夏季可拆迁式猪舍生态养猪的种养结合
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
规模化养猪业的发展,规模猪场需占用大量土地(通常固化后不可复耕)、粪污水排放导致环境污染与土地资源紧缺和种植业有机肥缺乏的矛盾日益突出。由于我国目前农牧严重脱节,规模养殖产生的畜禽粪尿没能作为有机肥合理利用,畜禽粪尿污染现象严重;规模种植中因过多施用化肥,导致土地板结,肥力下降,而没有用足够的有机肥以改良土壤。同时,现有固定猪舍模式的养殖还存在占用耕地、疫病严重等问题。为了从根源上解决以上问题,本课题组研制了适于种养结合生态养殖的可便携装拆迁移式环保型猪舍(可拆迁式猪舍)。本文主要通过饲养试验、舍内环境指标测试、包心菜种植试验等,旨在研究夏季可拆迁式猪舍设计及应用的主要技术参数,为夏季可拆迁式猪舍的生产应用提供理论依据与实用参数。
     饲养试验主要研究了可拆迁式猪舍对温湿度的影响、对肥育猪生长性能影响。选取体重约为60Kg的杜大长三元杂交生长肥育猪216头,按完全区组设计分为2个组:可拆迁式猪舍组和传统的固定猪舍组,每组3个重复,每个重复36头。饲养期从体重约60kg进栏到体重达100K左右出栏。两组饲养密度均为1.1头/m2,饲料来源及营养水平相同,自由采食、饮水。在饲养试验期间,分别测定两类猪舍内的温湿度指标。以每5 d为1个周期分别测定可拆迁式猪舍各个单元的猪粪和尿污的排放量。
     研究结果表明:可拆迁式猪舍组肥育猪的平均末重(饲养期50 d)比固定猪舍组高出6.34%(P<0.01),平均日增重和平均日采食量分别高出18.75%(P<0.01)和7.35%(P<0.01),料重比降低10.42%(P<0.05);可拆迁式猪舍内平均温度为28.03℃,平均日温差为2.75℃,平均相对湿度为70.50,固定猪舍内分别为29.83℃,5.87℃和70.40,两者日温差差异极显著(P<0.01);当室外平均最高气温为36.5℃时,.可拆迁式猪舍内日最高温度为28.7℃,比固定猪舍内低3.14℃,两者差异极显著(P<0.01)。
     每个单元可拆迁式猪舍饲养肥育猪试验全期平均鲜粪排放量为3349.6 kg,堆肥后重为2277.73kg;鲜尿污量为10648.23kg,熟化后可施用尿污量为12385.07kg;平均每头肥育猪从始重68.56kg饲养至末重104.84 kg,平均每千克增重产生鲜粪重为1.52kg,堆肥重为1.09 kg,尿污重为4.32kg,尿污施用量为4.06 kg。
     种植包心菜种植试验主要研究了包心菜种植所需的最适猪粪尿施入量,并得出可拆迁式猪舍饲养肥育猪所产的粪尿污完全施入包心菜种植田的土地匹配面积。供试土地设7个处理组,分别施入猪粪量为0、2、4、5、6 kg/m2,粪施入时按1:4.2的比例与尿污混合。每个处理组3个重复,每个重复2.4 m2。包心菜播种量为1.1g/m2,收割后采样,测定各组土壤肥力指标,包心菜生产性状和营养成分含量。
     试验结果表明,每平方米施入5 kg(每亩3335kg)猪粪堆肥和20.5kg(每亩13673.5kg)尿污为适宜施肥量,包心菜总鲜重可达4.63 kg/m2,每亩产量3088.21kg。可拆迁式猪舍平均每个饲养单元所产的猪粪堆肥量和尿污量完全施入包心菜种植田的土地匹配面积为455.55 m2,约合0.68亩。应用可拆迁式猪舍饲养生长猪与种植包心菜的土地匹配面积为头均7.98 m2。能增产277.89kg,也可产生直接经济效益650.26元。
     本试验的研究结果表明,夏季可拆迁式猪舍饲养肥育猪的生产性能和舍内温湿度环境优于传统的固定猪舍;每个单元可拆迁式猪舍饲养肥育猪的经济效益比固定猪舍提高2810.05元;平均每个单元可拆迁式猪舍饲养肥育猪所产猪粪尿污混合完全施入包心菜种植田适宜的土地匹配面积为0.68亩。
The wastewater is produced with the rapid development of concentrated swine farms, it is seriously to deal with the environment pollution and land resource shortage. Because of the serious gap between agriculture and animal husbandry presently, swine manure wastewater from the scale breeding can not used rationally as organic fertilizer, which causes serious pollution problems. And excessive use of fertilizers in scale planting results in soil hardening and fertility declining, while there is not enough organic fertilizer used to improve soil fertility. At the same time, the problem of occupying cultivated land and serious disease and so on still exist in general fixed-pigsty model. In order to resolve the above problems from their root, we have to develop the migration portable and environment-friendly pigsty (removable pig house) which is suitable for crop-animal combined production. Our studying team has got the key parameters of crop-animal combined production by applying the removable pig house through the feeding trial and the bearing capacity tests of the swine manure wastewater in the land planted in the winter and autumn, but there are not any key parameters could provide a theoretical basis for the application of the removable pig house in summer.
     The feeding trial was to study the effects of removable pig house on temperature, humidity, and the growth of fattening pigs on performance and digestibility.216 growing-finishing crossbred(Duroc X Landrace X Yorkshire) pigs with the weight of about 60 kg were Selected and divided into two groups according to completely block design respectively, the removable pig house group and general fixed pig house group. There were three repetition and 36 pigs in each repetition with equal male and female. The pigs were feed from they were about 60 kg to about 100 kg. The feeding density of the two groups was kept for 1.1/m2 and the feed source and nutrition level were the same, and the pigs feed freely.
     The results shows that, Relative humidity is suitable for finishing pigs within the scope of humidity. The average final weight of the fattening pigs in the removable pig house was higher than pigs kept in fixed pig house for 6.34%(P< 0.01), the average daily gain and average daily feed intake were higher than the fixed-pigsty group for 18.75%(P<0.01) and 7.35%(P<0.01); The feed to gain was lower for 10.42%(P <0.05).when the high daily temperature is 36.5℃, the average temperature of the removable pig house was 28.03℃, the mean daily temperature difference was 2.75℃, and the average relative humidity of 70.50; Data of the fixed pig house was 29.83℃, 5.87℃and 70.4 respectively. Among these data, the difference of average temperature was extremely significant. When the high temperature is above 35.8℃, the daily high temperature is significant.
     Determination of pig manure and urine wastewater excretion was arranged into a cycle of every 5 days. Summation of weight of each unit in a cycle was the total fecal excretion and urine wastewater excretion pollution in feeding period of each unit of removable pig house. The weight of fresh pig manure excretion in each unit of the removable pig house was 3349.9 kg, and compare to 2277.73kg after compost; the weight of fresh urine was 10648.23kg, and it was changed to 12385.07 kg after the ultimate application. The amount of pig manure, composting products, urine wastewater and the actual urine waste water at last for average weight gain of 1 kg of finishing pigs in removable pig house from their 68.56 kg to 104.84 kg was respectively 1.52 kg,1.09 kg,4.32 kg, and 4.06 kg.
     The bearing capacity tests of the pig waste in the land planted with the cabbage was carried out mainly for the optimum amount of swine waste applied for planting the cabbage, as well as the suited fields of land planted cabbage to match entirely pig waste pollution applied to the cabbage land from the removable pig house. There were seven treatment groups in test land, and they were fertilized by the pig manure with 0,2,4,5, 6 kg/m2 and the pig manure was mixed with urine wastewater to the ratio of 1:4.2, and there were three treatment groups for each repeat, and it was 2.4m2 for each repeat. Samples of the soil were collected after reaped every time, and indicators of the soil fertility, production traits and nutrient content of the cabbage in each group were determined.
     The result of the bearing capacity test of the pig manure of the land planted the cabbage showed that the optimum weight of the fertilizer applied per square was 5kg, and 18.9 kg urine waste water could be contained for 1 square meter. That is to say, 33335 kg pig manure and 13673.5 kg urine wastewater could be contained for 1 mu of land planted cabbage. The products of cabbage can reach to 4.63 kg/m2,3088.21kg/mu; the matched area of land planted cabbage for the pig waste totally being applied was 455.55 m2, and it was about 0.68 mu according to the demolition-style weight of pig manure compost and urine from each unit of the removable pig house. And the matched area of land for each pig was 7.98 m2.
     The results of this experiment showed that the pigs' production performance, temperature and humidity environment of removable pig house were better than common fixed pig house. The economic benefit of each raising unit in removable pig house was higher than fixed pig house by 2810.5RMB, while the direct economic benefit made by the cabbage planted in matched area was 1413.20 RMB.
引文
1. Ajit K. Sarmah, Michael T. Meyer, Alistair B.A.Boxall. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment[J]. Chemosphere,2006,65:725-759
    2. Andrews S.S. Karlen D.L, Mitchell J.P. A Comparison of Soil Quality Indexing Methods for Vegetable Production Systems in Northern California[J]. Agriculture, Ecosystems and Environment,2002,90:25-45、
    3. Christianson, L., et al.,1982. Swine performance model for summer conditions. Int. J. Biometeorol.,26:137 - 147
    4. Doran J W, Parkin T B. Defining and Assessing Soil Quality[J]. So il Science Society of America.1994:3-21
    5. Govi M,Francioso O.Influence of long-tem residue and fertilizer applications on soil humic substance:A study by electrofocusing[J].Soil Science.1992,154(1):8-13
    6. Hartung. J., Phillips. V.R. Control of gaseous emissions from livestock buildings and manure stores [J].Journal of Agricultural Engineering Research (United Kingdom).57(3):173-189.
    7. Larson W.E, Pierce F.J. Conservation and Enhancement of Soil Quality [J]. Board for Soil Research and Management,1991:175-203
    8. Mercik,S.,Nemeth,K. Effects of 60-year N.P.K and Ca fertilizer on EUF-nutrient fractions in the soil and on yields of rye and potato crops [J].Plant and soil.1985,83(1):151-159
    9. Morrison,1967. Skin and lung moisture loss from swine. Trans of the ASAE10(5):691-696.
    10. NRC,1988. Nutrient Requirement of Swine. National Academy Press, Washington, DC.
    11. Warkentin B P, Fletcher H F. Soil Quality for Intensive Agriculture[J]. National Institute of Agricultural Science,1977:594-598
    12. Patrick Massabie, et al.,1997. Effects of environmental conditions on the performance of growing-finishing pigs. Proc.5th Int'l. Livestock Environment Symposium,1:187-194, Minneapolis,MN.
    13. Rasmussen,P.E,Rohde,C.R, Long-time tillage and nitrogen fertilizer effects on organic nitrogen and carbon in semiarid soil[J].Soil Science Society of American Journal.1988,52(4):114-117
    14. Roland DA, Gordon R, Rao SK. Phosphorus solubilization and its effect on the environment [J]. Proc. MD Nutr. Conf.,1993,(4):138-145.
    15. Scaife A, Turner M K. Effect of N top2dressing on Brussels sprout flavor[J]. Test of Agrochem. and Cultivars,1985,106:172-173
    16. Sommefeldt T G,Chang G.Long-term annual applications increase soil organic matter and nitrogen and decrease carbon to nitrogen ratio[J].Soil Science Society of America Journal.1988,52(6):1668-1672
    17. Van Beemen N. Acidic deposition and internalproton in acidification of soils and water[J]. Nature,1984,367,599
    18.白碧君.蔬菜中硝酸盐积累及其控制的研究[J].中国农业文摘,1992,8(6):8-15
    19.陈安国.现代化养殖场规划与设计[M].浙江大学 2003.3:87-88
    20.陈俊波,潘雄高.温岭市大溪镇畜牧业用地状况的调查与建议[J]2007,(1):21
    21.丁疆华.广州市畜禽粪便污染与防治对策[J].环境科学研究.2000,(13)
    22.丁守成.谈施肥对土壤的影响[J]科技创新导报,2008,(29):123
    23.杜华平,江海东,周琴等.氮肥对一年生包心菜营养成分影响的研究[J]上海农业科技.2008,(2):23-24
    24.段建南.长期定位试验条件下土地生产力和土壤肥力的变化[J].湖南农业大学学报(自然科学版),2002(6):110-116
    25.冯春霞.家畜环境卫生[M].北京:中国农业出版社,2003.
    26.郭熙盛,不同氮钾水平对结球甘蓝产量和品质的影响,植物营养与肥料学报2004,10(2):161-166
    27.国土资发.关于促进规模化畜禽养殖有关用地政策的通知[J].特别关注.2007,24(22):5
    28.国务院关于印发《全国土地利用总体规划纲要(2006-2020)》的通知[J].专题报道
    29.国家统计局.2003年中国统计年鉴[M].北京:统计出版社,2003
    30.国家环境保护总局自然生态保护局,全国规模化畜禽养殖业污染情况调查及防治对策[M]中国环境科学出版社,2002.9.25-26.
    31.侯雪莹,韩晓增,王树起等.不同土地利用和管理方式对黑土肥力的影响[J]水土保持学报,2008,22(6):99-103
    32.侯金权不同施肥结构对甘蓝物质积累与养分吸收的影响[J],湖南农业科学2009,5:53-55
    33.何飞译.对家禽生产中环境问题的认识何策略[J].中国家禽,2002,24(1):35-36.
    34.何飞译.对家禽生产中环境问题的认识何策略[J].中国家禽,2002.24(1):35-36.
    35.黄雪泉,黄锦华.规模化养猪场中的恶臭及其控制措施[J].现代养猪,2001,(2):28-29
    36.李吉进,宋东涛,邹国元等.不同有机肥料对番茄生长及品质的影响[J]土壤肥料科学,2008,24(10):300-305
    37.李美茹,冯光秀,王素素.廊坊市郊设施蔬菜土壤次生盐渍化状况分析[J].安徽农业科学.2008,36(28):12343-12344
    38.李如治.家畜环境卫生学(第三版)[M]中国农业出版社,2004
    39.李淑芹,胡玖坤.畜禽粪便污染及治理技术[J].可再生能源,2003,(1):21-23.
    40.李远.我国规模化畜禽业存在的环境问题与防治对策[J].上海环境科学,2002,21(10):597-599
    41.李传红,朱文转.集约化禽畜养殖业废弃物污染及其综合防治[J].自然生态保护,2001,(12):32-34.
    42.李家康,陈培森,沈桂琴等.几种蔬菜的养分需求与钾素增产效果[J].土壤肥料,1997(3):3-6.
    43.李庆永,盖玉岩.畜禽养殖业污染及防治对策[J].家禽科学,2009,6-12:40-41.
    44.梁国旗,陈安国.移动猪舍及种养结合基本参数的初步探讨[C],浙江大学硕士学位论文,2009.
    45.廖新悌.动物废弃物管理与畜牧业清洁生产技术[J].中国生态农业学报,2001,9(1):101-102.
    46.刘得元.畜禽养殖与生态环境[J].畜牧与兽医,2009,41-6:109-110.
    47.刘刚,刘典同.集约化养禽场粪便无害化处理与利用技术[J].山东畜牧兽医,2008,29:38-40.
    48.刘志祥.种养结合解决养猪业效益低下[J].中国畜禽种业,2009,6:1.
    49.刘忠新,刘莉梅.植物营养失调的症状及合理施肥[J]农村实用科技信息,2007,(12):13.
    50.陆东海,陈安国.应用可移动猪舍进行种养结合的主要技术参数研究[C].浙江大学硕士学位论文,2008.
    51.陆建定,任锦芳,戴旭明.浙江省畜牧业用地状况的调查与建议[J].浙江畜牧兽医,2005,2:16-17.
    52.吕英华,秦双月.测土与施肥[M]中国农业出版社,2002
    53.倪吾钟,章永松,林咸永.不同钾肥对几种主要蔬菜作物产量和品质的影响[J].浙江农业学报,1997,9(3):143-148
    54.乔海云.规模养殖污染与生态畜牧业[J].中国畜禽种业,2008,(7):61-62
    55.尚以顺,舒健虹,陈燕萍等.不同施肥水平及播种量对一年生包心菜产草量的影响[J]贵州农业科学.2008,36(5):135-136
    56.孙志海,武志杰,陈利军等.农业生产中的氮肥施用现状及其环境效应研究进展[J].土壤通
    报,2006,37(4):782-786
    57.沈根祥,雅谷,袁大伟.上海市郊大中型畜禽场数量分布及粪尿处理利用现状[J].上海农业学报,1994,(10):12-16.
    58.宋秀杰.我国有机肥利用现状及合理利用的技术措施[J].农村生态环境,1997,13(2):56-59.
    59.唐春艳,齐德生.降低畜产公害的营养调控[J].饲料研究2005:47-49
    60.善锋,陈安国,海峰.规模化猪场粪污处理技术研究进展[J].家畜生态.2004,25(1):49-54.
    61.文孝启.土壤有机质研究法[M].北京:农业出版社,1984:19-37
    62.王帅,杨劲峰,韩晓日等.不同施肥处理对旱作春玉米光合特性的影响[J]中国土壤与肥料.2008,(6):23-27
    63.王新谋等.家畜粪便学[M]上海交通大学出版社,1997
    64.王周,陈安国.移动鸡舍及种养结合基本参数的初步探讨[C],浙江大学硕士学位论文,2008.
    65.吴祖堂,张宁文.有机-无机肥料八年定位试验结果[J].宁夏农林科技,1988(4):1-4
    66.徐文贤.种养结合是生态农业的一种好模式[J].福建环境,2003,20(2):36-37.
    67.闫玲,单德鑫.中国生态农业发展现状及展望[J].山西农业科学,2008,36(12):10-13
    68.叶军林,潘华明.发展山区生态畜牧业之初探[J].上海农业科技,2008, (2):62-63
    69.俞丹宏,潘根长.浙江省畜禽养殖业的污染问题及防治对策[J],浙江畜牧兽医.2001(2):14
    70.俞美子,王德武,范强.日光温室育肥猪舍主要内环境指标的测定[J].畜禽生产,2008,(7):16-17
    71.姚源喜.长期定位施肥对作物产量和土壤肥力的影响[J].莱阳农科院学报,1991(4):245-251
    72.张恩平,张淑红,李天来等.有机肥与无机肥配施对菜田土壤氮磷钾养分含量的影响[J]黑龙江农业科学,2001,(2):5-7
    73.张士良,薛连秋,郭鹏等.保护地土壤次生盐渍化成因及防控措施[J],现代化农业,2008.(3):15-16
    74.张旭东.施用猪粪培肥土壤后,土壤氨基酸含量的变化[J].土壤通报,1989,20(6):260-262.
    75.赵伯仁.施肥对土壤肥力及作物产量的影响研究[J]黑龙江农业科学.1999,(2):11-13
    76.周勇志,章力勇,周金林等.畜禽排泄物与农业立体污染防治[J].上海农业科技,2006,(5):]01-102.
    77.周俊玲.发达国家养殖业污染的防治对策与启示[J].海外牧业,2009,10:75-77.
    78.周永康.国土资源与可持续发展[J].自然资源学报,2000,1.
    79.朱德文,钟成义,陈永生.畜禽养殖业粪污处理现状与对策研究[J].家畜生态学报,2007,28(6):163-166
    80.朱柳海,周自玮.施肥对白三叶生长发育和种子生产的影响[J]草业与畜牧.2008,(4):20-27
    81.朱连,杨春霞.氮、钾用量对春甘蓝产量和品质的影响[J].蔬菜,2002(1):29-31.
    82.卓坤水.杂交狼尾草栽培及其喂猪技术[J].养猪,2005,(1):5-7.
    83.邹建煌.浅析当前猪病流行特点与防控对策[J]养殖与饲料,2008,(7):106-108

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700