Am80诱导KLF5脱乙酰化和抑制血管平滑肌细胞增殖的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管平滑肌细胞(vascular smooth muscle cells, VSMC)的增殖和分化受一系列调节因子构成的信号网络所调控。其中转录因子Krüppel样因子5(krüppel-like factor 5, KLF5)通过调节增殖/分化基因的表达活性而影响细胞的增殖活性。有研究显示,人工合成的维甲酸衍生物Am80通过激活其受体RARα而抑制KLF5与RARα相互作用和KLF5的活化,进而解除KLF5对p21基因表达的抑制。然而,Am80是通过何种机制抑制KLF5活性尚不清楚。乙酰化修饰在KLF5活性调节中具有重要意义,但对其在VSMC分化中的作用研究较少。本研究以组蛋白脱乙酰酶(histone deacetylases, HDACs)为切入点,以p21为靶基因,探讨KLF5乙酰化水平改变与其转录激活活性的关系,并揭示其作用机制。方法与结果:
     1 Am80抑制VSMC细胞周期的进程
     用流式细胞术检测细胞周期分布,结果显示,与对照组相比Am80刺激VSMC 24 h后,G0/G1期细胞所占比例上升了13 %,S期细胞比例下降了29 %。两组之间具有显著性差异。说明Am80可诱导细胞周期阻滞。
     2 Am80抑制VSMC增殖
     MTT分析结果显示,Am80刺激细胞12、24、48 h,VSMC增殖活性显著被抑制。与对照组相比,细胞增殖活性分别降低了44 %、35 %、26 %,该结果与细胞周期分析数据具有一致性。
     3 Am80诱导p21蛋白的表达
     为了探讨Am80诱导细胞阻滞的作用机制,我们选用不同浓度Am80刺激细胞24 h,提取总蛋白,观察细胞周期抑制蛋白p21表达的变化,Western blot结果显示,在Am80浓度为0-5μM范围内,随着Am80浓度增加,p21的表达水平呈剂量依赖性的升高,提示Am80可上调p21蛋白表达。
     4 Am80显著抑制球囊损伤诱导的血管内膜增生
     与假手术组相比,球囊内皮剥脱后14天的模型组颈总动脉中膜内的VSMC排列紊乱,内膜呈弥散性增厚,管腔变小,内膜与中膜的厚度比值(I/M)(2.10±0.26)明显高于假手术组(0.18±0.08);Am80组新生内膜的增生程度和I/M比值(0.3±0.11)明显小于模型组(P < 0.05,n=3)。结果表明,Am80可以明显抑制球囊损伤诱导的血管内膜增生。
     5 Am80通过抑制KLF5乙酰化上调p21表达
     为探讨Am80抑制p21表达的分子机制以及KLF5乙酰化水平变化是否在该过程中发挥作用,进行观察了Am80对KLF5乙酰化的影响。用不同浓度Am80(0、1、2、5和10μM)处理VSMC 2 h,提取细胞总蛋白,经抗KLF5抗体免疫沉淀后,用抗赖氨酸抗体进行Western印迹分析,以检测KLF5的乙酰化水平。结果显示,随着Am80浓度的增加,KLF5乙酰化水平逐渐降低,具有明显的剂量依赖关系。
     整体动物实验也证明,与模型组相比,给予Am80的大鼠血管组织中,KLF5乙酰化水平降低。在术后3 d和14 d时,Am80组血管乙酰化KLF5水平分别较模型组下降了17 %和34 %。上述结果在整体水平及细胞水平证实,Am80能抑制KLF5的乙酰化水平。
     6 Am80诱导KLF5与HDAC2相互作用
     HDAC2是调节蛋白质乙酰化修饰的关键酶。为确定HDAC2是否参与Am80诱导的KLF5脱乙酰化过程,本研究观察了KLF5与HDAC2的相互作用。免疫共沉淀分析结果显示,在Am80刺激前后的VSMC中,KLF5均可与HDAC2共沉淀;但是Am80刺激后,KLF5和HDAC2相互作用程度呈剂量依赖性增强,说明Am80能显著促进二者结合。免疫双荧光共定位分析结果进一步证实,在VSMC中KLF5与HDAC2共定位,叠加后的荧光强度随着Am80刺激而增强。给予RARα受体抑制剂Ro 41-5253预处理VSMC,可消除Am80诱导的KLF5与HDAC2相互作用。上述结果表明Am80诱导KLF5脱乙酰基与促进KLF5与HDAC2的相互作用有关。
     7乙酰化的KLF5促进p21启动子活性
     为了确定KLF5是否参与调节p21启动子活性以及与HDAC2相互作用对其转录激活作用的影响,分别将p21启动子指导的报告基因质粒(p21-luc)与KLF5和/或HDAC2表达质粒共转染293A细胞,通过双荧光素酶报告基因检测系统定量分析启动子的活性。结果显示,293A细胞共转染HDAC2和KLF5后,所测得荧光素酶的活性比单独转染KLF5升高了3倍。提示,KLF5与HDAC2对p21基因启动子的激活具有协同效应。为了确定该协同效应是否与KLF5的乙酰化有关,进而构建KLF5乙酰化位点突变(K369R)的表达质粒,并分别将其与乙酰化酶p300表达质粒和p21-luc共转染293A细胞,观察对报告基因活性的影响。结果显示,p300和KLF5表达质粒共转染细胞时,可协同抑制报告基因的表达活性。当KLF5突变体与P300表达质粒共转染时,对p21启动子的协同抑制作用消失。上述结果表明:KLF5的乙酰化抑制p21的表达;KLF5的去乙酰化促进p21的表达。
     结论:
     1 Am80阻滞VSMC细胞周期进程;
     2 Am80抑制VSMC增殖;
     3 Am80通过诱导HDAC2与KLF5的相互作用而促进KLF5的脱乙酰化;
     4 KLF5对p21基因的转录抑制有赖于其乙酰化修饰。
Proliferation and differentiation of vascular smooth muscle cells (VSMC) are governed by a variety of regulatory factors, such as krüppel-like factor 5 (KLF5) that regulates gene expression. Recent study has shown that Am80, a synthetic RARα-specific agonist, removed the inhibitory effect of KLF5 p21 expression via inhibiting the interaction between KLF5 and RARα. Posttranslational modifications, such as acetylation, phosphorylation and ubiquitination, play a critical role in activation of KLF5. In the present studies, we investigated the effect of the interaction between KLF5 and HDAC2 induced by Am80 on p21 transcriptional activation, which may be contributes to the inhibition VSMC proliferation.
     Methods and results:
     1 Am80 blocks cell cycle progression in VSMCs
     The effect of Am80 on cell cycle progression was detected by flow cytometry. The cell population of G0/G1 increased by 13 %, and S phase population displayed a 29 % decrease after treated by Am80, respectively, compared with control group. These results suggest that Am80 blocks progression of cell cycle through the G1 phase to the S phase in VSMCs.
     2 Am80 inhibits proliferation of VSMCs
     The results of MTT assays showed that Am80 (12, 24, 48 h) treatment resulted in a significant reduction of VSMC proliferation in a time-dependent manner. The activity of VSMC proliferation decreased by 44 %, 35 %, and 26 %, respectively, compared with control group.
     3 Am80 induces p21 expression in VSMCs
     To understand the mechanism of Am80 action, the effect of Am80 on the expression of p21 was detected by Western blot analysis. VSMCs were treated with Am80 at different doses (0-5μM) and used to examine the expression of p21. The results showed that the expression of p21 was up-regulated by Am80 in a dose-dependent manner.
     4 Am80 inhibits neointimal hyperplasia induced by balloon injury
     The rats injured with balloon were treatd by Am80, and then the intima to media area (I/M) ratio of carotid arteries was evaluated. The results showed that Am80 significantly reduced neointimal hyperplasia and I/M ratio (P < 0.05).
     5 KLF5 deacetylation induced by Am80 is associated with up-regulation p21 level
     Western blotting showed that Am80 treatment resulted in reduced acetylation of KLF5 in a dose-dependent manner in VSMCs. In vivo, the acetylated-KLF5 level in the Am80-administered group was lower than that in injured groups. These results suggest that Am80 induces the deacetylation of KLF5.
     6 The interaction of HDAC2 with KLF5 induced by Am80 is involved in the deacetylation of KLF5
     To examine whether HDAC2 mediates deacetylation of KLF5 induced by Am80, the interaction of HDAC2 with KLF5 was detected by Co-IP. The results revealed that the interaction between KLF5 and HDAC2 was significantly increased after Am80 treatment.
     7 KLF5 deacetylation activates the activity of p21 promoter
     p21 luciferase reportor analysis showed that a 3-fold increase in the p21 promoter activity was observed when the expression plasmids of KLF5 and HDAC2 were co-transfected. However, KLF5-K369R mutant that is acetylation-deficient plasmid was not able to enhance the promoter activity, suggesting that KLF5 deacetylation by HDAC2 is required for the activation of the p21 promoter.
     Conclusions:
     1 Am80 blocks the cell cycle progression in VSMCs;
     2 Am80 inhibits the proliferation of VSMCs;
     3 Am80 induces the interaction between HDAC2 and KLF5, and subsequently leading to KLF5 deacetylation;
     4 The deacetylation of KLF5 is involved in activation of p21 transcription.
引文
1 Panigada M, Porcellini S, Sutti F, et al. GKLF in thymus epithelium as a developmentally regulated element of thymocyte-stroma cross-talk. Mech Dev, 1999, 81(1-2): 103-113
    2 Schuh R, Aicher W, Gaul U, et al. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Krüppel, a Drosophila segmentation gene. Cell, 1986, 47(6): 1025-1032
    3 Fujiu K, Manabe I, Ishihara A, et al. Synthetic retinoid Am80 suppresses smooth muscle phenotypic modulation and in-stent neointima formation by inhibiting KLF5. Circ Res, 2005, 97(11): 1132-1141.
    4 Geisterfer AA, Peach MJ, Owens GK. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res, 1988, 62(4): 749-756
    5 Schorb W, Peeler TC, Madigan NN, et al. Angiotensin II-induced protein tyrosine phosphorylation in neonatal rat cardiac fibroblasts. J Biol Chem, 1994, 269(30): 19626-19632
    6 Gao D, Niu X, Ning N, et al. Regulation of angiotensin II-induced Krüppel-like factor 5 expression in vascular smooth muscle cells. Biol Pharm Bull, 2006, 29(10): 2004-2008
    7 Ptashne M, Gann AA. Activators and targets. Nature, 1990, 346(6282): 329-331
    8 Zawel L, Reinberg D. Common themes in assembly and function ofeukaryotic transcription complexes. Annu. Rev. Biochem, 1995, 64: 533-561
    9 Roeder RG. The role of general initiation factors in transcription by RNA polymerase II. Trends Biochem Sci, 1996, 21(9): 327-335
    10 Kornberg RD. Eukaryotic transcriptional control. Trends Cell Biol, 1999, 9(12): M46-49
    11 Lemon B, Tjian R. Orchestrated response: a symphony of transcription factors for gene control. Genes Dev, 2000, 14(20): 2551-2569
    12 Meng F, Han M, Zheng B, et al. All-trans retinoic acid increases KLF4 acetylation by inducing HDAC2 phosphorylation and its dissociation from KLF4 in vascular smooth muscle cells. Biochem Biophys Res Commun, 2009, 387(1): 13-18.
    13 Yang WM, Inouye C, Zeng Y, et al. Transcriptional repression by YY1 is mediated by interaction with a mammalian homolog of the yeast global regulator RPD3. Proc Natl Acad Sci USA, 1996, 93(23): 12845-12850
    14 Garrett-Sinha LA, Eberspaecher H, Seldin MF, et al. A gene for a novel zinc-finger protein expressed in differentiated epithelial cells and transiently in certain mesenchymal cells. J Biol Chem, 1996, 271(49): 31384-31390
    15 Turner J, Crossley M. Basic Krüppel-like factor functions within a network of interacting haematopoietic transcription factors. Int J Biochem Cell Biol, 1999, 31(10): 1169-1174
    16 Miyamoto S, Suzuki T, Muto S, et al. Positive and negative regulation of the cardiovascular transcription factor KLF5 by p300 and the oncogenic regulator SET through interaction and acetylation on the DNA-binding domain. Mol Cell Biol, 2003, 23(23): 8528-8541
    17 Zhang XH, Zheng B, Han M, et al. Synthetic retinoid Am80 inhibits interaction of KLF5 with RAR alpha through inducing KLF5 dephosphorylation mediated by the PI3K/Akt signaling in vascular smooth muscle cells. FEBS Lett, 2009, 583(8): 1231-1236
    18 Gregoretti IV, Lee YM, Goodson HV. Molecular evolution of the histonedeacetylase family: functional implications of phylogenetic analysis. J Mol Biol, 2004, 338(1): 17-31
    19 Zhang CL, McKinsey TA, Chang S, et al. ClassⅡhistone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell, 2002, 11(4): 479-488
    20 Harms KL, Chen X. Histone deacetylase 2 modulates p53 transcriptional activities through regulation of p53-DNA binding activity. Cancer Res, 2007, 67(7): 3145-3152
    21 Laherty CD, Yang WM, Sun JM, etal. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell, 1997, 89(3): 349-356
    22 Schmidt DR, Schreiber SL. Molecular association between ATR and two components of the nucleosome remodeling and deacetylating complex, HDAC2 and CHD4. Biochemistry, 1999, 38(44): 14711-14717
    23 Murphy M, Ahn J, Walker KK, et al. Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev, 1999, 13(19): 2490-2501
    24 Liu L, Scolnick DM, Trievel RC, et al. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol, 1999, 19(2): 1202-1209
    25 Matsumura T, Suzuki T, Aizawa K, et al. The deacetylase HDAC1 negatively regulates the cardiovascular transcription factor Krüppel-like factor 5 through direct interaction. J Biol Chem, 2005, 280(13): 12123-12129
    1 Foda HD, George S, Rollo E, et al. Regulation of gelatinases in human airway smooth muscle cells: mechanism of progelatinase A activation. Am J Physiol, 1999, 277(1 PT 1): 174-182
    2 Uzui H, Lee HD, Shimizu H, et al. The role of protein-tyrosine phosphorylation and gelatinase production in the migration and proliferation of smooth muscle cells. Atherosclerosis, 2000, 149(1): 51-59
    3 Rekhter MD. Collagen synthesis in atherosclerosis: too much and not enough. Cardiovasc Res, 1999, 41(2): 376-384
    4 Newby AC, Zaltsman AB. Molecular mechanisms in intimal hyperplasia. J Pathol, 2000, 190(3): 300-309
    5 Vask? A, GoldbergováM, IzakovicováHolláL, et al. A haplotype constituted of four MMP-2 promoter polymorphisms (-1575G/A, -1306C/T, -790T/G and -735C/T) is associated with coronary triple-vessel disease. Matrix Biol. 2004, 22(7): 585-591
    1 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature, 1993, 362(6423): 801-809
    2 Berk BC, Vekshtein V, Gordon HM, et al. Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension, 1989, 13(4): 305-314
    3 Geisterfer AA, Peach MJ, Owens GK. Angiotensin II induces hypertrophy, not hyperplasia, of cultured rat aortic smooth muscle cells. Circ Res, 1988, 62(4): 749-756
    4 Schorb W, Peeler TC, Madigan NN, et al. Angiotensin II-induced protein tyrosine phosphorylation in neonatal rat cardiac fibroblasts. J Biol Chem, 1994, 269(30): 19626-19632
    5 Newby AC, George SJ. Proposed roles for growth factors in mediating smooth muscle proliferation in vascular pathologies. Cardiovasc Res, 1993, 27(7): 1173-1183
    6 Shindo T, Manabe I, Fukushima Y, et al. Krüppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling. NatMed JT-Nature medicine, 2002, 8(8): 856-863
    7 Bhattacharya R, Senbanerjee S, Lin Z, et al. Inhibition of vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis by the Kruppel-like factor KLF2. J Biol Chem JT-The Journal of biological chemistry, 2005, 280(32): 28848-28851
    8 Rowland BD, Bernards R, Peeper DS. The KLF4 tumour suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol JT-Nature cell biology, 2005, 7(11): 1074-1082
    9 Parmar KM, Larman HB, Dai G, et al. Integration of flow-dependent endothelial phenotypes by Krüppel-like factor 2. J Clin Invest JT-The Journal of clinical investigation, 2006, 116(1): 49-58
    10 SenBanerjee S, Lin Z, Atkins GB, et al. KLF2 is a novel transcriptional regulator of endothelial proinflammatory activation. J Exp Med JT-The Journal of experimental medicine, 2004, 199(10): 1305-1315
    11 Gray S, Wang B, Orihuela Y, et al. Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab JT-Cell metabolism, 2007, 5(4): 305-312
    12 Feinberg MW, Cao Z, Wara AK, et al. Krüppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J Biol Chem JT-The Journal of biological chemistry, 2005, 280(46): 38247-38258
    13 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell JT-Cell, 2006, 126(4): 663-676
    14 Jackle H, Rosenberg UB, Preiss A, et al. Molecular analysis of Krüppel, a segmentation gene of Drosophila melanogaster. Cold Spring Harb Symp Quant Biol, 1985, 50: 465-473
    15 Haldar SM, Ibrahim OA, Jain MK. Krüppel-like factors (KLFs) in muscle biology. J Mol Cell Cardiol, 2007, 43(1): 1-10
    16 Turner J, Crossley M. Basic Krüppel-like factor functions within anetwork of interacting haematopoietic transcription factors. Int J Biochem Cell Biol, 1999, 31(10): 1169-1174
    17 Dang DT, Zhao W, Mahatan CS, et al. Opposing effects of Krüppel-like factor 4 (gut-enriched Krüppel-like factor) and Krüppel-like factor 5 (intestinal-enriched Krüppel-like factor) on the promoter of the Krüppel-like factor 4 gene. Nucleic Acids Res, 2002, 30(13): 2736-2741
    18 Asano H, Li XS, Stamatoyannopoulos G. FKLF-2: a novel Krüppel-like transcriptional factor that activates globin and other erythroid lineage genes. Blood JT-Blood, 2000, 95(11): 3578-3584
    19 Ellenrieder V, Zhang JS, Kaczynski J, et al. Signaling disrupts mSin3A binding to the Mad1-like Sin3-interacting domain of TIEG2, an Sp1-like repressor. EMBO J JT-The EMBO journal, 2002, 21(10): 2451-2460
    20 Kojima S, Kobayashi A, Gotoh O, et al. Transcriptional activation domain of human BTEB2, a GC box-binding factor. J Biochem JT -Journal of biochemistry, 1997, 121(2): 389-396
    21 Sogawa K, Imataka H, Yamasaki Y, et al. cDNA cloning and transcriptional properties of a novel GC box-binding protein, BTEB2. Nucleic Acids Res JT-Nucleic acids research, 1993, 21(7): 1527-1532
    22 Nagai R, Suzuki T, Aizawa K, et al. Significance of the transcription factor KLF5 in cardiovascular remodeling. J Thromb Haemost, 2005, 3(8): 1569-1576
    23 Hoshino Y, Kurabayashi M, Kanda T, et al. Regulated expression of the BTEB2 transcription factor in vascular smooth muscle cells: analysis of developmental and pathological expression profiles shows implications as a predictive factor for restenosis. Circulation JT-Circulation, 2000, 102(20): 2528-2534
    24 Sakamoto H, Sakamaki T, Kanda T, et al. Smooth muscle cell outgrowth from coronary atherectomy specimens in vitro is associated with less time to restenosis and expression of a key Transcriptionfactor KLF5/BTEB2. Cardiology JT-Cardiology, 2003, 100(2): 80-85
    25 Kawai-Kowase K, Kurabayashi M, Hoshino Y, et al. Transcriptional activation of the zinc finger transcription factor BTEB2 gene by Egr-1 through mitogen-activated protein kinase pathways in vascular smooth muscle cells. Circ Res JT-Circulation research, 1999, 85(9): 787-795
    26 Sun R, Chen X, Yang VW. Intestinal-enriched Kruppel-like factor (Krüppel-like factor 5) is a positive regulator of cellular proliferation. J Biol Chem JT-The Journal of biological chemistry, 2001, 276(10): 6897-6900
    27 Miyamoto S, Suzuki T, Muto S, et al. Positive and negative regulation of the cardiovascular transcription factor KLF5 by p300 and the oncogenic regulator SET through interaction and acetylation on the DNA-binding domain. Mol Cell Biol JT-Molecular and cellular biology, 2003, 23(23): 8528-8541
    28 Seo SB, McNamara P, Heo S, et al. Regulation of histone acetylation and transcription by INHAT, a human cellular complex containing the set oncoprotein. Cell JT-Cell, 2001, 104(1): 119-130
    29 Wada Y, Suzuki J, Tsukioka K, et al. Expression of the transcriptional factor egr-1/BTEB2 in cardiac xenograft vascular remodeling. Transplant Proc JT-Transplantation proceedings, 2000, 32(5): 1089-1091
    30 Ogata T, Nagai R, Kurabayashi M, et al. Inducible expression of basic transcription factor binding protein 2 plays a potential role in the development of the allograft vascular disease. J Heart Lung Transplant. 2001, 20(2):228
    31 Ogata T, Kurabayashi M, Hoshino Y, et al. Inducible expression of basic transcription element-binding protein 2 in proliferating smooth muscle cells at the vascular anastomotic stricture. J Thorac Cardiovasc Surg JT-The Journal of thoracic and cardiovascular surgery, 2000, 119(5): 983-989
    32 Shindo T, Manabe I, Fukushima Y, et al. Krüppel-like zinc-finger transcription factor KLF5/BTEB2 is a target for angiotensin II signaling and an essential regulator of cardiovascular remodeling. Nat Med JT-Nature medicine, 2002, 8(8): 856-863
    33 Kawai-Kowase K, Kurabayashi M, Hoshino Y, et al. Transcriptional activation of the zinc finger transcription factor BTEB2 gene by Egr-1 through mitogen-activated protein kinase pathways in vascular smooth muscle cells. Circ Res JT-Circulation research, 1999, 85(9): 787-795
    34 Gao D, Niu X, Ning N, et al. Regulation of angiotensin II-induced Krüppel-like factor 5 expression in vascular smooth muscle cells. Biol Pharm Bull, 2006, 29(10): 2004-2008
    35 Manabe I, Kurabayashi M, Shimomura Y, et al. Isolation of the embryonic form of smooth muscle myosin heavy chain (SMemb/NMHC-B) gene and characterization of its 5'-flanking region. Biochem Biophys Res Commun JT-Biochemical and biophysical research communications, 1997, 239(2): 598-605
    36 Hu WY, Fukuda N, Kishioka H, et al. Hammerhead ribozyme targeting human platelet-derived growth factor A-chain mRNA inhibited the proliferation of human vascular smooth muscle cells. Atherosclerosis, 2001, 158(2): 321-329
    37 Aizawa K, Suzuki T, Kada N, et al. Regulation of platelet-derived growth factor-A chain by Kruppel-like factor 5: new pathway of cooperative activation with nuclear factor-kappaB. J Biol Chem, 2004, 279(1): 70-76
    38 Khachigian LM, Williams AJ, Collins T. Interplay of Sp1 and Egr-1 in the proximal platelet-derived growth factor A-chain promoter in cultured vascular endothelial cells. J Biol Chem, 1995, 270(46): 27679-27686
    39 Delahay RM, Knutton S, Shaw RK, et al. The deacetylase HDAC1 negatively regulates the cardiovascular transcription factorKrüppel-like factor 5 through direct interaction. J Biol Chem, 1999, 274(13): 35969-35974
    40 Zhang Z, Teng CT. Phosphorylation of Krüppel-like factor 5 (KLF5/IKLF) at the CBP interaction region enhances its transactivation function. Nucleic Acids Res, 2003, 31(8): 2196-2208
    41 Yang Y, Goldstein BG, Nakagawa H, et al. Krüppel-like factor 5 activates MEK/ERK signaling via EGFR in primary squamous epithelial cells. FASEB J, 2007, 21(2): 543-550
    42 Boehm M, Nabel EG. The cell cycle and cardiovascular diseases. Prog Cell Cycle Res 2003, 5: 19-30
    43 Quasnichka H, Slater SC, Beeching CA, et al. Regulation of smooth muscle cell proliferation by beta-catenin/T-cell factor signaling involves modulation of cyclin D1 and p21 expression. Circ Res, 2006, 99(12): 1329-1337
    44 Watanabe N, Kurabayashi M, Shimomura Y, et al. BTEB2, a Krüppel-like transcription factor, regulates expression of the SMemb/Nonmuscle myosin heavy chain B (SMemb/NMHC-B) gene. Circ Res, 1999, 85(2): 182-191
    45 Lasorella A, Iavarone A, Israel MA. Id2 specifically alters regulation of the cell cycle by tumor suppressor proteins. Mol Cell Biol, 1996, 16(6): 2570-2578
    46 Matsumura ME, Lobe DR, McNamara CA. Contribution of the helix-loop-helix factor Id2 to regulation of vascular smooth muscle cell proliferation. J Biol Chem, 2002, 277(9): 7293-7297

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700