脓毒症性急性肺损伤大鼠细胞因子调控变化及复方清下汤对其影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的:脓毒症多继发于严重感染、创伤、休克和大手术后,是由于局部或全身感染等因素所导致的全身炎症反应综合症( systemic inflammatory response syndrome,SIRS)。发展到晚期的脓毒性休克和多器官功能障碍综合征(multiple organs dysfunction syndrom, MODS)是该症的主要死亡原因,也是临床上危重病中最常见的死亡原因。脓毒症病情进展迅速,是临床医学中一种难治的综合征。目前关于脓毒症的研究多集中于对某些脏器以及对不同时期各种炎性因子的研究。
     脓毒症在创伤和感染等应激状态下,肠道的屏障功能受损,肠道内大量的细菌和内毒素经门静脉及淋巴系统侵入血液循环,造成肠源性感染和毒性网络,引起全身多器官功能衰竭。急性肺损伤(acute lung injury,ALI)发生早、病情严重,常是病人死亡的直接原因。ALI是以通透性肺水肿为特征的一种临床综合征,其严重阶段即是急性呼吸窘迫综合征(ARDS);ARDS是多种原因引起的肺部失控性炎症反应的结果,而革兰氏阴性杆菌内毒素(LPS)介导炎症细胞产生释放大量细胞因子和炎性介质在ARDS的发病过程中起关键性作用,但ARDS发病机制尤其是肺水肿的形成机制仍未阐明清楚。
     肿瘤坏死因子-α(TNF-α)、白介素-1(IL-1)、白介素-6(IL-6)、细胞间粘附分子-1(intercellular adhesion molecule,ICAM-1)、水通道蛋白(AQPs)、丝裂原活化蛋白激酶(MAPK)等诸因素均可能与水肿的发生有关,但是其内在相互关系及调控并不完全清楚。
     肿瘤坏死因子(tumor necrosis factor,TNF),包括TNF-α和TNF-β。TNF-α又称为恶液质因子,是介导内毒素休克、SIRS、急性肺损伤(ALI)和多器官功能障碍综合征(MODS)的重要起始因子,可诱导其它多种因子的产生,这些促炎症细胞因子之间相互作用可形成许多正反馈环,导致所谓炎症“级联效应”的发生。
     细胞间粘附分子-1(intercellular adhesion molecule , ICAM-1)又名CD54。研究发现其参与许多炎症性疾病过程。其可能介导肺微血管内皮细胞-多形核粒细胞(PMVEC-PMN)的粘附,导致PMN肺微血管内的扣押,微血栓形成和血管内皮损伤,引起血管通透性增加,形成肺水肿,进而导致ALI。
     水通道蛋白(AQPs),其主要功能是介导自由水的跨细胞膜转运。肺组织中主要有4种水通道蛋白的表达,其中AQP-l主要定位于肺微血管内皮,对于维持血管与间质之间的水运动平衡意义重大。
     MAPK是蛋白激酶家族成员,其中p38通路与炎症反应的调控密切相关,在许多细胞因子如信号转导中起重要作用。研究显示p38可促进ICAM-1的表达。p38可由TNF-α、IL-1等诱导刺激而激活,而TNF-α、IL-1、IL-6以及IL-8又是p38依赖性的。
     脓毒症过程所引起的急性肺损伤(ALI)与上述基因表达调控的相关性研究较少,并且未见在同一感染模型下对上述基因表达调控的平行研究,亦未见复方清下汤的相关治疗性研究的报道。本课题拟以盲肠结扎穿孔导致大肠杆菌腹膜炎,进而诱发脓毒症肺损伤为模型,检测炎性反应时上述基因的调控变化,探讨肺水肿的形成机制,调控机制及复方清下汤、p38抑制剂对肺损伤的作用,以期为脓毒症以及多器官功能衰竭综合症(MODS)的防治提出可能的新途径。
     方法
     实验一:将健康SD大鼠随机分为4组,每组10只:假手术组(SHAM组), SHAM组只翻动盲肠,不做其他处理;脓毒症肺损伤组(模型组),以盲肠结扎穿孔诱发ALI模型;盲肠结扎穿孔+复方清下汤组(造模后立即灌胃给药,造模后8小时再次灌胃1次,剂量:10 ml/kg);盲肠结扎穿孔+头孢派酮舒巴坦组(抗生素舒普深)(造模后立即静脉注射1次,造模后8小时再次静脉注射1次,剂量:0.2g/kg)造模24h后收集标本。分别观察大鼠的一般状态,肺组织匀浆MPO的测定,留取下腔静脉血清进行TNF-ɑ、IL-1、IL-6的测定。镜下观察肺组织病理形态学改变,测量肺湿/干比值的变化。
     实验二:将健康SD大鼠随即分为4组,每组10只:(1)假手术组(SHAM组),SHAM组只翻动盲肠,不做其他处理;(2)脓毒症肺损伤组(模型组),以盲肠结扎穿孔诱发ALI模型;(3)盲肠结扎穿孔+复方清下汤组(造模后立即灌胃给药,造模后8小时再次灌胃1次,剂量:10 ml/kg);(4)盲肠结扎穿孔+头孢派酮舒巴坦(抗生素舒普深)(造模后立即静脉注射1次,造模后8小时再次静脉注射1次,剂量:0.2 g/kg)造模24h后收集标本。应用免疫组织化学和western blot方法检测肺组织中TNF-α、IL-1、IL-6、AQP-l、ICAM-1以及p38的表达,RT-PCR法检测肺组织上述蛋白mRNA表达。
     实验三:将健康SD大鼠随机分为4组,每组10只:(1)假手术组(SHAM组), SHAM组只翻动盲肠,不做其他处理; (2)脓毒症肺损伤组(模型组),以盲肠结扎穿孔诱发ALI模型; (3)盲肠结扎穿孔+复方清下汤组(造模后立即灌胃给药,造模后8小时再次灌胃1次,剂量:10 ml/kg);(4)p38抑制剂处理组,在动物模型组制备前30分钟灌胃给予SB203580( 12.5 mg/kg)。应用免疫组织化学和western blot法方法检测肺组织中TNF-α、IL-1、IL-6、ICAM-1的表达。采用RT-PCR法检测肺组织上述蛋白mRNA表达。
     结果
     1.实验一:与SHAM组比较,模型组MPO、TNF-α、IL-1、IL-6水平明显升高(P<0.01),肺间质和肺泡内水肿,伴大量红细胞渗出(出血)和纤维素沉积,肺泡间隔毛细血管内皮细胞高度肿胀。肺湿/干比值明显增加(P<0.01),抗生素及中药处理组与模型组比较, MPO、TNF-α、白介素-1(IL-1)、白介素-6(IL-6)水平明显降低(P<0.01),肺湿/干比值明显降低(P<0.01),肺组织镜下表现:抗生素处理组、中药处理组较模型组,肺泡间隔变窄,毛细血管内皮细胞肿胀减轻,出血明显减少,纤维素渗出相对减少。
     2.实验二:与SHAM组比较,模型组应用免疫组织化学及western blot法检测TNF-α、白介素-1(IL-1)、白介素-6(IL-6)、ICAM-1以及p38的表达均显著升高(P<0.01),而AQP-l则表达明显降低(P<0.01)、RT-PCR法检测mRNA转录水平与蛋白表达结果基本一致。抗生素及中药处理组与模型组比较,上述细胞因子除AQP-l外的表达明显降低(P<0.05),而AQPl表达上调(P<0.01),低于假手术组,抗生素及中药处理组两组检测数据相近。上述结果提示中药组可能通过抑制某种核心细胞因子的表达,继而抑制其他细胞因子的过度表达来减轻脓毒症肺损伤。
     3.实验三:与SHAM组比较,模型组应用免疫组织化学方法、RT-PCR法及western blot法检测TNF-α、L-1、IL-6、ICAM-1的水平表达明显升高。而中药处理组及p38抑制剂组与模型组比较,上述细胞因子的表达则明显降低(P<0.05),此两组检测数据相近。
     结论
     脓毒症在创伤和感染等应激状态下,肠道的屏障功能受损,肠道内大量的细菌和内毒素经门静脉及淋巴系统侵入血液循环,造成肠源性感染和毒性网络,引起全身多器官功能衰竭,急性肺损伤(acute lung injury,ALI)发生早、病情严重,常是病人死亡的直接原因。ALI是以通透性肺水肿为特征的一种临床综合征,其严重阶段即是急性呼吸窘迫综合征(ARDS); ARDS是多种原因引起的肺部失控性炎症反应的结果,革兰氏阴性杆菌内毒素(LPS)介导炎症细胞释放大量细胞因子和炎性介质在ARDS的发病过程中起关键性作用。TNF-α是机体受到有害刺激后最初分泌的细胞因子,它可诱导其它多种因子的产生,这些促炎症细胞因子之间相互作用可形成许多正反馈环,导致所谓炎症“级联效应”的发生,但其内在相互关系及调控可能与某种核心细胞因子有关,它可联系上下游的靶基因。
     1.实验一证实脓毒症大鼠肺损伤时几种主要的炎性细胞因子过度表达的情况,并从病理学角度充分证实。证实了炎性介质的过度表达是造成脓毒症肺损伤的重要原因。经复方清下汤处理的动物模型肺损伤得以减轻。
     2.脓毒症诱发ALI的内在机制相当复杂,本实验通过脓毒症大鼠肺损伤模型的建立,应用免疫组织化学、RT-PCR以及western blot等手段,通过测定各组细胞因子灰度值,证实了脓毒血症大鼠肺损伤时几种主要的炎性细胞因子过度表达和某些蛋白表达的情况,并从分子生物学水平证实炎性介质TNF-α、IL-1、IL-6、ICAM-1的过度表达和p38通路的活化是造成脓毒症肺损伤的重要原因,而AQP-l的分泌表达则具有相反效果。经复方清下汤处理的动物模型肺损伤得以减轻,提示我们是否可以通过抑制某种介导多细胞因子过度表达的某种信号通路,为治疗脓毒血症大鼠肺损伤提供一个可能的新的手段。
     3.在实验一、二基础上,实验三通过脓毒症大鼠肺损伤模型的建立,应用免疫组织化学、RT-PCR以及western blot等手段,通过测定各组细胞因子灰度值,证实复方清下汤和p38抑制剂处理的动物模型肺损伤得以减轻,炎性介质TNF-α、IL-1、IL-6、ICAM-1的表达下调。提示脓毒症大鼠肺损伤时处于上下游中心环节的p38通路过度表达可能是导致某些炎性因子过度表达的主要原因之一。中药复方清下汤可能在某种水平上通过对p38的抑制,来抑制下游靶基因的表达从而达到减轻脓毒症肺损伤的效果
Background and objective: The systemic inflammation response syndrome (SIRS) is defined as the host response to infection and other forms of tissue injury. When SIRS is attributed to an identifiable infectious process, it is termed sepsis. A wide range of stress such as trauma and infection may cause injury of bowel barrier. Bacteria and endotoxin thus enter blood circulation through portal vein and lymph system resulting in enterogenous infection and toxic network. The majority of patients with SIRS or sepsis who fail to survive may present with septic shock and multiple organ dysfunction syndrome (MODS), representing the leading cause of death in clinical emergency. The most common manifestation of MODS is acute lung injury (ALI), which may progress to acute respiratory distress syndrome (ARDS) in the subset of patients at the severe end of the spectrum. ARDS is characterized by“severe hypoxemia, diffuse bilateral pulmonary inflitrates, and decreased lung compliance.
     Polymorphonuclear leukocytes (PMNs) have been recognized as important contributors to the pathogenesis of ARDS. In respond to SIRS, leukocytes become activated in pulmonary microcirculation and migrate to pulmonary interstitium and finally in the alveolar space. The infiltration of PMNs results in diffuse alveolar damage and capillary leak and edema formation. These progress are mediated by early-response cytokines, cell surface adhension molecules, and chemotactic molecules, chemokines. It is now accepted that inlammatory mediators plays a key role in the pathogenesis of ARDS. These mediators include tumor necrosis factor (TNF)-α, interleukins (e.g. IL-1,6), adehension molecules (e.g. intercellular adhension molecule-1/ICAM-1), mitogen-activated protein kinases (MAPKs), aquaporin (AQPs), et al.
     TNF include TNF-αand TNF-β. TNF-αis also called“cachectin”, which represents as an improtant initial factor mediating septic shock, SIRS, ALI and MODS. It can induce formation of downstream proinflammatory cytokines that produce many cascade feedback..
     ICAM-1, also called CD54, involves in inflmmatory process via mediating adhesion of PMVEC-PMN which results in accumulation of PMN in the pulmonary microcirculation, formation of microthrombus and injury of vascular endothelium. These process lead to increase in vessel permeability and pulmonary edema and ALI develops.
     AQPs involve in transmembrane transport of free water. There are four types of AQPs in lung tissue, among which AQP-1 is located in the microvessel endothelium and plays an important role in maintaining water balance between vessel and interstitium.
     MAPK is one member of protein kinase family and is composed of three major groups: the extracellular regulated kinases (ERKs), the C-Jun N-terminal Kinases (JNKs) and the p38 MAPKs. The p38 MAPK kinase pathway shows close relationship with inflammatory reaction. Research reveal that p38 can promote expression of ICAM-1. It is activated in response to cytokines such as TNF-α, IL-1 and so on. Simultaneously, TNF-αand IL-1, 6, 8 are p38-dependent.
     Although more attention are paid to the pathophysiology of these mediators, the interaction among them and their gene modulation in the development of ALI due to sepsis still need to be elucidated. This research uses ALI animal model due to sepsis, which was established by intestinal perforation-induced peritonitis after cecum ligation. The pathogenesis and gene modulation mechanisms of lung edema were investigated via measuring the upmentioned gene expression in the inflammatory process. Furthermore, there is no research about the role of traditional Chinese medicine FU FANG QING XIA TANG (FFQX) in the pathophysiology of ALI. The mechenisms of FFQX as well as inhibitor of p38 were explored to reveal a new method for the preventation and treatment of sepsis and MODS.
     Methods
     Experiment 1. SD rats were divided into four groups: SHAM group (n=10) : the rats didn’t undergo any operation; ALI group (n=10): the cecum were ligated and produec intestinal perforation and induce ALI; FFQX group (n=10): FFQX (10mg/kg) were administrated by lavage immediately and 8 hours after formation of ALI respectively; antibiotics group (ALI+ Cefoperazone-Sulbactam, pfizer, n=10): Cefoperazone-Sulbactam (0.2g/Kg) were administrated by intravenous injection immediately and 8 hours after formation of ALI respectively. Specimen were collected 24 hours after ALI. Evaluate common condition of rats. Myeloperoxidase (MPO) were detected in homogenate from lung tissue. Serum TNF-α, IL-1 and IL-6 were measured from blood sample of inferior vena cava. Observe pathologic changes in lung tissue. Calculate the ratio of lung wet weight to dry weight (W/D).
     Experiment 2: Expression of TNF-α, IL-1 and IL-6, AQP-1, ICAM-1 and p38 in lung tissue were measured via immunohistochemistry and Western blotting, respectively. RT-PCR were performed to measure mRNA of these mediators.
     Experiment 3: p38I group (p38 inhibitor administration group, n=10): p38 inhibitor SB203580 (12.5 mg/Kg) were administrated by lavage 30minutes before the preparation of ALI animal model.
     Results
     1. In Experiment 1, the level of serum TNF-α, IL-1 and IL-6 and MPO in homogenate were significantly increased in ALI group compared with SHAM group (p<0.01). Pulmonary interstitial and intra-alveolar edema with exudate of RBCs and deposit of fibrin were seen. Endothelial cell of alveolar septum capillaries were obviously swollen. The ratio of W/D in ALI group is higher than that in SHAM group (p<0.01). Compared with ALI group, the level of serum TNF-α, IL-1 and IL-6 and MPO in homogenate were significantly decreased and the ratio of W/D is lower in FFQX group and antibiotics group (p<0.01 each). Narrowed alveolar septum, slight endothelial cell swelling and decreased bleeding and exudate can be seen in both FFQX group and antibiotics group.
     2. In Experiment 2, immunohistochemistry and Western blotting revealed the increased expression of TNF-α, IL-1 and IL-6, AQP-1, ICAM-1 and p38 in ALI group compared with SHAM group (p<0.01). The expression of TNF-α, IL-1 and IL-6, AQP-1, ICAM-1 and p38 in mRNA transcription level showed coincident results with protein level. The protein and mRNA expression of these upmentioned cytokines droped significantly in FFQX group and antibiotics group compared with ALI group (p<0.01 each) although there were no obvious difference between FFQX group and antibiotics group. The results suggest FFQX may inhibit expression of certain key cytokines to relieve lung injury due to sepsis.
     3. In Experiment 3, the protein and mRNA expression of these upmentioned cytokines droped significantly in FFQX group and p38I group compared with ALI group (p<0.01 each) and there were no significant difference between FFQX group and p38I group. The results suggest FFQX may inhibit certain procedure of p38 pathway to relieve lung injury due to sepsis.
     Conclusions
     Our research revealed that overexpression of several major inflammatory factors such as TNF-α, IL-1 and IL-6 and activation of p38 MAPK kinase pathway in sepsis-induced ALI rat model may be the result of sepsis-induced ALI. However, AQP-1 had different effects from TNF-α, IL-1 and IL-6 in pathogenesis of ALI.
     FFQX can decrease the secretion of the several cytokines,also can alleviate the extent of sepsis-induced acute lung injury . And the relief of ALI after administration of FFQX and inhibitor of p38 suggested that specific inhibitors of p38 pathway may alleviate sepsis-induced lung injury. FFQX may inhibit p38 pathway which mediated overexpression of certain inflammatory factors. The use of FFQX can provide a new method for treating this disease.
引文
1. Weinacker AB, Vaszar LT. Acute respiratory distress syndrome: physiology and new management strategies. Annu Rev Med. 2001; 52:221-37.
    2. Gonzalez RJ, Moore EE, Ciesla DJ, Neto JR, Biffl WL, Silliman CC. Hypero- smolarity abrogates neutrophil cytotoxicity provoked by post-shock mesenteric lymph. Shock. 2002 Jul; 18(1):29-32.
    3. Chopra M, Reuben JS, Sharma AC. Acute lung injury:apoptosis and signaling mechanisms. Exp Biol Med (Maywood). 2009 Apr; 234(4):361-71.
    4. Jordan JR, Moore EE, Sarin EL, Damle SS, Kashuk SB, Silliman CC, Banerjee A. Arachidonic acid in postshock mesenteric lymph induces pulmonary synthesis of leukotriene B4. J Appl Physiol. 2008 Apr; 104(4):1161-6.
    5. Tanita T, Song C, Kubo H, Hoshikawa Y, Ueda S, Fujimura S. Superoxide possibly produced in endothelial cells mediates the neutrophil-induced lung injury. Ann Thorac Surg. 2000 Feb; 69(2):402-7
    6. Bhatia M, Saluja AK, Hofbauer B, Lee HS, Frossard JL, Steer ML. The effects of neutrophil depletion on a completely noninvasive model of acute pancreatitis- associated lung injury. Int J Pancreatol. 1998 Oct; 24(2):77-83.
    7. Nolan B, Collette H, Baker S, Duffy A, De M, Miller C, Bankey P. Inhibition of neutrophil apoptosis after severe trauma is NFkappabeta dependent. J Trauma. 2000 Apr; 48(4):599-604; discussion 604-5.
    8. Gill SS, Suri SS, Janardhan KS, Caldwell S, Duke T, Singh B. Role of pulmonary intravascular macrophages in endotoxin-induced lung inflammation and mortality in a rat model. Respir Res. 2008 Oct 24; 9:69.
    9. Lomas JL, Chung CS, Grutkoski PS, LeBlanc BW, Lavigne L, Reichner J, Gregory SH, Doughty LA, Cioffi WG, Ayala A. Differential effects of macroph- age inflammatory chemokine-2 and keratinocyte-derived chemokine on hemorr- hage-induced neutrophil priming for lung inflammation: assessment by adoptive cells transfer in mice. Shock. 2003 Apr; 19(4):358-65.
    10. Lentsch AB, Czermak BJ, Bless NM, Van Rooijen N, Ward PA. Essential role of alveolar macrophages in intrapulmonary activation of NF-kappaB. Am J Respir Cell Mol Biol. 1999 Apr; 20(4):692-8.
    11.程石,何兰光,张佳林。肺泡巨噬细胞活化在急性坏死性胰腺炎大鼠肺损伤中的作用。中华外科杂志。2002;40(8):609-612。
    12. Brahmbhatt S, Gupta A, Sharma AC. Bigendothelin-1 (1-21) fragment during early sepsis modulates tau, p38-MAPK phosphorylation and nitric oxide synthase activation. Mol Cell Biochem. 2005 Mar; 271(1-2):225-37.
    13.陈辉,林建东,林财珠,杨锡馨。大鼠内毒素休克肺ET-1mRNA和bcl-2的表达及山莨菪碱、地塞米松对肺的保护作用。福建医科大学学报。2000;34(3):218-220。
    14. Farley KS, Wang LF, Law C, Mehta S. Alveolar macrophage inducible nitric oxide synthase-dependent pulmonary microvascular endothelial cell septic barrier dysfunction. Microvasc Res. 2008 Nov; 76(3):208-16.
    15. Cheng D, Tian W, Chen W, Xiao X. Expression of adrenomedullin and its receptor in lungs of rats with hypoxic pulmonary hypertension. Chin Med J (Engl). 2002 Dec; 115(12):1806-8.
    16. Beck GCh, Yard BA, Schulte J, Haak M, van Ackern K, van der Woude FJ, Kaszkin M. Secreted phospholipases A2 induce the expression of chemokines in microvascular endothelium. Biochem Biophys Res Commun. 2003 Jan 17; 300 (3):731-7.
    17. Abraham E, Carmody A, Shenkar R, Arcaroli J. Neutrophils as early immunologic effectors in hemorrhage- or endotoxemia-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2000 Dec; 279(6):L1137-45.
    18. Song Y, Ao L, Calkins CM, Raeburn CD, Harken AH, Meng X. Differential cardiopulmonary recruitment of neutrophils during hemorrhagic shock: a role for ICAM-1? Shock. 2001 Dec; 16(6):444-8.
    19. Mirshafiey A, Mohsenzadegan M. The role of reactive oxygen species in immunopathogenesis of rheumatoid arthritis. Iran J Allergy Asthma Immunol. 2008 Dec; 7(4):195-202.
    20. Bentrem DJ, Joehl RJ. Pancreas: healing response in critical illness. Crit Care Med. 2003 Aug; 31(8 Suppl):S582-9.
    21. Xie GQ, Jiang JX, Chen YH, Liu DW, Zhu PF, Wang ZG. Induction of acute hepatic injury by endotoxin in mice. Hepatobiliary Pancreat Dis Int. 2002 Nov; 1(4):558-64.
    22. Kim GY, Roh SI, Park SK, Ahn SC, Oh YH, Lee JD, Park YM. Alleviation of experimental septic shock in mice by acidic polysaccharide isolated from the medicinal mushroom Phellinus linteus. Biol Pharm Bull. 2003 Oct; 26(10): 1418- 23.
    23. Aasen AO, Wang JE. Mediator responses in surgical infections. Surg Infect (Larchmt). 2006; 7 Suppl 2:S3-4.
    24. Ryan AJ, McCoy DM, McGowan SE, Salome RG, Mallampalli RK. Alveolar sphingolipids generated in response to TNF-alpha modifies surfactant biophysical activity. J Appl Physiol. 2003 Jan; 94(1):253-8.
    25. Johnston CJ, Oberd?rster G, Gelein R, Finkelstein JN. Endotoxin potentiates ozone-induced pulmonary chemokine and inflammatory responses. Exp Lung Res. 2002 Sep; 28(6):419-33.
    26. Hattar K, Fink L, Fietzner K, Himmel B, Grimminger F, Seeger W, Sibelius U. Cell density regulates neutrophil IL-8 synthesis: role of IL-1 receptor antagonist and soluble TNF receptors. J Immunol. 2001 May 15; 166(10):6287-93.
    27.罗显荣,伍伟玲,王琳,叶小群,张丹。急性呼吸窘迫综合征患者血清和支气管肺泡灌洗液中白介素-1β的变化。中国危重病急救医学,2003,15(6):365-366。
    28. Yoshinari D, Takeyoshi I, Koibuchi Y, Matsumoto K, Kawashima Y, Koyama T, Ohwada S, Morishita Y. Effects of a dual inhibitor of tumor necrosis factor-alpha and interleukin-1 on lipopolysaccharide-induced lung injury in rats: involvement of the p38 mitogen-activated protein kinase pathway. Crit Care Med. 2001 Mar; 29(3):628-34.
    29. Mayer J, Rau B, Gansauge F, Beger HG. Inflammatory mediators in human acute pancreatitis: clinical and pathophysiological implications. Gut. 2000 Oct; 47 (4):546-52.
    30. Oda J, Ivatury RR, Blocher CR, Malhotra AJ, Sugerman HJ. Amplified cytokine response and lung injury by sequential hemorrhagic shock and abdominal compartment syndrome in a laboratory model of ischemia-reperfusion. J Trauma. 2002 Apr; 52(4):625-31; discussion 632.
    31. Joost JO, Chemokine RH. Medical Immunology. 10thed. New York : McGraw-Hill. In : Parslow TG, Stites DP, Terr AL, 2002,167-171.
    32. Aggarwal A, Baker CS, Evans TW, Haslam PL. G-CSF and IL-8 but not GM-CSF correlate with severity of pulmonary neutrophilia in acute respiratory distress syndrome. Eur Respir J. 2000 May; 15(5):895-901.
    33. Mueller M, Stamme C, Draing C, Hartung T, Seydel U, Schromm AB. Cell activation of human macrophages by lipoteichoic acid is strongly attenuated by lipopolysaccharide-binding protein. J Biol Chem. 2006 Oct 20; 281(42): 31448- 56.
    34. Smith LS, Kajikawa O, Elson G, Wick M, Mongovin S, Kosco-Vilbois M, Martin TR, Frevert CW. Effect of Toll-like receptor 4 blockade on pulmonary inflamma- tion caused by mechanical ventilation and bacterial endotoxin. Exp Lung Res. 2008 Jun; 34(5):225-43.
    35. Laffon M, Pittet JF, Modelska K, Matthay MA, Young DM. Interleukin-8 mediates injury from smoke inhalation to both the lung endothelial and the alveolar epithelial barriers in rabbits. Am J Respir Crit Care Med. 1999 Nov; 160(5 Pt 1):1443-9.
    36. Ou XM, Wang BD, Wen FQ, Feng YL, Huang XY, Xiao J. Simvastatin attenuates lipopolysaccharide-induced airway mucus hypersecretion in rats. Chin Med J (Engl). 2008 Sep 5; 121(17):1680-7.
    37. Amat M, Barcons M, Mancebo J, Mateo J, Oliver A, Mayoral JF, Fontcuberta J, Vila L. Evolution of leukotriene B4, peptide leukotrienes, and interleukin-8 plasma concentrations in patients at risk of acute respiratory distress syndrome and with acute respiratory distress syndrome: mortality prognostic study. Crit Care Med. 2000 Jan; 28(1):57-62.
    38. Osman MO, Kristensen JU, Jacobsen NO, Lausten SB, Deleuran B, Deleuran M, Gesser B, Matsushima K, Larsen CG, Jensen SL. A monoclonal anti-interleukin 8 antibody (WS-4) inhibits cytokine response and acute lung injury in experimental severe acute necrotising pancreatitis in rabbits. Gut. 1998 Aug; 43(2):232-9.
    39. Goodman RB, Pugin J, Lee JS, Matthay MA. Cytokine-mediated inflammation in acute lung injury. Cytokine Growth Factor Rev. 2003 Dec; 14(6):523-35.
    40. Cuzzocrea S, Mazzon E, Dugo L, Serraino I, Di Paola R, Genovese T, De Sarro A, Caputi AP. Absence of endogenous interleukin-10 enhances the evolution of acute lung injury. Eur Cytokine Netw. 2002 Jul-Sep; 13(3):285-97.
    41. Inoue G. Effect of interleukin-10 (IL-10) on experimental LPS-induced acute lung injury. J Infect Chemother. 2000 Mar; 6(1):51-60.
    42. Lim CM, Kim MS, Ahn JJ, Kim MJ, Kwon Y, Lee I, Koh Y, Kim DS, Kim WD. Hypothermia protects against endotoxin-induced acute lung injury in rats. Intensive Care Med. 2003 Mar; 29(3):453-9.
    43. Dehus O, Bunk S, von Aulock S, Hermann C. IL-10 release requires stronger toll-like receptor 4-triggering than TNF: a possible explanation for the selective effects of heterozygous TLR4 polymorphism Asp (299) Gly on IL-10 release. Immunobiology. 2008;213(8):621-7.
    44. Bulger EM, Gourlay D, Cuschieri J, Jelacic S, Staudenmeyer K, Garcia I, Maier RV. Platelet-activating factor acetylhydrolase inhibits alveolar macrophage activation in vivo. Shock. 2003 Jul; 20(1):17-22.
    45.孙耕耘,肖贞良,方传彪。山莨菪碱对内毒素致肺微血管内皮细胞骨架变化的影响。中国药理学通报。2001 Apr;17(2):197-9
    46. Schaefer MB, Ott J, Mohr A, Bi MH, Grosz A, Weissmann N, Ishii S, Grimminger F, Seeger W, Mayer K. Immunomodulation by n-3- versus n-6-rich lipid emulsions in murine acute lung injury--role of platelet-activating factor receptor. Crit Care Med. 2007 Feb; 35(2):544-54.
    47. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31; 332(6163):411-5.
    48. Tsujino K, Hirota S, Endo M, Obayashi K, Kotani Y, Satouchi M, Kado T, Takada Y. Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer. Int J Radiat Oncol Biol Phys. 2003 Jan 1; 55(1):110-5.
    49. Kmie? Z. Cooperation of liver cells in health and disease. Adv Anat Embryol Cell Biol. 2001; 161: III-XIII, 1-151.
    50. Fernandez-Patron C, Zouki C, Whittal R, Chan JS, Davidge ST, Filep JG. Matrix metalloproteinases regulate neutrophil-endothelial cell adhesion through genera- tion of endothelin-11-32.. FASEB J. 2001 Oct; 15(12):2230-40.
    51. Fujitani Y, Trifilieff A, Tsuyuki S, Coyle AJ, Bertrand C. Endothelin receptor antagonists inhibit antigen-induced lung inflammation in mice. Am J Respir Crit Care Med. 1997 Jun; 155(6):1890-4.
    52. Sato Y, Hogg JC, English D, van Eeden SF. Endothelin-1 changes polymer- phonuclear leukocytes' deformability and CD11b expression and promotes their retention in the lung. Am J Respir Cell Mol Biol. 2000 Sep; 23(3):404-10.
    53. Antonelli A, Bianchi M, Crinelli R, Gentilini L, Magnani M. Modulation of ICAM-1 expression in ECV304 cells by macrophage-released cytokines. Blood Cells Mol Dis. 2001 Nov-Dec; 27(6):978-91.
    54. Caama?o J, Hunter CA. NF-kappaB family of transcription factors: central regulators of innate and adaptive immune functions. Clin Microbiol Rev. 2002 Jul; 15(3):414-29.
    55. Frossard JL, Saluja A, Bhagat L, Lee HS, Bhatia M, Hofbauer B, Steer ML. Therole of intercellular adhesion molecule 1 and neutrophils in acute pancreatitis and pancreatitis-associated lung injury. Gastroenterology. 1999 Mar; 116(3):694-701.
    56. Schwartz MD, Moore EE, Moore FA, Shenkar R, Moine P, Haenel JB, Abraham E. Nuclear factor-kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Crit Care Med. 1996 Aug; 24(8):1285-92.
    57. Jaffray C, Mendez C, Denham W, Carter G, Norman J. Specific pancreatic enzymes activate macrophages to produce tumor necrosis factor-alpha: role of nuclear factor kappa B and inhibitory kappa B proteins. J Gastrointest Surg. 2000 Jul-Aug; 4(4):370-7; discussion 377-8.
    58. Jaffray C, Yang J, Carter G, Mendez C, Norman J. Pancreatic elastase activates pulmonary nuclear factor kappa B and inhibitory kappa B, mimicking panc- reatitis-associated adult respiratory distress syndrome. Surgery. 2000 Aug; 128 (2):225-31.
    59. Yang M, Wu J, Martin CM, Kvietys PR, Rui T. Important role of p38 MAP kinase/NF-kappaB signaling pathway in the sepsis-induced conversion of cardiac myocytes to a proinflammatory phenotype. Am J Physiol Heart Circ Physiol. 2008 Feb; 294(2):H994-1001.
    60. Ethridge RT, Hashimoto K, Chung DH, Ehlers RA, Rajaraman S, Evers BM. Selective inhibition of NF-kappaB attenuates the severity of cerulein-induced acute pancreatitis. J Am Coll Surg. 2002 Oct; 195(4):497-505.
    61. Dunn JA, Li C, Ha T, Kao RL, Browder W. Therapeutic modification of nuclear factor kappa B binding activity and tumor necrosis factor-alpha gene expression during acute biliary pancreatitis. Am Surg. 1997 Dec; 63(12):1036-43; discussion 1043-4.
    62. Kinoshita M, Ono S, Mochizuki H. Neutrophils mediate acute lung injury in rabbits: role of neutrophil elastase. Eur Surg Res. 2000; 32(6):337-46.
    63. Altavilla D, Famulari C, Passaniti M, Galeano M, MacrìA, Seminara P, Minutoli L, Marini H, CalòM, Venuti FS, Esposito M, Squadrito F. Attenuated cerulein-induced pancreatitis in nuclear factor-kappaB-deficient mice. Lab Invest. 2003 Dec; 83(12):1723-32.
    64. Antonelli A, Bianchi M, Crinelli R, Gentilini L, Magnani M. Modulation of ICAM-1 expression in ECV304 cells by macrophage-released cytokines. Blood Cells Mol Dis. 2001 Nov-Dec; 27(6):978-91.
    65. Bozinovski S, Jones J, Beavitt SJ, Cook AD, Hamilton JA, Anderson GP. Innateimmune responses to LPS in mouse lung are suppressed and reversed by neutralization of GM-CSF via repression of TLR-4. Am J Physiol Lung Cell Mol Physiol. 2004 Apr; 286(4):L877-85.
    66. Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC. An osmosensing signal transduction pathway in yeast. Science. 1993 Mar 19; 259(5102):1760-3.
    67.王玉,李晓玫,王海燕。白介素-1β通过JNK/p38信号-转导通路调控肾系膜细胞表达a-平滑肌肌动蛋白。生理学报,2002,54(3):244-250。
    68. Ma T, Fukuda N, Song Y, Matthay MA, Verkman AS. Lung fluid transport in aquaporin-5 knockout mice. J Clin Invest. 2000 Jan; 105(1):93-100.
    69. Jiao G, Li E, Yu R. Decreased expression of AQP1 and AQP5 in acute injured lungs in rats. Chin Med J (Engl). 2002 Jul; 115(7):963-7.
    70. Song Y, Jayaraman S, Yang B, Matthay MA, Verkman AS. Role of aquaporin water channels in airway fluid transport, humidification, and surface liquid hydration. J Gen Physiol. 2001 Jun; 117(6):573-82.
    71. McColl SR, St-Onge M, Dussault AA, Laflamme C, Bouchard L, Boulanger J, Pouliot M. Immunomodulatory impact of the A2A adenosine receptor on the profile of chemokines produced by neutrophils. FASEB J. 2006 Jan; 20(1):187-9.
    72. Lazou Ahrén I, Bjartell A, Egesten A, Riesbeck K. Lipopolysaccharide-binding protein increases toll-like receptor 4-dependent activation by nontypeable Haemophilus influenzae. J Infect Dis. 2001 Oct 1; 184(7):926-30.
    73.张德明,邓青南,李永旺,毛宝龄,钱桂生。脂多糖结合蛋白多抗对内毒素急性肺损伤大鼠肺泡巨噬细胞炎症因子的影响。广东医学。2004;25(4):375-376。
    74. Arias-Diaz J, Garcia-Verdugo I, Casals C, Sanchez-Rico N, Vara E, Balibrea JL. Effect of surfactant protein A (SP-A) on the production of cytokines by human pulmonary macrophages. Shock. 2000 Sep; 14(3):300-6.
    75. Cao L, Qian LL, Zhu YR, Guo CB, Gong XH, Sun B. Regulation of activity of nuclear factor-kappaB and activator protein-1 by nitric oxide, surfactant and glucocorticoids in alveolar macrophages from piglets with acute lung injury. Acta Pharmacol Sin. 2003 Dec; 24(12):1316-23.
    76. Tasaka S, Amaya F, Hashimoto S, Ishizaka A. Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome. Antioxid Redox Signal. 2008 Apr; 10(4):739-53.
    77. Krishnadasan B, Naidu BV, Byrne K, Fraga C, Verrier ED, Mulligan MS. The role of proinflammatory cytokines in lung ischemia-reperfusion injury. J ThoracCardiovasc Surg. 2003 Feb; 125(2):261-72.
    78. Brueckl C, Kaestle S, Kerem A, Habazettl H, Krombach F, Kuppe H, Kuebler WM. Hyperoxia-induced reactive oxygen species formation in pulmonary capillary endothelial cells in situ. Am J Respir Cell Mol Biol. 2006 Apr; 34(4):453-63.
    79. Carvalho H, Evelson P, Sigaud S, González-Flecha B. Mitogen-activated protein kinases modulate H(2)O(2)-induced apoptosis in primary rat alveolar epithelial cells. J Cell Biochem. 2004 Jun 1; 92(3):502-13.
    80. Quinlan GJ, Mumby S, Lamb NJ, Moran LK, Evans TW, Gutteridge JM. Acute respiratory distress syndrome secondary to cardiopulmonary bypass: do com- promised plasma iron-binding anti-oxidant protection and thiol levels influence outcome? Crit Care Med. 2000 Jul; 28(7):2271-6.
    81. Nagata K, Iwasaki Y, Yamada T, Yuba T, Kono K, Hosogi S, Ohsugi S, Kuwahara H, Marunaka Y. Overexpression of manganese superoxide dismutase by N-acetyl- cysteine in hyperoxic lung injury. Respir Med. 2007 Apr;101(4):800-7.
    82. Koo HC, Davis JM, Li Y, Hatzis D, Opsimos H, Pollack S, Strayer MS, Ballard PL, Kazzaz JA. Effects of transgene expression of superoxide dismutase and glutathione peroxidase on pulmonary epithelial cell growth in hyperoxia. Am J Physiol Lung Cell Mol Physiol. 2005 Apr; 288(4):L718-26.
    83. Masamune A, Shimosegawa T, Satoh A, Fujita M, Sakai Y, Toyota T. Nitric oxide decreases endothelial activation by rat experimental severe pancreatitis-asso- ciated ascitic fluids. Pancreas. 2000 Apr; 20(3):297-304.
    84. Leme AS, Lichtenstein A, Arantes-Costa FM, Landucci EC, Martins MA. Acute lung injury in experimental pancreatitis in rats: pulmonary protective effects of crotapotin and N-acetylcysteine. Shock. 2002 Nov; 18(5):428-33.
    85. Couroucli XI, Wei YH, Jiang W, Muthiah K, Evey LW, Barrios R, Moorthy B. Modulation of pulmonary cytochrome P4501A1 expression by hyperoxia and inhaled nitric oxide in the newborn rat: implications for lung injury. Pediatr Res. 2006 Mar; 59(3):401-6.
    86. Abe M. Complement activation and inflammation. Rinsho Byori. 2006 Jul; 54(7):744-56.
    87. Bhatia M, Moochhala S. Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J Pathol. 2004 Feb; 202(2):145-56.
    1.侯著法,向诗非,张晓华。显性DIC评分对40例脓毒血症患者预后的评估。2006,12:280-1。
    2.原琪,赵淑萍,乌云高娃。全身炎症反应综合征。中国医药导报,2007,4:11-12。
    3. Sykes E, Cosgrove JF. Acute renal failure and the critically ill surgical patient. Ann R Coll Surg Engl. 2007 Jan; 89(1):22-9.
    4. Bone RC.Toward a theory regarding the pathogenesis of the systemic inflammatory response syndrome: what we do and do not know about cytokine regulation.Crit Care Med. 1996 Jan; 24(1):163-72.
    5. Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNFalpha in pulmonary pathophysiology. Respir Res. 2006 Oct 11;7:125.
    6. Costa EL, Schettino IA, Schettino GP. The lung in sepsis: guilty or innocent? Endocr Metab Immune Disord Drug Targets. 2006 Jun;6(2):213-6.
    7. Halbertsma FJ, Vaneker M, Scheffer GJ, van der Hoeven JG. Cytokines and biotrauma in ventilator-induced lung injury: a critical review of the literature. Neth J Med. 2005 Nov; 63(10):382-92.
    8.余伟明,焦炳华,周丙荣,丁锡竟。肿瘤坏死因子和细菌脂多糖对荷瘤小鼠的联合毒性作用。第二军医大学学报,1990;11(4):328-30
    9. Schirmer WJ, Schirmer JM, Fry DE. Recombinant human tumor necrosis factor produces hemodynamic changes characteristic of sepsis and endotoxemia. Arch Surg. 1989 Apr; 124(4):445-8.
    10. Vassalli P. The pathophysiology of tumor necrosis factors. Annu Rev Immunol. 1992; 10: 411-52.
    11. Bentrem DJ, Joehl RJ. Pancreas: healing response in critical illness. Crit Care Med. 2003 Aug; 31(8 Suppl):S582-9.
    12.崔社怀,郭先键,钱桂生。肺表面张力与肿瘤坏死因子在急性低氧油酸性肺损伤时的变化。中国危重病急救医学, 2000,12 (1): 3-6。
    13. Xie GQ, Jiang JX, Chen YH, Liu DW, Zhu PF, Wang ZG. Induction of acute hepatic injury by endotoxin in mice. Hepatobiliary Pancreat Dis Int. 2002 Nov;1(4):558-64.
    14. Kim GY, Roh SI, Park SK, Ahn SC, Oh YH, Lee JD, Park YM. Alleviation of experimental septic shock in mice by acidic polysaccharide isolated from themedicinal mushroom Phellinus linteus. Biol Pharm Bull. 2003 Oct; 26(10): 1418- 23.
    15. Norman JG, Fink GW, Messina J, Carter G, Franz MG. Timing of tumor necrosis factor antagonism is critical in determining outcome in murine lethal acute pancreatitis. Surgery. 1996 Sep; 120(3):515-21.
    16. Werner J, Z'graggen K, Fernández-del Castillo C, Lewandrowski KB, Compton CC, Warshaw AL. Specific therapy for local and systemic complications of acute pancreatitis with monoclonal antibodies against ICAM-1. Ann Surg. 1999 Jun; 229(6):834-40; discussion 841-2.
    17. Bhatia M, Brady M, Shokuhi S, Christmas S, Neoptolemos JP, Slavin J. Inflam- matory mediators in acute pancreatitis. J Pathol. 2000 Feb; 190(2):117-25.
    18. Okumura Y, Inoue H, Fujiyama Y, Bamba T. Effects of serine protease inhibitors on accumulation of polymorphonuclear leukocytes in the lung induced by acute pancreatitis in rats. J Gastroenterol. 1995 Jun; 30(3):379-86.
    19.崔克亮,曹书华,王今达。大承气汤对多器官功能障碍综合征防治作用的临床研究。中国中西医结合急救杂志,2003;10(1):12-5
    20. Gill SS, Suri SS, Janardhan KS, Caldwell S, Duke T, Singh B. Role of pulmonary intravascular macrophages in endotoxin-induced lung inflammation and mortality in a rat model. Respir Res. 2008 Oct 24; 9:69.
    21. Aasen AO, Wang JE. Mediator responses in surgical infections. Surg Infect (Larchmt). 2006; 7 Suppl 2:S3-4.
    1.侯著法,向诗非,张晓华。显性DIC评分对40例脓毒血症患者预后的评估。2006,12:280-281。
    2.原琪,赵淑萍,乌云高娃。全身炎症反应综合征。中国医药导报,2007,4:11-12。
    3. Sykes E, Cosgrove JF. Acute renal failure and the critically ill surgical patient. Ann R Coll Surg Engl. 2007 Jan;89(1):22-9.
    4.黄晓曦,王兴鹏。肠屏障功能障碍在重症急性胰腺炎中的作用。临床内科杂志。2007,24:79-81。
    5. Polito A, Aboab J, Annane D. The hypothalamic pituitary adrenal axis in sepsis. Novartis Found Symp. 2007; 280:182-99; discussion 199-203.
    6. Stiehl JB. Acetabular prosthetic protrusion and sepsis: case report and review of the literature. J Arthroplasty. 2007 Feb; 22(2):283-8.
    7. McVerry BJ, Garcia JG. Endothelial cell barrier regulation by sphingosine 1-phosphate. 1: J Cell Biochem. 2004 Aug 15; 92(6):1075-85.
    8. Kasselman LJ, Kintner J, Sideris A, Pasnikowski E, Krellman JW, Shah S, Rudge JS, Yancopoulos GD, Wiegand SJ, Croll SD. Dexamethasone Treatment and ICAM-1 Deficiency Impair VEGF-Induced Angiogenesis in Adult Brain. J Vasc Res. 2007; 44(4):283-91.
    9. Deng C, Zhang D, Shan S, Wu J, Yang H, Yu Y. Angiogenic effect of intercellular adhesion molecule-1. J Huazhong Univ Sci Technolog Med Sci. 2007 Feb; 27 (1): 9-12.
    10. Levin MH, Sullivan S, Nielson D, Yang B, Finkbeiner WE, Verkman AS. Hypertonic saline therapy in cystic fibrosis: Evidence against the proposed mechanism involving aquaporins. J Biol Chem. 2006 Sep 1;281(35):25803-12.
    11. Maeda S, Ito H, Tanaka K, Hayakawa T, Seki M. Localization of aquaporin water channels in the airway of the musk shrew (Suncus murinus) and the rat. J Vet Med Sci. 2005 Oct; 67(10):975-84.
    12. Borok Z, Verkman AS. Lung edema clearance: 20 years of progress: invited review: role of aquaporin water channels in fluid transport in lung and airways. J Appl Physiol. 2002 Dec;93(6):2199-206.
    13. Mukhopadhyay S, Hoidal JR, Mukherjee TK. Role of TNF-alpha in pulmonary pathophysiology. Respir Res. 2006 Oct 11; 7:125.
    14. Costa EL, Schettino IA, Schettino GP. The lung in sepsis: guilty or innocent? Endocr Metab Immune Disord Drug Targets. 2006 Jun; 6(2):213-6.
    15. Halbertsma FJ, Vaneker M, Scheffer GJ, van der Hoeven JG. Cytokines and biotrauma in ventilator-induced lung injury: a critical review of the literature. Neth J Med. 2005 Nov; 63(10):382-92.
    16. Yeh CC, Kao SJ, Lin CC, Wang SD, Liu CJ, Kao ST. The immunomodulation of endotoxin-induced acute lung injury by hesperidin in vivo and in vitro. Life Sci. 2007 Apr 24; 80(20):1821-31.
    17. Wei S, Siegal GP. p38 MAPK as a potential therapeutic target for inflammatory osteolysis. Adv Anat Pathol. 2007 Jan; 14(1):42-5.
    18. Pelaia G, Cuda G, Vatrella A, Gallelli L, Caraglia M, Marra M, Abbruzzese A, Caputi M, Maselli R, Costanzo FS, Marsico SA. Mitogen-activated protein kinases and asthma. J Cell Physiol. 2005 Mar; 202(3):642-53.
    19. Levin MH, Sullivan S, Nielson D, Yang B, Finkbeiner WE, Verkman AS. Hypertonic saline therapy in cystic fibrosis: Evidence against the proposed mechanism involving aquaporins. J Biol Chem. 2006 Sep 1; 281(35):25803-12.
    20. Maeda S, Ito H, Tanaka K, Hayakawa T, Seki M. Localization of aquaporin water channels in the airway of the musk shrew (Suncus murinus) and the rat. J Vet Med Sci. 2005 Oct; 67(10):975-84.
    21. Borok Z, Verkman AS.Lung edema clearance: 20 years of progress: invited review: role of aquaporin water channels in fluid transport in lung and airways.J Appl Physiol. 2002 Dec; 93(6):2199-206.
    22.焦光宇,李尔然,于润江。水通道蛋白1和5在急性肺损伤大鼠的表达。中华内科杂志2003,42(6):427-8。
    23. Song Y, Yang B, Matthay MA, Ma T, Verkman AS. Role of aquaporin water channels in pleural fluid dynamics. Am J Physiol Cell Physiol. 2000 Dec; 279 (6):C1744-50.
    24. King LS, Nielsen S, Agre P. Aquaporin-1 water channel protein in lung: ontogeny, steroid-induced expression, and distribution in rat. J Clin Invest. 1996 May 15; 97(10):2183-91.
    25.谢艳萍,陈才平,王建春,钱桂生,王应灯,徐智。脂多糖、肿瘤坏死因子-a、白细胞介素-1对鼠肺微血管内皮细胞水通道蛋白-1表达的影响。中国呼吸与危重监护杂志,2005,4(2):142-5。
    26.张静,瞿介明,潘珏,何礼贤,欧周罗,张杏怡,陈雪华。内毒素耐受大鼠与正常大鼠急性肺损伤反应比较。中国呼吸与危重监护杂志,2003,2:346-350。
    27. .宋勇,施毅,黎介寿。肿瘤坏死因子激活人肺微血管内皮细胞p38丝裂原激活蛋白酶信号通路。中国呼吸与危重监护杂志,2004,3:152-5。
    28. Heberlein W, Wodopia R, B?rtsch P, Mairb?url H. Possible role of ROS as mediators of hypoxia-induced ion transport inhibition of alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2000 Apr; 278(4):L640-8.
    29. Gao J, Zeng BX, Zhou LJ, Yuan SY. Protective effects of early treatment with propofol on endotoxin-induced acute lung injury in rats. Br J Anaesth. 2004 Feb;92(2):277-9.
    30.侯著法,向诗非,张晓华。显性DIC评分对40例脓毒血症患者预后的评估。2006,12:280-1。
    31.原琪,赵淑萍,乌云高娃。全身炎症反应综合征。中国医药导报,2007,4:11-2。
    32. Wei S, Siegal GP. p38 MAPK as a potential therapeutic target for inflammatory osteolysis. Adv Anat Pathol. 2007 Jan;14(1):42-5.
    33. Meyer K, Brown MF, Zibari G, Panes J, McMillan RW, McDonald JC, Granger DN. ICAM-1 upregulation in distant tissues after hepatic ischemia/reperfusion: a clue to the mechanism of multiple organ failure. J Pediatr Surg. 1998 Feb; 33(2): 350-3.
    34. Sedgwick JD, Riminton DS, Cyster JG, K?rner H. Tumor necrosis factor: a master-regulator of leukocyte movement. Immunol Today. 2000 Mar; 21(3):110-3.
    35.姜小国,胡森,石德光,晋桦,吕艺,韩翠华,孙丹,盛志勇。卡巴胆碱对肠缺血-再灌注大鼠血浆肿瘤坏死因子-α和白介素-10含量的影响。中国危重病急救医学,2003,15(3):167-8。
    36.邹捍东,吴灵渝,余金甫。失血性休克家兔腹腔脏器再灌注损伤的预防性治疗。中国现代医学杂志,2004,14(6):6-11。
    37. Malik AB, Lo SK. Vascular endothelial adhesion molecules and tissue inflame- mation. Pharmacol Rev. 1996 Jun; 48(2):213-29.
    38. Pelaia G, Cuda G, Vatrella A, Gallelli L, Caraglia M, Marra M, Abbruzzese A, Caputi M, Maselli R, Costanzo FS, Marsico SA. Mitogen-activated protein kinases and asthma. J Cell Physiol. 2005 Mar; 202(3):642-53.
    39. Malik AB, Lo SK. Vascular endothelial adhesion molecules and tissue inflame- mation. Pharmacol Rev. 1996 Jun; 48(2):213-29.
    40. Mueller M, Stamme C, Draing C, Hartung T, Seydel U, Schromm AB. Cell activation of human macrophages by lipoteichoic acid is strongly attenuated by lipopolysaccharide-binding protein. J Biol Chem. 2006 Oct 20; 281(42): 31448- 56.
    41. Ou XM, Wang BD, Wen FQ, Feng YL, Huang XY, Xiao J. Simvastatin attenuates lipopolysaccharide-induced airway mucus hypersecretion in rats. Chin Med J (Engl). 2008 Sep 5; 121(17):1680-7.
    1. Bone RC. How gram-positive organisms cause sepsis. J Crit Care. 1993 Mar; 8(1):51-9.
    2. Ho PD, Zechner DK, He H, Dillmann WH, Glembotski CC, McDonough PM. The Raf-MEK-ERK cascade represents a common pathway for alteration of intra- cellular calcium by Ras and protein kinase C in cardiac myocytes. J Biol Chem. 1998 Aug 21; 273(34):21730-5.
    3. Whitmarsh AJ, Davis RJ. Structural organization of MAP-kinase signaling modules by scaffold proteins in yeast and mammals.Trends Biochem Sci. 1998 Dec; 23(12):481-5.
    4. Carter AB, Monick MM, Hunninghake GW. Both Erk and p38 kinases are necessary for cytokine gene transcription. Am J Respir Cell Mol Biol. 1999 Apr; 20(4):751-8.
    5.原琪,赵淑萍,乌云高娃。全身炎症反应综合征。中国医药导报,2007,4:11-12。
    6. Sykes E, Cosgrove JF. Acute renal failure and the critically ill surgical patient. Ann R Coll Surg Engl. 2007 Jan; 89(1):22-9.
    7. Lee JC, Kumar S, Griswold DE, Underwood DC, Votta BJ, Adams JL. Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology. 2000 May; 47(2-3):185-201.
    8. Yamanaka O, Saika S, Ohnishi Y, Kim-Mitsuyama S, Kamaraju AK, Ikeda K. Inhibition of p38MAP kinase suppresses fibrogenic reaction in conjunctiva in mice.Mol Vis. 2007 Sep 18;13:1730-9.
    9. Ferrer I, Friguls B, DalfóE, Planas AM. Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathol. 2003 May;105(5):425-37.
    10. Yeh CC, Kao SJ, Lin CC, Wang SD, Liu CJ, Kao ST. The immunomodulation of endotoxin-induced acute lung injury by hesperidin in vivo and in vitro. Life Sci. 2007 Apr 24; 80(20):1821-31.
    11. Wei S, Siegal GP. p38 MAPK as a potential therapeutic target for inflammatory osteolysis. Adv Anat Pathol. 2007 Jan;14(1):42-5.
    12. Pelaia G, Cuda G, Vatrella A, Gallelli L, Caraglia M, Marra M, Abbruzzese A, Caputi M, Maselli R, Costanzo FS, Marsico SA. Mitogen-activated protein kinases and asthma. J Cell Physiol. 2005 Mar;202(3):642-53.
    13. Lee JC, Kumar S, Griswold DE, Underwood DC, Votta BJ, Adams JL. Inhibition of p38 MAP kinase as a therapeutic strategy. Immunopharmacology. 2000 May; 47(2-3):185-201.
    14. .Brewster JL, de Valoir T, Dwyer ND, Winter E, Gustin MC. An osmosensing signal transduction pathway in yeast. Science. 1993 Mar 19; 259(5102):1760-3.
    15.王玉,李晓玫,王海燕。白介素-1β通过JNK/p38信号-转导通路调控肾系膜细胞表达α-平滑肌肌动蛋白。生理学报,2002,54(3):244-50。
    16. Underwood DC, Osborn RR, Bochnowicz S, Webb EF, Rieman DJ, Lee JC, Romanic AM, Adams JL, Hay DW, Griswold DE. SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am J Physiol Lung Cell Mol Physiol. 2000 Nov; 279(5):L895-902.
    17. Fuchs SY, Tappin I, Ronai Z. Stability of the ATF2 transcription factor is regulated by phosphorylation and dephosphorylation. J Biol Chem. 2000 Apr 28; 275(17):12560-4.
    18. Dong X, Liu Y, Du M, Wang Q, Yu CT, Fan X. P38 mitogen-activated protein kinase inhibition attenuates pulmonary inflammatory response in a rat cardio- pulmonary bypass model. Eur J Cardiothorac Surg. 2006 Jul;30(1):77-84.
    19. Ogura M, Kitamura M. Oxidant stress incites spreading of macrophages via extracellular signal-regulated kinases and p38 mitogen-activated protein kinase. J Immunol. 1998 Oct 1; 161(7):3569-74.
    20. Liakopoulos OJ, Schmitto JD, Kazmaier S, Br?uer A, Quintel M, Schoendube FA, D?rge H. Cardiopulmonary and systemic effects of methylprednisolone in patients undergoing cardiac surgery. Ann Thorac Surg. 2007 Jul; 84(1):110-8; discussion 118-9.
    21. Sodhi A, Tripathi A. Prolactin and growth hormone induce differential cytokine and chemokine profile in murine peritoneal macrophages in vitro: involvement of p-38 MAP kinase, STAT3 and NF-kappaB. Cytokine. 2008 Feb;41(2):162-73.
    22. Barancik M, Htun P, Strohm C, Kilian S, Schaper W. Inhibition of the cardiac p38-MAPK pathway by SB203580 delays ischemic cell death. J Cardiovasc Pharmacol. 2000 Mar;35(3):474-83.
    23. Ajizian SJ, English BK, Meals EA. Specific inhibitors of p38 and extracellularsignal-regulated kinase mitogen-activated protein kinase pathways block inducible nitric oxide synthase and tumor necrosis factor accumulation in murine macrophages stimulated with lipopolysaccharide and interferon-gamma. J Infect Dis. 1999 Apr; 179(4):939-44.
    24. Jackson JR, Bolognese B, Hillegass L, Kassis S, Adams J, Griswold DE, Winkler JD. Pharmacological effects of SB 220025, a selective inhibitor of P38 mitogen- activated protein kinase, in angiogenesis and chronic inflammatory disease models. J Pharmacol Exp Ther. 1998 Feb; 284(2):687-92.
    25. Underwood DC, Osborn RR, Bochnowicz S, Webb EF, Rieman DJ, Lee JC, Romanic AM, Adams JL, Hay DW, Griswold DE. SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am J Physiol Lung Cell Mol Physiol. 2000 Nov; 279(5):L895-902.
    26. Tamura DY, Moore EE, Johnson JL, Zallen G, Aiboshi J, Silliman CC. p38 mitogen-activated protein kinase inhibition attenuates intercellular adhesion molecule-1 up-regulation on human pulmonary microvascular endothelial cells. Surgery. 1998 Aug;124(2):403-7; discussion 408.
    27. Brahmbhatt S, Gupta A, Sharma AC. Bigendothelin-1 (1-21) fragment during early sepsis modulates tau, p38-MAPK phosphorylation and nitric oxide synthase activation. Mol Cell Biochem. 2005 Mar; 271(1-2):225-37.
    28. Jackson JR, Bolognese B, Hillegass L, Kassis S, Adams J, Griswold DE, Winkler JD. Pharmacological effects of SB 220025, a selective inhibitor of P38 mitogen- activated protein kinase, in angiogenesis and chronic inflammatory disease models. J Pharmacol Exp Ther. 1998 Feb; 284(2):687-92.
    29. Yang M, Wu J, Martin CM, Kvietys PR, Rui T. Important role of p38 MAP kinase/NF-kappaB signaling pathway in the sepsis-induced conversion of cardiac myocytes to a proinflammatory phenotype. Am J Physiol Heart Circ Physiol. 2008 Feb; 294(2):H994-1001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700