networks.Advances in Complex Systems,2002,5:445-456.
    [93]Dorogovtsev SN,Goltsev AV,Mendes JE Pseudofractal scale-free web.Phys.Rev.E Stat.Nonlin.Soft.Matter Phys.,2002 Jun,65(6 Pt 2):066122.
    [94]Jeong H.Complex Scale-Free Networks.PhysicaA,2003,321(1-2):226-237.
    [95]Albert R.,Barabasi A.-L.Statistical mechanics of complex networks.Rev.Mod.Phys.,2002,74:47-97.
    [96]Goh KI,Oh E,Jeong H,Kahng B,Kim D.Classification of scale-free networks.Proc.Natl.Acad.Sci.U.S.A,2002 Oct 1,99(20):12583-12588.
    [97]BroderA.,Kumar R.,Maghoul F.,et al.Graph Structure in the Web.Comput.Netw.,2000,33(1-6):309-320.
    [98]Barabasi A.-L.,Albert R.,Jeong H.Scale-free Characteristics of Random Networks:The Topology of the World Wide Web.Physica A,2000,281:69-77.
    [99]Albert R.,Jeong H.,Barabasi A.-L.The diameter of the World Wide Web.Nature,1999,401:130-131.
    [100]Covindan R.,Tangmunarunkit H.Heuristics for Internet Map Discovery.2000 p.1371-80.
    [101] Goh KI, Oh E, Kahng B, Kim D. Betweenness centrality correlation in social networks. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys., 2003 Jan,67(l Pt 2):017101.
    [102] Newman M.E.J., Park J. Why social networks are different from other types of networks. Phys. Rev. E, 2003,68(3):036122.
    [103] Redner S. How popular is your paper? An emprical study of the citation distribution. Eur. Phys. J.B, 1998,4:131-134.
    [104] Newman M.E.J. The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. U. S. A, 2001,98(2):404-409.
    [105] Newman M.E.J. Scientific collaboration networks. I. Network construction and fundamental results. Phys. Rev. E, 2001,64(1):016131.
    [106] Harold D.Lasswell. The structure and function of Communication in Society. New York: Institute for Religious and Social Studies; 1948.
    [107] L.Jure, M.Mary, F.Christos, GMatalie, H.Matthew. Cascading behavior in large blog graphs. 20070 Apr 26;2007.
    [108] M.Mary, LJure, F.Christos, H.Matthew. Finding patterns in blog shapes and blog evolution. 20070 May 26; 2007.
    [109] L.-H Liu, F.Fu, L.Wang. Information propagation and collective consensus in blogosphere: a game-theoretical approach. arXiv/physics/0701316vl 2007
    [110] D.Volchenkov, Ph.Blanchard. An algorithm generating random graphs with power law degree distributions. Physica A, 2002,315(3):677-690.
    [111] R.Albert, A.-L.Barabasi. Statistical mechanics of complex networks. Rev. Mod. Phys., 2002,74:47-97.
    [112] M.E J.Newman, J.Park. Why social networks are different from other types of networks. Phys. Rev. E, 2003,68(3):036122.
    [113] Erdos P., Renyi A. On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Science, 1960,5:17-61.
    [114] Erdos P., Renyi A. On random graphs. Publications Mathematical, 1959,6:290-297.
    [115] S.Milgram. The small world problem. Psychology Today, 1967,2:60-67.
    [116] A.Rapoport. Contribution to the theory of random and biased nets. Bulletin of Mathematical Biophysics, 1957,19:257-277.
    [117] R.Solomonoff, A.Rapoport. Connectivity of Random Nets. Bulletin of Mathematical Biophysics, 1951,13:107-117.
    [118] M.Molloy, B.Reed. A Critical Point for Random Graphs with a Given Degree Sequence. Random Structures and Algorithms, 1995,6:161-179.
    [119] M.Molloy, B.Reed. The Size of the Giant Component of a Random Graph with a Given Degree Sequence. Combinatorics, Probability and Computing, 1998,7:295-305.
    [120] S.A.Pandit, R.E.Amritkar. Characterization and control of small-world networks. Phys. Rev. E, 1999,60(2):R1119-R1122.
    [121] M.E.J.Newman, D.G.Watts. Scaling and percolation in the small-world network model. Phys. Rev. E, 1999,60:7332-7342.
    [122] Barrat A., Weight M. On the properties of small-world network models. European Physical Journal, 2000,13:547-560.
    [123] Bianconi G., Barabasi A.L. Competition and multiscaling in evolving networks. Europhys. Lett., 2001,54:436-442.
    [124] Amaral L.A.N., Scala A., Barthelemy M., Stanley H.E. Classes of small-world networks. Proc. Natl. Acad. Sci. U. S. A, 2000,97:11149-11152.
    [125] Dorogovtsev SN, Mendes JF. Exactly solvable small-world network. Europhys. Lett., 2000,50:1-7.
    [126] Dorogovtsev SN, Mendes JF. Scaling behaviour of developing and decaying networks. Europhys. Lett., 2000,52:33-39.
    [127] Dorogovtsev SN, Mendes JF. Effect of the accelerating growth of communications networks on their structure. Phys. Rev. E, 2001,63:025101.
    [128] Jeong H., Tombor B., Albert R., Oltvai Z.N., Barabasi A.L. The large-scale organization of metabolic networks. Nature, 2000,407:651-654.
    [129] Jeong H., Neda Z., Barabasi A.L. Measuring preferential attachment in evolving networks. Europhys. Lett., 2003,61:567-572.
    [130] Krapivsky P.L., Redner S., Leyvraz F. Connectivity of growing random networks. Phys. Rev. Lett., 2000,85:4629-4632.
    [131] Newman M.E.J., Girvan M. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E, 2004,69:026113.
    [132] Newman M.E.J. Detecting community structure in networks. Eur. Phys. J. B, 2004,38:321-330.
    [133] Girvan M., Newman M.E.J. Community structure in social and biological networks. Proc. Natl. Acad. Sci. U. S. A, 2002,99:7821-7826.
    [134] C.Moore, M.E.J.Newman. Exact solution of site and bond percolation on small-world networks. Phys. Rev. E, 2000,62:7059-7064.
    [135] M.Kuperman, G.Abramson. Small world effect in an epidemiological model. Phys. Rev. Lett., 2001,86:2909-2912.
    [136] C.Moore, M.E.J.Newman. Epidemics and percolation in small-world networks. Phys. Rev. E, 2000,61:5678-5682.
    [137] M.Boguna, R.Pastor-Satorras. Absence of epidemic threshold in scale-free networks with connectivity correlations. Phys. Rev. E, 2002,66:047104.
    [138] R.M.May, A.I.Lloyd. Infection dynamics on scale-free networks. Phys. Rev. E, 2001,64:066112.
    [139] J.O.Kephart, G.B.Sorkin, D.M.Chess, et.al. Fighting computer viruses. Sci. Am., 1997,277:56-61.
    [140]Y.Moreno,J.B.Gomez,A.F.Paeheco.Epidemic incidence in correlated complex networks.Phys.Rev.E,2003,68:035103.
    [141]M.Boguna,R.Pastor-Satorras.Epidemic spreading in corelated complex networks.Phys.Rev.E,2002,66:047104.
    [142]J.Davidsen,H.Ebel,S.Bornholdt.Emergence of a Small World from Local Interactions.Phys.Rev.Lett.,2002,88(12):128701-128704.
    [143]P.Holme,B.J.Kim.Growing scale-free networks with tunable clustering.Phys.Rev.E,2002,65(2):026107-026110.
    [144]G.Szabo,M.Alava,J.Kertesz.Structural transitions in scale-free networks.Phys.Rev.E,2003,67(5):056102-056106.
    [145]PAJEK(Slovene word for Spider)[computer program].2007.
    [146]Netsight[computer program].2004.
    [147]M.Bartolozzi,B.Leinweber,A.W.Thomas.Stochastic Opinion Formation in Scale-Free Networks.Phys.Rev.E,2005,72:046113.
    [148]G.Weisbuch,G.Deffuant,F.Amblard,J.P.Nadal.Interacting agents and continuous opinion dynamics,arXiv/cond-mat/0111494 2001
    [149]L.Sabatelli,P.Richmond.Non-monotonic spontaneous magnetization in a Sznajd-like consensus model,arXiv/cond-mat/0309375 2003
    [150]A.T.Bernardes,U.M.S.Costa,A.D.Araujo,D.Stauffer.Damage spreading,coarsening dynamics and distribution of political votes in Sznajd model on square lattic.Int.J.Mod.Phys.C,2001,12(2):159-167.
    [151]M.Woloszyn,D.Stauffer,K.Kulakowski.Phase transition in Nowak-Sznajd opinion dynamics.arXiv/physics/0609178 2006
    [152]A.Krawiecki,J.A.Holyst,D.Helbing.Volatility Clustering and Sealing for Financial Time Series due to Attractor Bubbling.Phys.Rev.Lett.,2002,89(15):158701.
    [153]R.Ochrombel.Simulation of Sznajd Sociophysics Model with Convincing Single Opinions.Int.J.Mod.Phys.C,2001,12:1091.
    [154]J.R.P.French.A formal theory of social power.Psychological Review,1956,63:181 - 194.
    [155]R.Hegselmann,U.Krause.Truth and Cognitive Division of Labour:First Steps towards a Computer Aided Social Epistemology.Journal of Artificial Societies and Social Simulation (JASSS),2006,9(3):10-27.
    [156]A.Pluchino,V.Latora,A.Rapisarde.Changing opinions in a changing world:a new perspective in sociophysics.Int.J.Mod.Phys.C,2005,16(4):515-531.
    [157]M.H.De Groot.Reaching a consensus.J.Amer.Statist.Assoc.,1974,69:118-121.
    [158]W.W.Daniel.Biostatistics.6th ed.New York:John Wiley and Sons,1995.
    [159]张文彤,?SPSS统计分析基础教程统计分析基础教程.北京北京:高等教育出版社高等教育出版社,2004.
    [160]M.Norusis.SPSS 13.0 Guide to Data Analysis.Upper Saddle-River,N.J.:Pretice Hall,Inc.,2004.
    [161]钱学森?创建系统学.山西科学技术出版社,2001.
    [162]S.Y.Auyang.Foundations of complex-system theories.Cambridge University Press,1998.
    [163]Shu-Zi Yang,Ya Wu,Jian-Ping Xuan,et.al.Time Series Analysis in Engineering Application.Second Edition ed.WuHan:Huazhong University of Science and Technology(HUST) Press,2007.
    [164]G.E.P.Box,G.M.Jenkins,G.C.Reinsel.TIME SERIES ANALYSIS:FORECASTING AND CONTROL(Third Edition).Prentice-Hall,Inc.,1994.
    [165]G.M.Jenkins,D.G.Watts.SPECTRAL ANALYSIS AND ITS APPLICATIONS.San Francisco:Holden-Day,1968.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700