基于本体的家电领域功能知识表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国家电业的快速发展以及全球化市场竞争的空前加剧,提高现代制造技术与管理水平,特别是对产品全生命周期的管理已经成了刻不容缓的问题。
     产品生命周期管理涉及到企业的众多核心知识,除了产品的几何数据外,还包括更多的产品设计和开发过程中的知识,如需求说明、设计标准、约束条件和设计原理等等。这些知识在企业各个部门之间的有效共享决定着产品全生命周期管理的成败。但是,目前的知识共享多停留在人工建成的文档层面,许多关键的知识淹没在内容冗余、结构复杂的各种文档中。如何准确、及时、全面地从这些分散的信息中提取知识,进而以一种更为形式化和系统化的方法描述知识,是实现知识共享的关键。
     本体作为一种能在语义和知识层次上描述信息的概念模型,具有良好的概念层次结构和对逻辑推理的支持,基于本体的知识表达已经成为国内外学者研究的热点。基于本体的知识管理(ontology-based knowledge management)可实现语义级知识服务,提高知识利用的深度,而且支持对隐性知识进行推理,方便异构知识服务之间的互操作。
     本文首先研究了家电业在产品功能知识表达方面的现状以及国内外在使用本体进行功能知识表达方面的研究进展情况,对当前功能知识的表示和共享所存在的缺陷和不足进行分析,提出了广义功能本体的概念。该本体阐述了功能本体的条件以及功能本体中涉及的相关概念。
     在此基础上,本文研究了家电领域的功能知识,并根据其特点提出了家电领域功能知识的表示框架。该框架是对沟口等人提出的功能知识表示框架的扩展,添加了与现代家电产业密切相关的感受功能、感受功能达成方式和感觉功能达成方式等概念,系统地阐述了功能概念本体、功能达成方式、功能分解树之间的关系。
     论文进而以电冰箱为例建立了“感受”功能概念本体、“感受”功能达成方式和“感觉”功能达成方式,并从感受、感觉和制冷三个层面对电冰箱的功能进行分解,绘制了功能分解树。
     在以上工作的基础上,本文提出了一种基于广义功能本体的知识共享策略,并开发了一款功能知识共享软件平台。该共享软件平台具有以下功能:
     (1)设计者可以将自己的产品知识以功能分解树(包括设备功能分解树以及感受功能分解树)的形式表达出来,实现了功能知识的显性化和形式化。
     (2)通过两种功能知识的共享,可以提高设计者实现设备功能和感受功能的设计效率。
     (3)能够查询相关功能知识,并在查询中实现了推理,提高了查准率和查全率。
     (4)实现了设计者之间功能知识的共享,使得不同设计者对同一类产品进行设计时可以很好地理解原始的设计思想,这对产品再设计有很好的指导意义。
With the rapid development of home appliances and the growing global market competitions, it has been a pressing problem to improve the level of modern manufacturing technology and management. Especially, it is of great urgency to manage in product life cycle.
     Product life cycle management involves a lot of core knowledge of enterprise, including geometry data of products and much knowledge of product design and development. Whether the knowledge can be effectively shared in the various departments in the enterprise determines whether product lifecycle management success or not. But, at present knowledge sharing only stays at the level of document. Much Critical knowledge is lost in a variety of documents with complex structure and redundant content. How to accurately extract knowledge from the scattered information and describe the knowledge in a more formal and systematic approach is the key to achieve knowledge sharing.
     As a conceptual model in the semantic level of description and conceptual model, ontology has good concept hierarchy and support for logical reasoning. Ontology-based knowledge representation technology has become a hot issue that the domestic and abroad scholars study on. Ontology-based knowledge management can realized semantic level knowledge services and increase the depth of knowledge utilization. Ontology-based knowledge management can also support the reasoning of implicit knowledge and facilitating the integration of expert knowledge and experience in the field of knowledge structure and so on.
     It is studied in the paper the status of home appliances in product knowledge expression and the research progressing of ontology in knowledge expressing. It is discussed in the paper about knowledge representation on the current production, reuse and sharing of knowledge. And the deficiencies are also studied.Then, the related theory of ontology and the applications of ontology theory in knowledge representation product features are studied. A conception of generalized functional ontology is put forward and the function ontology condition and the concepts involved in function ontology are described.
     The functional knowledge in the field of home appliances has also been studied. According to its characteristics, a framework of functional knowledge in the field of home appliances is put forwards in the paper. On the basis of functional knowledge representation framework of Mizoguchi Lab at Osaka University, feeling functional concepts ontology, ways of achievement ontology of feeling functions , ways of achievement ontology of perception functions are added in our framework. And the relationship of functional concept ontology, ways of achievement and functional decomposition tree theory is systematically elaborated.
     The“feeling”function concept ontology, "compression" ways of achievement,“feeling”function ways of achievement,“perception”function ways of achievement, "cooling" function ways of achievement and functional decomposition tree of refrigerators are established. And the function of refrigerator is decomposed from three levels of“feeling”,“perception”and“cooling”. Functional decomposition trees of refrigerator are drawn.
     A functional model of home appliances is presents in the paper. And on the basic of this, a Knowledge-sharing strategy based on function ontology is put forward. A software platform for functions knowledge sharing has been developed. The software platform has the following feature:
     (1) By sharing software platform, designers can express their product knowledge in the form of functional decomposition tree (including feeling functional decomposition tree and device functional decomposition tree).
     (2) It makes the functional knowledge explicit and formal.
     (3) Designers can inquire the related function knowledge in the sharing software platform.
     (4) By sharing other designer’s product functional knowledge, the designers can get good understanding of the original design principle.
引文
[1] Sudarsan R, Fenves S J, Sriram R D, et al. A product information modeling framework for product lifecycle management. Computer-Aided Design, 2005, 37(13): 1399~1411
    [2]王洪.汽车制造业PLM系统信息集成研究.
    [3]廉本宁,赵晓静,檀润华,等.基于本体的产品功能建模研究.河北工业大学学报, 2006, 35(002): 1~5
    [4] Pahl G, Beitz W, Wallace K. Engineering design: a systematic approachSpringer Verlag, 1996.
    [5] Hundal M S. A systematic method for developing function structures, solutions and concept variants. Mechanism and Machine theory, 1990, 25(3): 243~256
    [6] Hirtz J, Stone R B, Mcadams D A, et al. A functional basis for engineering design: reconciling and evolving previous efforts. Research in engineering Design, 2001, 13(2): 65~82
    [7] Umeda Y, Ishii M, Yoshioka M, et al. Supporting conceptual design based on the function-behavior-state modeler. AIEDAM: Artificial Intelligence for Engineering, Design, and Manufacturing, 1996, 10(04): 275~288
    [8] Chandrasekaran B, Josephson J R. Function in device representation. Engineering with Computers, 2000, 16(3): 162~177
    [9] Chandrasekaran B, Goel A K, Iwasaki Y. Functional representation as design rationale. Computer, 1993, 26(1): 48~56
    [10] Bracewell R H, Wallace K M. DESIGNING A REPRESENTATION TO SUPPORT FUNCTION–MEANS BASED SYNTHESIS OF MECHANICAL DESIGN SOLUTIONS. Professional Engineering Publ., 2001
    [11] Patil L, Dutta D, Sriram R. Ontology-based exchange of product data semantics. Automation Science and Engineering, IEEE Transactions on, 2005, 2(3): 213~225
    [12] Gero J S, Kannengiesser U. The situated function-behaviour-structure framework. Design Studies, 2004, 25(4): 373~391
    [13] Collins J A. Failure of materials in mechanical design: analysis, prediction, preventionWiley-interscience, 1993.
    [14] Koji Y, Kitamura Y, Mizoguchi R. Ontology-based transformation from an extended functional model to FMEA. Citeseer, 2005
    [15] Kitamura Y, Sano T, Namba K, et al. A functional concept ontology and its application to automatic identification of functional structures* 1. Advanced Engineering Informatics, 2002, 16(2): 145~163
    [16] Tor S B, Britton G A, Zhang W Y, et al. Guiding functional design of mechanical products through rule-based causal behavioural reasoning. International journal of production research, 2002, 40(3): 667~682
    [17] Gero J S, Kannengiesser U. A function-behaviour-structure ontology of processes. Design Computing and Cognition’06, 2006: 407~422
    [18] Gero J S, Kannengiesser U. The situated function-behaviour-structure framework. Design Studies, 2004, 25(4): 373~391
    [19] Gero J S, Kannengiesser U. The situated function-behaviour-structure framework. 2002
    [20] Qian L, Gero J S. Function–behavior–structure paths and their role in analogy-based design. AIEDAM: Artificial Intelligence for Engineering, Design, and Manufacturing, 1996, 10(04): 289~312
    [21] Prabhakar S, Goel A K. Functional modeling for enabling adaptive design of devices for new environments. Artificial intelligence in Engineering, 1998, 12(4): 417~444
    [22] Stone R B, Wood K L. Development of a functional basis for design. Journal of Mechanical Design, 2000, 122: 359
    [23] Mcadams D A, Stone R B, Wood K L. Understanding product similarity using customer needs. 1998
    [24] Mcadams D, Wood K. Quantitative measures for design by analogy. 2000
    [25] Srinivasan R S, Wood K L, Mcadams D A. Functional tolerancing: a design for manufacturing methodology. Research in Engineering Design, 1996, 8(2): 99~115
    [26] Kurfman M, Stone R, Vanwie M, et al. Theoretical underpinnings of functional modeling: preliminary experimental studies. 2000
    [27] Mizoguchi R, Kitamura Y. A Functional Ontology of Artifacts. The Monist, 2009, 92(3): 387~402
    [28] Kitamura Y, Kashiwase M, Fuse M, et al. Deployment of an ontological framework of functional design knowledge. Advanced Engineering Informatics, 2004, 18(2): 115~127
    [29] Kitamura Y, Mizoguchi R. Ontology-based description of functional design knowledge and its use in a functional way server. Expert Systems with Applications, 2003, 24(2): 153~166
    [30] Kitamura Y, Mizoguchi R. Ontology-based systematization of functional knowledge. Journal of Engineering Design, 2004, 15(4): 327~351
    [31]高济.基于表示本体论的智能系统开发.计算机研究与发展, 1996, 33(011): 801~807
    [32]李飞,高济,钟凌燕,等. OKMF:一个基于本体论的知识管理系统框架.计算机辅助设计与图形学学报, 2003, 15(012): 1538~1543
    [33]夏贝,吴洁,曹存根,等.从文本中获取植物知识方法的研究*).计算机科学, 2005, 32: 10
    [34]曹存根.国家知识基础设施的意义.中国科学院院刊, 2001, 16(004): 255~259
    [35]周肖彬,曹存根.基于本体的医学知识获取.计算机科学, 2003, 30(10): 35~39
    [36]曹宇峰,曹存根.基于本体的中医舌诊知识的获取.计算机应用研究, 2006, 23(3): 31~34
    [37]王丽丽,曹存根,顾芳,等.基于本体论的民族知识获取与分析.计算机科学, 2003, 30(5): 47~54
    [38]顾慧翔,俞勇.基于领域本体和知识推理的语义互联网应用.上海交通大学学报, 2004, 38(004): 583~585
    [39]刘炎禄,俞勇.面向语义Web的知识表示框架.上海交通大学学报, 2002, 36(009): 1309~1311
    [40]刘颖,詹萌. Ontology在数字图书馆领域中的应用与研究综述. LIBRARY JOURNAL, 2005, 24(6)
    [41]邓志鸿,唐世渭.基于本体的多Agent分布式数字图书馆资源信息发现服务模型之研究.计算机工程, 2002, 28(006): 37~38
    [42]袁媛,杜小勇,马文峰.数字图书馆信息服务平台的建设.现代图书情报技术, 2003, (005): 8~10
    [43]马文峰,杜小勇.数字资源整合的发展趋势. LIBRARY AND INFORMATION SERVICE, 2007, 51(7)
    [44]张维明,宋峻峰.面向语义Web的领域本体表示,推理与集成研究.计算机研究与发展, 2006, 43(001): 101~108
    [45]胡艳丽,白亮,张维明,等.知识网格中基于领域本体的智能检索.计算机科学, 2007, 34(008): 202~207
    [46]陆汝钤,石纯一,张松懋,等. Agent的常识知识库.中国科学E辑, 2000,
    [47]金芝.基于本体的需求自动获取. CHINESE JOURNAL OF COMPUTERS, 2000, 23(5)
    [48]陈刚,陆汝钤,金芝.基于领域知识重用的虚拟领域本体构造.软件学报, 2003, 14(3): 350~355
    [49]杨森,夏燕,曹顺良,等.语义异构生物数据源中的数据集成与更新.计算机工程, 2008, 34(8): 38~40
    [50]黄晓涛,李日晖,卢正鼎.一种领域本体映射的剪枝算法.
    [51]黄晓涛,李宇飞.一种在语义网环境中的域间本体模糊映射算法.计算机工程与科学, 2006, 28(002): 77~80
    [52]杨洁,杨育,赵川,等.产品创新设计中基于本体理论的客户知识集成技术研究.计算机集成制造系统, 2009, 15(012): 2303~2311
    [53]杨洁.协同产品创新中客户知识集成模式及其关键技术研究. 2009,
    [54]武超,李彦,刘小莹,等.基于功能本体的面向目的创新设计研究.机械设计与制造, 2008, (011): 226~228
    [55]张立,陈刚,王玉柱,等.基于本体的功能建模框架及协同设计环境研究. Computer Integrated Manufacturing Systems, 2007, 13(3)
    [56]郑立斌,顾寄南,代亚荣.基于本体的制造资源建模.机械设计与研究, 2009, 25(005): 61~63
    [57]郑立斌,代亚荣.面向创新设计知识资源发现的研究.制造业自动化, 2010, (003): 84~86
    [58]郝永平,宁汝新.基本本体论的产品全过程知识共享研究.机械工程学报, 2002, 38(012): 126~130
    [59]赵龙文,黄小慧.基于本体的电子政务知识共享机制研究.科技管理研究, 2010, (011): 133~135
    [60]李海刚,尹万岭.面向新产品开发领域知识表示方法的比较研究.科学学研究, 2009, 27(002): 176~179
    [61]刘炎禄,俞勇.面向语义Web的知识表示框架.上海交通大学学报, 2002, 36(009): 1309~1311
    [62]顾芳,曹存根.知识工程中的本体研究现状与存在问题.计算机科学, 2004, 31(010): 1~10
    [63]许楚銮.基于本体的设备维护知识表示与检索研究. 2009,
    [64]叶蕾,张斌.基于功能语义的Web服务发现方法.计算机研究与发展, 2007, 44(008): 1357~1364
    [65] Neches R, Fikes R E, Finin T, et al. Enabling technology for knowledge sharing. AI magazine, 1991, 12(3): 36
    [66] Gruber T R. A translation approach to portable ontology specifications. Knowledge acquisition, 1993, 5: 199
    [67] Borst W N. Construction of engineering ontologies for knowledge sharing and reuse. 1997,
    [68] Studer R, Benjamins V R, Fensel D. Knowledge engineering: principles and methods. Data & Knowledge Engineering, 1998, 25(1-2): 161~197
    [69] Chandrasekaran B. Functional representation: A brief historical perspective. Applied artificial intelligence, 1994, 8(2): 173~197
    [70] Tomiyama T, Umeda Y, Yoshikawa H. A CAD for functional design. CIRP Annals-Manufacturing Technology, 1993, 42(1): 143~146
    [71] Keuneke A M. Device representation-the significance of functional knowledge. IEEE EXPERT INTELLIGENT SYSTEMS and THEIR APPLICATIONS, 1991: 22~25
    [72] Steels L. Diagnosis with a function-fault model. Applied artificial intelligence, 1989, 3(2-3): 213~237
    [73] Pahl G., Beitz W.工程设计学.北京机械工业出版杜, 1992,
    [74]董仲元,蒋克铸.设计方法学高等教育出版社, 1991.
    [75]叶元烈.机械现代设计方法学中国计量出版社, 2000.
    [76]黄纯颖.设计方法学.工程设计, 1997, 4
    [77]廖林清.机械设计方法学重庆大学出版社, 1996.
    [78]鲁明山.机械设计学北京航空航天大学出版社, 1995.
    [79]戴文跃,田万录.功能是主观的还是客观的?自然辩证法研究, 1999, 15(007): 21~24
    [80] Kitamura Y, Koji Y, Mizoguchi R. An ontological model of device function and its deployment for engineering knowledge sharing. Citeseer, 2005
    [81] Kitamura Y, Koji Y, Mizoguchi R. An ontological model of device function: industrial deployment and lessons learned. Applied Ontology, 2006, 1(3): 237~262
    [82] Keuneke A M. Device representation-the significance of functional knowledge. IEEE EXPERT INTELLIGENT SYSTEMS and THEIR APPLICATIONS, 1991: 22~25
    [83] Sasajima M, Kitamura Y, Ikeda M, et al. FBRL: A function and behavior representation language. Citeseer, 1995
    [84] Kitamura Y, Sano T, Namba K, et al. A functional concept ontology and its application to automatic identification of functional structures* 1. Advanced Engineering Informatics, 2002, 16(2): 145~163
    [85] Qian L, Gero J S. Function–behavior–structure paths and their role in analogy-based design. AIEDAM: Artificial Intelligence for Engineering, Design, and Manufacturing, 1996, 10(04): 289~312
    [86] Kitamura Y, Mizoguchi R. Ontology-based functional-knowledge modeling methodology and its deployment. Engineering Knowledge in the Age of the SemanticWeb, 2004: 99~115
    [87]胡玉杰.制造业知识管理中基于本体的产品知识表达研究. 2003,
    [88] Kitamura Y, Washio N, Koji Y, et al. An ontology-based annotation framework for representing the functionality of engineering devices. Proc. of ASME IDETC/CIE 2006, 2006,
    [89] Kitamura Y, Mizoguchi R. Ontology-based systematization of functional knowledge. Journal of Engineering Design, 2004, 15(4): 327~351
    [90] Sowa J F. Top-level ontological categories. International Journal of Human-Computer Studies, 1995, 43(5-6): 669~685
    [91] Kozaki K, Sunagawa E, Kitamura Y, et al. Role representation model using owl and swrl. Roles’07: 39
    [92] Kozaki K, Kitamura Y, Ikeda M, et al. Hozo: an environment for building/using ontologies based on a fundamental consideration of“Role”and“Relationship”. Knowledge Engineering and Knowledge Management: Ontologies and the Semantic Web, 2002: 155~163
    [93] Kitamura Y, Koji Y, Mizoguchi R. An ontological model of device function and its deployment for engineering knowledge sharing. Citeseer, 2005
    [94] Mizoguchi R, Kitamura Y. A Functional Ontology of Artifacts. The Monist, 2009, 92(3):387~402
    [95] Borst P, Akkermans H, Top J. Engineering ontologies. International Journal of Human-Computer Studies, 1997, 46(2-3): 365~406
    [96] Kitamura Y, Mizoguchi R. Ontology-based description of functional design knowledge and its use in a functional way server. Expert Systems with Applications, 2003, 24(2): 153~166
    [97] Kitamura Y, Mizoguchi R. Ontology-based systematization of functional knowledge. Journal of Engineering Design, 2004, 15(4): 327~351
    [98] Kitamura Y, Mizoguchi R. Organizing knowledge about functional decomposition. Citeseer, 2003
    [99] Kitamura Y, Kashiwase M, Fuse M, et al. Deployment of an ontological framework of functional design knowledge. Advanced Engineering Informatics, 2004, 18(2): 115~127
    [100] Kitamura Y, Mizoguchi R. Ontology-based functional-knowledge modeling methodology and its deployment. Engineering Knowledge in the Age of the SemanticWeb, 2004: 99~115
    [101] Kitamura Y, Mizoguchi R. Ontology-based functional-knowledge modeling methodology and its deployment. Engineering Knowledge in the Age of the SemanticWeb, 2004: 99~115
    [102] Kitamura Y, Sano T, Namba K, et al. A functional concept ontology and its application to automatic identification of functional structures* 1. Advanced Engineering Informatics, 2002, 16(2): 145~163
    [103]马晓伟.基于WEB的本体评价系统的研究与实现. 2009,
    [104] Sunagawa E, Kozaki K, Kitamura Y, et al. An environment for distributed ontology development based on dependency management. The SemanticWeb-ISWC 2003, 2003: 453~468

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700