二氧化硫对血管张力作用的信号转导机制及其与几种内源物质的联合作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化硫(SO2)及其衍生物亚硫酸盐和亚硫酸氢盐是常见的污染物,以往的研究表明该化学物是可引起多种毒性作用的全身性毒物。流行病学研究指出,SO2及其衍生物污染与人群心血管疾病的发生有关联。研究发现,生物体内含硫氨基酸和细胞内的硫化氢(H2S)的正常代谢可产生内源性SO2及其衍生物亚硫酸盐和亚硫酸氢盐,亚硫酸氧化酶可促进亚硫酸盐氧化生成硫酸盐而排出体外。
     从上世纪80年代以来,一氧化氮(NO)、一氧化碳(CO)、及硫化氢(H2S)等有毒气体分子先后被发现是生物气体信号分子,具有扩张血管、抑制细胞增殖等多种重要的生理学和毒理学作用。与这些有毒气体相比,设想同样作为有毒气体的SO2可能也是一种生物气体信号分子,在人和哺乳动物的心血管系统具有多种生理和毒理学作用。在以前的研究中,发现SO2及其衍生物亚硫酸盐和亚硫酸氢盐均可引起大鼠血压下降、SO2衍生物可引起离体大鼠胸主动脉血管环的舒张。然而,迄今作为亚硫酸盐和亚硫酸氢盐前体物的SO2的心血管效应尚未见报道,SO2对心血管效应的机制尚不了解,SO2对离体血管环的作用仍然有待阐明,SO2的心血管效应是否被血管内皮或周围神经末梢释放的血管活性因子所介导也未可知,SO2与血管组织中不同细胞信号途径之间的相互作用,例如cGMP途径和氧自由基,尚未见研究。此外,SO2与内源小分子化合物对血管张力的联合效应也很少研究。
     本研究的目的是探讨SO2对血管张力的生理学和毒理学作用及其细胞和分子机制,为此我们全面地研究了在此过程中血管内皮的作用,进行了SO2对离体大鼠胸主动脉血管环的舒张实验及其有关信号转导途径的研究。为了探讨SO2与体内小分子化合物氨、乳酸、丙酮酸之间在对血管收缩性方面有无相互作用,以便正确评价SO2对人体的毒性作用,本论文还研究了这些化合物对血管张力的影响及其与SO2的联合作用。
     在本研究中,采用将气态SO2或SO2生理盐水溶液加入孵育液的方法,使SO2直接作用于离体大鼠胸主动脉血管环,同时使用不同信号转导途径抑制剂和不同离子通道抑制剂,研究SO2诱发血管舒张的信号转导机制,并采用类比法研究SO2对溶液pH的影响及其与血管舒张的关系。除此之外,还应用组织病理和免疫化学分析,以及放射免疫测定、实时定量RT-PCR,酶活性测定等生物化学和分子生物学技术和方法,研究了SO2对大鼠血管组织中eNOS-NO-cGMP信号转导途径的调节作用。
     研究结果显示:(1)静脉注入SO2 (20、60μmol·kg-1体重)可迅速引起大鼠血压剂量依赖性下降;(2) SO2 (1-2000μmol·L-1)对血管的舒张作用是剂量依赖性的,SO2在低浓度(<450μmol·L-1)下诱发的血管舒张作用是内皮依赖性的,而在高浓度(>500μmol·L-1)下引起的血管舒张作用是非内皮依赖性的。(3)SO2生理盐水溶液对大鼠血管的舒张作用是SO2分子直接作用引起的,而不是亚硫酸盐和亚硫酸氢盐引起的,SO2引起的血管舒张曲线特征与亚硫酸盐和亚硫酸氢盐引起的曲线不同;(4)SO2引起的血管舒张效应不是由于自主的或者非肾上腺素能的和类胆碱能的(NANC)神经末端对神经递质的释放,也不是由于血管组织产生的过氧化物和过氧化氢,也不涉及前列环素、PKC、β-肾上腺素及cAMP途径;(5)SO2在低浓度(<450μmol·L-1)下诱发的血管舒张作用是被cGMP途径所介导;(6)极低浓度的SO2(3μM)和NO(3 or 5nM)之间对血管平滑肌舒张存在协同效应。(7)SO2能增强血管内皮eNOS的活性,但不能增强iNOS的活性;SO2还能在转录水平和翻译水平促进大鼠血管eNOS基因的表达;(8)SO2能促进大鼠动脉血管NO的生成,引起血管cGMP水平增加,但不能引起cAMP水平的改变;(9)整体实验表明,静脉注入乳酸、丙酮酸(120、300μmol·kg-1体重)可迅速引起大鼠血压剂量依赖性下降;静脉注入氨水(8μmol·kg-1体重)大鼠血压显著升高,而静脉注射(20μmol·kg-1体重)剂量的氨水后引起大鼠血压迅速下降; (10)氨对大鼠胸主动脉血管环的作用比较复杂,在100μmol·L-1下对血管张力未见显著影响,在0.5-3mmol·L-1对血管有收缩效应且与低浓度SO2的舒张效应有拮抗作用;而高浓度氨(5-8mmol·L-1)能引起血管舒张,其与SO2的舒张效应具有独立联合作用;(11)乳酸在较低浓度和高浓度下均可以引起大鼠胸主动脉血管环舒张,其舒张血管的机制部分地与NO/cGMP信号转导途径和KATP离子通道有关,其与SO2舒张作用的机制有所不同,二者的联合作用可能属于独立联合作用。(12)丙酮酸在生理浓度时对大鼠胸主动脉血管环张力未见影响,在较低浓度和高浓度下均可以引起血管舒张,其机制均与L-型钙通道有关,但低浓度时的舒张血管效应还与NO/cGMP信号途径、小电导钙激活的钾离子通道(SKca)有关,而高浓度时还与ATP敏感的钾离子通道(KATP)有关。丙酮酸与SO2舒张效应的机制有所不同,二者的联合作用可能属于独立作用类型。
     从这些实验结果可以得出如下结论:(1)SO2在低浓度下可以引起大鼠主动脉内皮依赖性血管舒张,而在高浓度下引起的血管舒张作用是非内皮依赖性的。生理浓度的内源性SO2是血管活性因子,可以与NO起协同作用共同调节血管平滑肌的张力,血管组织中的SO2和NO可能存在着某种形式的“交叉对话”;(2)SO2(1-2000μmol·L-1)对血管的舒张作用是剂量依赖性的。SO2舒血管作用不仅远大于亚硫酸盐和亚硫酸氢盐,而且舒张机制也不同,表明亚硫酸盐和亚硫酸氢盐是SO2血管活性作用失活过程的产物;(3)SO2能够上调主动脉eNOS-NO-cGMP信号转导途径,对该通路既有急性效应又有延时效应;SO2所引起的血管舒张作用部分地被其对eNOS-NO-cGMP通路的急性效应所介导,而SO2对血管收缩的抑制作用部分地被其对eNOS-NO-cGMP通路的延时效应所介导;(4)氨对血管的效应比较复杂,低浓度氨引起的血管收缩作用可与SO2引起的血管舒张作用相互拮抗,共同调节血管张力;(5)乳酸和丙酮酸也能引起血管舒张,低浓度下对血管有保护作用,而高浓度下可与SO2对血管的舒张作用叠加。因此,在对SO2进行健康评价时应考虑其与内源性小分子化合物的联合作用。
Sulfur dioxide (SO2) and its derivatives sulfite and bisulfite are common gaseous pollutants in the atmosphere. The previous studies have revealed that SO2 and its derivatives are systemic toxins, which may cause many kinds of toxicological effects in multiple organs of mammals. The epidemiological studies found that SO2 and its derivatives are correlative with the cardiovascular diseases. SO2 and its derivatives are also, however, endogenously generated from sulfur-containing amino acids and the intracellular hydrogen sulfide (H2S) in vivo. SO2 derivatives sulfite and bisulfite can be oxidized by sulfite oxidase to sulfate and excreted in urine.
     Since the early 1980s, Nitric oxide (NO), carbon monoxide (CO) and H2S are discovered to be biological gas transmitters, which play a number of important physiological and toxicological roles. By analogy to these gases, SO2 is hypothesized to have physiological and toxicological role in cardiovascular system in human and mammal. In a previous study, it was showed that rat blood pressure could be lowered by SO2 and its derivatives bisulfite and sulfite, SO2 derivatives caused the vasodilatory effect of isolated rat aortic rings in vitro. To date, however, the cardiovascular effects of SO2, a known precursor of bisulfite and sulfite have not been studied. The mechanisms underlying the vascular effect of SO2 are not understood yet. The effect of SO2 on isolated vascular rings in vitro remains to be elucidated. Whether the vascular effects of SO2 are mediated by vasoactive factors released from the endothelium or peripheral nerve endings, e.g., nonadrenergic and noncholinergic (NANC) nerves, is not clear. The interaction of SO2 with different cellular signaling pathways in vascular tissues, including cGMP and oxygen-derived free radicals, has not been examined. The combined effects of endogenous small molecular chemicals and SO2 on the ring tension were rarely studied.
     The objective of the present study is to explore the physiological and toxicological role of SO2 on vascular contractility and its underlying cellular and molecular mechanisms, we systematically examined the roles of the endothelium, and vasodilation experiment of isolated rat thoracic aortic rings by SO2 was carried out and the signal transduction pathways involved in the vascular effects of SO2 were investigated. Effects of the in vivo small molecular chemicals ammonia, lactic acid, or pyruvic acid on the ring tension and the combined effects of SO2 with these chemicals were studied in order to evaluate correctly the toxicological role of SO2 on human health.
     In the present studies, isolated rat thoracic aortic rings were exposed directly to SO2 gas or SO2 gas-bubbled saline (SO2 stock solution), and effects of inhibitors of different signal transduction pathways and different ion channels for vasorelaxation of SO2 on the rings were investigated. At one time, relationship between vasorelaxation and pH decrease of Krebs solution caused by SO2 was studied using anology method. The vasodilatory effects of ammonia, lactic acid and pyruvic acid on the rings and its mechanisms were also studied with same methods mentioned above. Moreover, effects of SO2 on eNOS-NO-cGMP pathway in rat vascular tissues were studied with histopathological and immunohistochemical analysis, and biochemical and molecular biological technique and methods, for example, radioimmunoassay, real-time quantitative RT-PCR and so on.
     The results show:(1) The venous transfusion of SO2 (20,60μmol·kg-1w.t.) lowered rapidly blood pressure in a dose-dependent manner in rats; (2) SO2 relaxed rat thoracic aortic rings in a dose-dependent manner (from 1 to 2000μmol·L-1). The vasorelaxant effect of SO2 at low concentrations (<450μmol·L-1) was endothelium-dependent, and at high concentrations (>500μmol·L-1) was endothelium-independent. (3) The vasorelaxation by addition of SO2 stock solution (final concentrations≤2 mM) was actually caused by SO2 molecules, not by sulfite or bisulfite, and the characteristic of vasorelaxation by SO2 were different from that of sulfite and bisulfite. (4) The vasorelaxant effect of SO2 was not due to the altered neurotransmitter release from the autonomous or nonadrenergic and noncholinergic (NANC) nerve endings, also not due to superoxide and hydrogen peroxide produced in the vascular tissues, also disapproving the involvement of prostaglandin, PKC,β-adrenoceptor and cAMP pathways. (5) The vasorelaxant effect of SO2 at low concentrations was mediated by the cGMP pathway. (6) There was the synergistic effect on smooth muscle relaxation between much lower concentrations of SO2 (3μM) and NO (3 or 5nM). (7) SO2 could increase activity of endothelial nitric oxide synthase (eNOS), but not of induced NOS (iNOS); Also it potentiated expression of eNOS gene on the transcription and translation levels in rat aorta; (8) SO2 enhanced nitric oxide (NO) formation in aortic tissue, level of cGMP in rat aorta, but no change of cAMP. (9) The venous transfusion of lactic acid or pyruvic acid (120、300μmol·kg-1w.t.) could rapidly cause a decrease of rat blood pressure in a dose-dependent manner in vivo; The venous transfusion of ammonia at 8μmol·kg-1w.t. caused obviously an increase of rat blood pressure, but at 20μmol·kg-1w.t. caused rapidly a decrease of rat blood pressure; (10) The role of ammonia on rat thoracic aortic rings was complexity, effect of ammonia at 100μmol·L-1 on the vascular tension was not notable, at 0.5-3mmol·L-1 caused a vasoconstriction response and the antagonistic effect to vasorelaxation by SO2 was observed; at higher concentrations(5-8mmol·L-1)caused vasorelaxation and the independent joint action between the vasorelaxations by higher ammonia and SO2 was found; (11) Lactic acid relaxed rat thoracic aortic rings in a dose-dependent manner, the vasorelaxation was partially mediated by the NO/cGMP pathway and ATP-Sensitive K+(KATP) Channels. The mechanisms of vasorelaxation by lactic acid were not whole similar to that of SO2, and the joint action of their vasorelaxation might be the independent joint action; (12) Effect of pyruvic acid at physiological concentrations on rat vascular ring tension was not found. Pyruvic acid at both lower and higher concentrations caused vasorelaxation, which was partially mediated by by L-type calcium-channels. However, the vasorelaxation by pyruvic acid at lower concentrations was also mediated by the NO/cGMP pathway and small-conductance Ca2+-activated K+(SKCa) channels, the vasorelaxation by pyruvic acid at higher concentrations was also mediated by KATP Channels. The mechanisms of vasorelaxation by pyruvic acid were not whole similar to that of SO2, and the joint action of their vasorelaxation might be the independent joint action.
     These findings led to the conclusions:(1) SO2 at low concentrations might cause the endothelium-dependent vasodilation, at high concentrations caused the endothelium-independent vasodilation, which might be a toxic effect on vascular tissues. Endogenous SO2 at physiological concentrations was a vasoactive factor, which might regulate vascular smooth muscle tone in synergy with NO, suggesting there was some forms of "cross-talks" between SO2 and NO in vascular tissue; (2) The vasorelaxation effect was caused by SO2 (1-2000μmol·L-1) in a dose-dependent manner. Not only the effect by SO2 was much greater than that of sulfite and bisulfite, and that the mechanisms of their vasorelaxations were also different, suggesting sulfite and bisulfite were metabolic products in inactivity process of SO2 as a vasoactive substance; (3) There were acute and prolonged effects of SO2 on the NO/cGMP signalling pathway; SO2 could upregulate the eNOS-NO-cGMP pathway and at least partly by which the SO2 might cause vasodilation and inhibition to vasoconstriction; (4) The effect of ammonia on rat thoracic aortic rings was complicated, the vascular tension might be regulated together by the antagonistic effect between vasoconstriction by ammonia at lower concentrations and vasorelaxation by SO2, but ammonia at high concentrations could cause vasorelaxation and potentiate the vasorelaxation by SO2; (5) The vasorelaxation was also caused by lactic acid and pyruvic acid in a dose-dependent manner, the both endogenous chemicals at lower concentrations might execute a protective role on blood vessels, and at high concentrations might potentiate the vasorelaxation by SO2. Therefore, the combined toxic effects of SO2 and endogenous small molecular chemicals on the cardiovascular system should be considered when the influence of SO2 on human health is evaluated.
引文
[1]国家统计局,环境保护部.2009中国环境统计年鉴[M].北京,中国统计出版社,2009,53.
    [2]黄建彬主编.工业气体手册[M].北京,化学工业出版社,2002,195-196.
    [3]Toxicological profile for sulfur dioxide[M]. U.S. Department of health and human services, Public Health Service Agency for Toxic Substances and Disease Registry. 1998.3-4.
    [4]维基百科编者.1952年伦敦烟雾事件[M].维基百科,2008
    [5]Jones AP. Asthma and the home environment [J]. J Asthma,2000,37:103-124.
    [6]Lee J T, Kim H, Song H, et al. Air pollution and asthma among children in seoul, korea [J]. Epidemiology,2002,13:481-484.
    [7]Garcet S, Servin A, Huyen VN. Effect of a prolonged treatment by s-carboxy-methyl-cysteine on the disturbances of the pulmonary protein synthesis induced by sulfur dioxide in the rats [J]. C R Seances Soc Biol Fil,1974,168(1): 43-46.
    [8]Reist M, Jenner P, Halliwell B. Sulphite enhances peroxynitrite-dependenta 1-antip roteinase inactivation:a mechanism of lung injury by sulphur dioxide? [J]. FEBS Lett, 1998,423:231-234.
    [9]Koshino T, Bhaskar KR, Reid LM, et al. Recovery of An Epitope Recognized By A Novel Monoclonal Antibody from Airway Lavage During Experimental Induction of Chronic Bronchitis [J]. Am J Respir Cell Mol Biol,1990,2(5):453-462.
    [10]Frye C, Hoelscher B, Cyrys J, et al. Association of lung function with declining ambient air pollution [J]. Environ Health Perspect,2003,111:383-388.
    [11]Basbaum C, Gallup M, Gum J, et al. Modification of mucin gene expression in the airways of rats to exposed to sulfur dioxide [J]. Biorheology,1990,27(3-4): 485-489.
    [12]Bernstein JA, AlexisN, Barnes C, et al. Health effects of air pollution[J]. J Allergy Clin Immunol,2004,114:1116-1123.
    [13]Ohyama K, Kanisawa M. The role of diesel exhaust particle extract and the promotive effects of NO2 and/or SO2 exposure on rat lung tumorigenesis [J]. Cancer let,1999,139:189-197.
    [14]Routledge HC, Manney S, Harrison RM, et al. Effect of inhaled sulphur dioxide and carbon particles on heart rate variability and markers of inflammation and coagulation in human subjects [J].Heart,2006,2:220-227.
    [15]Rich DQ, Schwartz J, Mittleman MA, et al. Association of short term ambient air pollution concentrations and ventricular arrhythmias[J]. Am J Ep idemiol,2005,161: 1123-1132.
    [16]Park SK, O'Neill MS, Vokonas PS, et al. Effects of air pollution on heart rate variability:the VA normative aging study [J]. Environ Health Perspect,2005,113: 304-309.
    [17]D'Ippoliti D, Forastiere F, Ancona C, et al. Air pollution and myocardial infarction in Rome:a case-crossover analysis[J]. Epidemiology,2003,14:528-535.
    [18]Sunyer J, Ballester F, Tertre AL, et al. The association of daily sulfur Dioxide air Pollution levels with hospital admissions for cardiovascular diseases in Europe (The Aphea-Ⅱ study) [J]. Eur Heart J,2003,24(8):752-760.
    [19]Xu X, Ding H, Wang X. Acute effects of total suspended particules and sulfur dioxides on preterm delivery:a community-based cohort study [J]. Arch environ Health,1995,50:407-415.
    [20]Bobak M. Outdoor air pollution, low birth weight and prematurity [J]. Environ Health Perspect,2000,108:173-176.
    [21]Lee BE, Ha EH, Park HS, et al. Exposure to air pollution during different gestational phases contributes to risks of low birth weight [J]. Hum Reprod,2003,18:638-643.
    [22]Riccaiardi C, Guastadisegni C. Environmental inequities and low birth weight [J]. Ann 1st Super Sanita,2003,39:229-234.
    [23]Agar A, Kucukatay V, Yargicoglu P, et al. The effect of sulfur dioxide inhalation on visual evoked potentials, antioxidant status, and lipid peroxidation in alloxan-induced diabetic rats [J]. Arch Environ Contam Toxicol,2000,39(2): 257-264.
    [24]Kay E K, Hyland K. Amino acids and the brain:too much, too little, or just inappropriate use of a good thing? [J]. Neurology,1998,51:668-670.
    [25]Brown GK, Scholem RD Croll HB, et al. Sulfur dioxide deficiency:clinical and biochemical feature in two patients [J]. Neurology,1989,39:252-257.
    [26]Nyberg F, Gustavsson P, Jarup L. Urban air pollution and lung cancer in Stockholm [J]. Epidemiology,2000,11(5):487.
    [27]Andersson E, Nilsson T, Prsson B. Mortality from asthma and cancer among sulfite mill workers [J]. Scand J Work Environ Health,1998,24(1):12-17.
    [28]Band PR, Len D, Fang R, et al. Cohort mortality study of pump and paper mill workers in British Columbia, Canada [J]. Am J Epidemiol,1997,146:186-194.
    [29]Martin SH, Agard P, et al. Acidification in China:Assessment based on studies at formated from Chongqing to Guangzhou [J]. Ambi,1999,28(6):522-528.
    [30]孟紫强.环境毒理学基础[M].北京,高等教育出版社,2003,162-163
    [31]孟紫强,张连珍.硫酸厂工人外周血淋巴细胞微核率的研究[J].环境科学学报,1989,9(1):125-128.
    [32]孟紫强,张连珍,张珂.硫酸厂工人外周血淋巴细胞染色体畸变的研究[J].中国环境科学(学报),1990,10(5):360-363.
    [33]孟紫强,张波.二氧化硫吸入诱发小鼠骨髓细胞染色体畸变的效应[J].中华预防医学杂志,2002,36(4):229-231.
    [34]孟紫强,阮爱东,桑楠等.二氧化硫污染对小鼠骨髓细胞微核的诱发作用[J].环境科学,2002,23(4):123-125.
    [35]孟紫强,阮爱东,张波等.二氧化硫对小鼠骨髓细胞微核的诱发及沙棘油的防护作用[J].山西大学学报(自然科学版),2002,25(2):168-172.
    [36]武冬梅,孟紫强,耿红等.SO2吸入对小鼠谷胱甘肽氧化还原系统的影响[J].应用与环境生物学报,2003,9(2):163-1 66.
    [37]孟紫强,张连珍.亚硫酸氢钠(SO2)对人血淋巴细胞染色体畸变,姊妹染色单体互换及微核的诱发效应[J].遗传学报,1994,21(1):1-6.
    [38]孟紫强等,二氧化硫体内衍生物诱发CHL细胞染色体畸变的效应[J].中国环境科学,2000,20(1):8-12.
    [39]孟紫强,张波.二氧化硫吸入对大鼠血红细胞的氧化损伤作用[J].环境与健康杂志.2001,18(5):262-264.
    [40]孟紫强等,二氧化硫体内衍生物诱发中国仓鼠肺细胞微核的效应[J].环境与健康杂志,2001,18(1):7-10.
    [41]孟紫强等,二氧化硫体内衍生物诱发小鼠骨髓嗜多染红细胞微核的效应[J].环境科学学报,2000,20(2):239-243.
    [42]孟紫强,中国田鼠卵巢细胞自发和亚硫酸氢钠诱发突变的gpt基因分子分析[J].中国环境科学,1997,17(2):171-175.
    [43]仪慧兰,孟紫强NaHSO3-Na2SO3混合液对大麦幼苗生长和细胞分裂的影响[J],植物生态学报,2002,26(3):303-307.
    [44]仪慧兰,李红孩,孟紫强.SO2体内衍生物诱发蚕豆根尖细胞微核[J],生态学报,2004,24(2):368-371.
    [45]Meng ZQ, Zhang LZ. Chromosomal aberrations and sister-chromatid exchanges of lymphocytes of workers exposed to sulphur dioxide [J]. Mutation Research, 1990,241:15-20.
    [46]Meng ZQ, Zhang LZ. Observation of frequecies of lymphocytes with micronuclei in human peripheral blood cultures from workers in a sulphuric acid factory [J]. Environmental and Molecular Mutagenesis,1990,15:218-220.
    [47]仪慧兰,孟紫强,杜建红.亚硫酸氢钠对大蒜有丝分裂周期的影响[J],山西大学学报.2001,24(3):262-264.
    [48]Meng ZQ, et al. Polymerases chain reaction based deletion screening of bisulfite (sulfur dioxide)-enhanced gpt mutants in CHO-AS52 cells [J]. Mutation Res,1999, 425:81-85.
    [49]孟紫强,白伟,二氧化硫对小鼠多种脏器脂质过氧化作用的研究[J].中国公共卫生,2003,19(10):1213-1205.
    [50]孟紫强,白巨利,耿红.二氧化硫对小鼠胃组织氧化损伤作用[J].工业卫生与职业病,2003,29(6):332-335.
    [51]孟紫强 耿红 秦国华 张波,二氧化硫吸入对小鼠脾脏的氧化应激作用[J].卫生毒理学杂志,2004,18(1):1-3.
    [52]张波,孟紫强,秦国华.二氧化硫吸入对小鼠脑组织的氧化损伤的研究[J].中国生物化学与分子生物学报,2002,18(1):120-124.
    [53]杜青平,贾晓珊,李适宇,孟紫强,SO2对大鼠肺泡巨噬细胞膜脂流动性及酶活性的影响[J].中国环境科学,2007,27(3):391-394.
    [54]杜青平,孟紫强,二氧化硫对大鼠肝线粒体的损伤作用[J].中华劳动卫生职业病杂志,2003,21(6):454-456.
    [55]杜青平,孟紫强,袁保红,亚硫酸盐对小麦幼苗细胞膜透性等改变的机制研究[J],西北植物学报,2003,23(6):938-941.
    [56]孟紫强,氧化应激效应与二氧化硫全身性毒作用研究[J],中国公共卫生,2003,19(12)1422-1424.
    [57]孟紫强,白巨利,二氧化硫吸入对小鼠9种脏器谷胱甘肽过氧化物酶活性的影响[J].环境与职业医学,2003,20(1):6-9.
    [58]武冬梅,孟紫强,SO2吸入对小鼠抗氧化酶及脂质过氧化的影响[J].中国公共卫生,2003,19(5):515-517.
    [59]白剑英、孟紫强,二氧化硫诱导小鼠脾细胞凋亡与谷胱甘肽水平的关系[J],卫生毒理学杂志,2003,17(1):42-44.
    [60]孟紫强刘玉香.二氧化硫吸入对小鼠脑、心、肾、睾丸超微结构的影响[J],环境科学学报,2006,26(1):130-136.
    [61]Bai JL, Meng ZQ. Expression of apoptosis-related genes in livers from rats exposed to sulfur dioxide [J]. Toxicology,2005,216:253-260.
    [62]Qin GH, Meng ZQ. The expressions of protooncogenes and CYP1A in lungs of rats exposed to sulfur dioxide and benzo(α)pyrene [J]. Regulatory Toxicology and Pharmacology,2006,45:36-43.
    [63]Qin GH, Meng ZQ. Effect of sulfur dioxide inhalation on CYP2B1/2 and CYP2E1 in rat liver and lung [J]. Inhal Toxicol,2006,18:581-588.
    [64]Li RJ, Meng ZQ, Xie JF. Effects of sulfur dioxide derivatives on four asthma-related gene expressions in human bronchial epithelial cells [J]. Toxicol Lett.2007, 175(1-3):71-81.
    [65]Li RJ, Meng ZQ, Xie JF. Effects of sulfur dioxide on the expressions of MUC5AC and ICAM-1 in airway of asthmatic rats [J]. Regul Toxicol Pharmacol.2007, 48(3):284-291
    [66]孟紫强,秦国华,白巨利等,SO2长期吸入对大鼠肺组织基因表达谱的影响[J].应用与环境生物学报,2006,12(2):229-234.
    [67]Meng ZQ. Oxidative damage of sulfur dioxide on various organs of mice:sulfur dioxide is a systemic oxidative damage agent [J]. Inhal Toxicol,2003,15:181-195.
    [68]Meng ZQ, Liu YX. Cell morphological ultrastructural changes in various organs from mice exposed by inhalation to sulfur dioxide [J]. Inhal Toxicol,2007, 19(6-7):543-51.
    [69]孟紫强,秦国华,白巨利等.SO2对大鼠肺基因组表达谱的影响—环境表达不稳定基因组存在的证据[J].山西大学学报(自然科学版),2006,29(3):225-236.
    [70]Ji AJ, Savon RS, Jacobsen DW. Determination of total serum sulfite by HPLC with fluorescence detection [J]. Clin Chem,1995,41:897-903.
    [71]Yang Z, deVeer MJ, Gardiner EE, Devenish RJ, Handley CJ, Underwood JR, Robinson HC. Rabbit polymorphonuclear neutrophils form 35S-labeled S-sulfo-calgranulin C when incubated with inorganic [35S]sulfate [J]. J Biol Chem, 1996,271:19802-19809,
    [72]Mitsuhashi H, Ota F, Ikeuchi K, Kaneko Y, Kuroiwa T, Ueki K, Tsukada Y, Nojima Y. Sulfite is generated from PAPS by activated neutrophils [J]. Tohoku J Exp Med, 2002,198:125-132
    [73]Mitsuhashi H, Ikeuchi H, Yamashita S,Kuroiwa T, KanekoY, Hiromura K, UekiK, Nojima Y. Increased levels of serum sulfite in patients with acute pneumonia [J]. Shock,2004,21:99-102
    [74]Mitsuhashi H, Nojima Y, Tanaka T, Ueki K, Maezawa A, Yano S, Naruse T. Sulfite is released by human neutrophils in response to stimulation with lipopolysaccharide [J]. J Leukocyte Biol,1998,64:595-599.
    [75]Meng ZQ, Li JL, Zhang QX. Vasodilator effect of gaseous sulfur dioxide and regulation of its level by ach in rat vascular tissues [J]. Inhalation Toxicology,2009, 21(14):1223-1228.
    [76]张欣,孟紫强.有害因子胁迫对人支气管上皮细胞二氧化硫生物合成的影响[J].生态毒理学报,2008,3(1):55-58.
    [77]Griffith OW. Cysteinesulfinate metabolism [J]. J Bio Chem,1983,258:1591-1598.
    [78]Wang R. The gasotransmitter role of hydrogen sulfide [J]. Antiox Redox Signal. 2003,5:493-501.
    [79]Singer TP, Kearney EB. Intermediary metabolism of L-cysteinesulfinic acid in animal tissues [J]. Arch Biochem Biophys,1956,61,397-409.
    [80]Ubuka T, Yuasa S, Ohta J, Masuoka N, Yao K, Kinuta M. Formation of sulfate from L-cysteine in rat liver mitochondria [J], Acta Med Okayama,1990,44:55-64.
    [81]Mitsuhashi H, Yamashita S, Ikeuchi H, et al. Oxidative stress-dependent conversion of hydrogen sulfide to sulfite by activated neutrophils [J]. Shock,2005,24:529-534.
    [82]Humphries DE, Silbert CK, Silbert JK, et al. Sulphation by cultured cells. Cysteine, cysteinesulphinic acid and sulphite as sources for proteoglycan sulphate [J]. Biochem J,1988,252:305-308.
    [83]Stipanuk MH. Metabolism of sulfur-containing amino acids [J].Annu Rev Nutr,1986, 6:179-209.
    [84]孟紫强,吕亚峰.大鼠不同脏器亚硫酸氧化酶活性及其与年龄的关系[J].生态毒理学报,2007,2(4):422-426.
    [85]Du SX, Jin HF, Bu DF, et al. Endogenously generated sulfur dioxide and its vasorelaxant effect in rats [J]. Acta Pharmacol Sin 2008,29 (8):923-930.
    [86]Wang R. Two's company, three's a crowd:can H2S be the third endogenous gaseous transmitter? [J]. FASEB J,2002,16:1792-1798.
    [87]Furchgott RF, Zawadski JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine [J]. Nature,1980,228:373-376.
    [88]Cao K, Wang R. Carbon monoxide, vascular contractility, and K+ channels. In CO and Cardiovascular Functions [M]. CRC Press, Boca Raton, LA.2001,83-109,
    [89]Meng ZQ, Geng H, Bai JL, Yan GH. Blood pressure of rats lowered by sulfur dioxide and its derivatives [J]. Inhal Toxicol,2003,15:951-959.
    [90]Meng ZQ, Li Y, Li JL.Vasodilatation of sulfur dioxide derivatives and signal transduction [J]. Archives of Biochemistry and Biophysics,2007,467:291-296.
    [91]Meng ZQ, Zhang H, The vasodilator effect and its mechanism of sulfur dioxide-derivatives on isolated aortic rings of rats [J]. Inhal Toxicol,2007, 19:979-986.
    [92]Balazy M, Abu-Yousef IA, Harpp DN, Park J. Identification of carbonyl sulfide and sulfur dioxide in porcine coronary artery by gas chromatography/mass spectrometry, possible relevance to EDHF [J], Biochem Biophys Res Commun,2003,311:728-734.
    [93]Fine JM, Gordon T, Sheppard D. The role of pH and ionic species in sulfur dioxide-and sulfite-induced bronchoconstriction [J]. Am Rev Respir Dis,1987,136:1122- 1126.
    [94]赵霞,金红芳,杜淑旭,唐朝枢,杜军保.二氧化硫对自发性高血压大鼠血压及血管结构的影响[J].中国药理学通报,2008,24(3):327-330.
    [95]田悦,汪立,金红芳,唐朝枢,杜军保.外源性二氧化硫对低氧性肺动脉高压大鼠肺动脉压力的影响[J].实用儿科临床杂志,2007,22:1729-1730
    [96]桑楠,孟紫强.二氧化硫代谢衍生物对大鼠海马CA1区神经元瞬间外向钾电流和延迟整流钾电流的影响[J].动物学报,2003,49(1):73-79.
    [97]Du ZQ, Meng ZQ. Effects of derivatives of sulfur dioxide on transient outward potassium currents in acutely isolated rat hippocampal neurons [J]. Food Chem Toxicol,2004,42(8):1211-1216.
    [98]Meng ZQ, Nie AF. Enhancement of sodium metabisulfile on sodium currents in acutely isolated rat hippocampal CA1 neurons [J]. Environ Toxicol Pharmacol,2005, 20(1):35-41.
    [99]孟紫强,桑楠.二氧化硫代谢衍生物对大鼠海马CA1区神经元钠电流的影响[J].生理学报,2002,54(3):267-270.
    [100]Meng ZQ, Nie AF. Effects of sodium metabisulfite on potassium current in acutely isolated CA1 pyramidal neurons of rat hippocampus [J]. Food Chem Toxicol,2005, 43(2):225-232.
    [101]聂爱芳.二氧化硫衍生物对大鼠海马神经元和心肌细胞离子通道的影响[D].太原,山西大学博士学位论文,2006.
    [102]Du ZQ, Meng ZQ. Modulation of sodium current in rat dorsal root ganglion neurons by sulfur dioxide derivatives [J]. Brain Res,2004,1010:127-133.
    [103]杜正清.二氧化硫衍生物和铅对大鼠神经元离子通道损伤研究[D].太原:山西大学博士学位论文,2005.
    [104]Nie AF, Meng ZQ. Modulation of L-type calcium current in rat cardiac myocytes by sulfur dioxide derivatives [J]. Food Chem Toxicol,2006,44(3):355-363.
    [105]Nie AF, Meng ZQ. Sulfur dioxide derivative modulation of potassium channels in rat ventricular myocytes [J]. Arch Biochem Biophys,2005,442(2):187-195.
    [106]Nie AF, Meng ZQ. Study of the interaction of sulfur dioxide derivative with cardiac sodium channel [J]. Biochim Biophy Acta,2005,1718(1-2):67-73.
    [107]Kajiyama H, Nojima Y, Mitsuhashi H, et al. Elevated levels of serum sulfite in patients with chronic renal failure [J]. J Am Soc Nephrol,2000,11:923-927.
    [108]Leonard SA, Redmond HP. Effects of volatile and intravenous anesthetic agents on neutrophil function [J]. Int Anesthesiol Clin.2003,41(1):21-29.
    [109]Nathan C. Neutrophils and immunity:challenges and opportunities [J]. Nat Rev Immunol,2006,6:173-182.
    [110]Rosenspire AJ, Kindzelkii AL, Petty HR. Cutting edge:Fever-associated temperatures enhance neutrophil responses to lipopolysaccharide:a potential mechanism involving cell metabolism [J]. J Immunol,2002,169:5396-5400.
    [111]Shigehara T, Mitsuhashi H, Ota F, et al. polymorphonuclear neutrophils to immobilized fibrinogen through activation of Mac-1 β2-integrin (CD11b/CD18) [J]. Life Science,2002,70:2225-2232.
    [112]Beck-Speier I, Dayal N, Maier KL. Pro-inflammatory response of alveolar macrophages induced by sulphite:studies with lucigenin-dependent chemiluminescence [J]. J Biolumin Chemilumin,1998,13(2):91-99.
    [113]Meng ZQ, Zhang LZ. Cytogenetic damage induced in human lymphocytes by Sodium bisulfite[J]. Mutation Research,1992,298:63-69.
    [114]Meng ZQ, Sang N, Zhang B. Effects of derivatives of sulfur dioxide on micronuclei formation in mouse bone marrow cells in vivo [J]. Bull. Environ. Contam Toxicol,2002,69(2):257-264.
    [115]孟紫强,张波.二氧化硫吸入对大鼠脑组织细胞的氧化损伤作用[J].中国环境科学,2001,21(5):464-467.
    [116]Bai JL, Meng ZQ. The effects of sulphur dioxide on activities of fatty acid synthase in livers and lungs [J]. luminescence,2008,23(2):59-60
    [117]孟紫强,郭掌珍.S02在水和有机溶剂中的化学形态及其脂/水分配系数:S02生理学研究新模式[J].生态毒理学报,2009,4(1):75-80
    [118]Falk M, Giguere PA.1958. On the nature of sulphurous acid [J], Can J Chem, 36:1121-1125.
    [119]邹冈.基础神经药理学(第二版)[M].北京,科学出版社,1999,195-196.
    [120]Nigg EA, Hilz H, Eppenberger HM, et al. Rapid and reversible translocation of the catalytic subunit of cAMP-dependent protein kinase type Ⅱ from the Golgi complex to the nucleus [J]. EMBO J,1985,4(11):2801-2806.
    [121]Raidoo DM, Ramsaroop R, Naidoo S, et al. Kini receptors in human vaseular tissue:their role in atheromatous disease [J].Immunopharmacology,1997, 36(2-3):153-160.
    [122]Miura H, Gutterman DD. Huma coronary arteriolar dilation to arachidonic acid depends on cytochrome P-450 monooxygenase and Ca2+ -activated K+ channels [J].Circ Res,1998,83(5):501-507.
    [123]Mashito Y, Ichniose M, Sugiuar H, et al. Sensory nerve activation in airway micro vascular permeability in guinea-Pig late allergic response [J]. Eur Respir J, 1999,14(2):320-327.
    [124]Maekic JB, Stnis M, Jovanovic S, et al. Cereport (RMP-7) increases the Permeability of human brain microvascular endothelial cell monolayers [J]. Pharm Res,1999,16(9):1360-1365.
    [125]席春生,陈香美.血管内皮功能研究进展[J].西北国防医学杂志,2004,25(6):447-448.
    [126]张颖.内皮素作用机制及其与脑出血的相关性研究进展[J].神经疾病与精神卫生,2003,3(6):488-490.
    [127]朱妙章主编,大学生理学[M].北京,高等教育出版社,2006,236.
    [128]Kuriyama T, Lewis M, Xiao JH, et al. Effects of regenerator geometry on pulse tube refrigerator performance [J]. Adv Cryog Eng,1998,43:1611-1618.
    [129]杨理邦,庄汉澜.信号转导中的离子通道[J].国外医学·分子生物学分册,1992,14(3):117-119.
    [130]翟中和,王喜忠,丁明孝,细胞生物学[M].北京,高等教育出版社,2000,128,155.
    [131]Fasolato C, Innocenti B, Pozzan T. Receptor-activated Ca2+ influx:how many mechanisms for how many channels? [J]. Ti PS,1994,15:77-83.
    [132]Karaki H, Ozaki H, Hori M et al. Calcium movements, distribution, and functions in smooth muscle [J]. Pharmacol Rev,1997,49(2):157-230.
    [133]Parekh AB, Reinhold P. Store Depletion and calcium influx [J]. Physiol Rev,1997, 77:901-930.
    [134]Gibson A, McFadzean I, Wallace P, Wayman CP. Capacitative Ca2+ entry and the regulation of smooth muscle tone[J]. Ti PS,1998,19:266-269.
    [135]Jackson WF, Ion Channels and Vascular Tone [J], Hypertension,2000,35:173-178
    [136]蔡文琴,姚忠祥.无神经支配血管的内皮细胞调控机制[J].生命科学,1999,11(1):38-40.
    [137]Emerson GG, Segal SS. Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries[J]. Circulation Research,2000,87(6):474.
    [138]Yamamoto Y, Klemm MF, Edwards FR, et al. Intercellular electrical communication among smooth muscle and endothelial cells in guinea-pig mesenteric arterioles [J]. Journal of Physiology,2001,535(1):181-195.
    [139]Adams DJ, Barakeh J, Laskey R, et al. Ion channels and regulation of intracellular calciumin vascular endothelial cells [J]. FASEB J.1989,3:2389-2400.
    [140]Wang XD, Van Breemen C. Multiple mechanisms of activating Ca2+ entry in freshly isolated rabbit aortic endothelial cells [J]. J Vas Res,1997,34:196-207.
    [141]Nilius B, Viana F, Drogmans G. Ion channel in vascular endothelium [J]. Annu Rev Physiol,1997,59:145-170.
    [142]Fransen P, Sys SU. K+ and Cl- contribute to resting membrane conductance of cultured porcine endocardial endothelial cells [J]. Am J Physiol.1997, H1770-H1779.
    [143]Beech DJ, Bolton TB. Two components of potassium current activated by depolarization of single smooth muscle cells from the rabbit portal vein [J]. J Physiol, 1989,418:293-309
    [144]Fleischmann BK, Washabau RJ, Kotlikoff MI. Control of resting membrane potential by delayed rectifier potassium currents in ferret airway smooth muscle cells[J]. J Physiol,1993,469:625-638
    [145]Leblanc N, Wan X, Leung PM. Physiological role of Ca2+ -activated and voltage-dependent K+ currents in rabbit coronary myocytes [J]. Am J Physiol,1994, 266:C1523-1537.
    [146]Berne RM. The role of adenosine in the regulation of coronary blood flow [J]. Circ Res,1980,47(6):807-13.
    [147]Ishikawa T, Hume JR, Keef KD. Modulation of K+ and Ca2+ channels by histamine H1-receptor stimulation in rabbit coronaryartery cells [J]. J Physiol,1993, 468:379-400.
    [148]Hirst GD, Edwards FR. Sympathetic neuroeffector transimssion in arteries and arterioles [J]. Physiol Rev,1989,69(2):546-604
    [149]Sargent CA, Grover GJ, Antonaccio MJ, McCullough JR. The cardioprotective, vasorelaxant and electrophysiological profile of the large conductance calcium-activated potassium channel opener NS2004 [J]. J Pharmacol Exp Ther, 1993,266(3):1422-1429
    [150]Von Beckerath N, Cyrys S, Dischner A, Daut J. Hypoxic vasodilatation in isolated, perfused guinea-pig heart:An analysis of the underlying mechanisms [J]. J Physiol, 1991,442:297-319.
    [151]Eckman DM, Frankovich JD, Keef KD. Comparison of the actions of acetylcholine and BRL 38227 in the guinea-pig coronary artery [J]. B r J Pharmacol,1992, 106(1):9-16
    [152]Kanatsuka H, Sekiguchi N, Sato K et al. Microvascular sites and mechanisms responsible for reactive hyperemia in the coronary circulation of the beating canine heart [J]. Circ Res,1992,71(4):912-922
    [153]McCarron JG, Halpern W. Potassium dilates rat cerebral arteries by two independent mechanisms [J]. Am J Physiol,1990,259:H902-908.
    [154]Quayle JM, McCarron JG, Brayden JE, Nelson MT. Inward rectifier K+ currents in smooth muscle cells from rat resistance-sized cerebral arteries[J]. Am J Physiol,1993, 265:C1363-1370.
    [155]Knot HJ, Zimmermann PA, Nelson MT. Activation of inward rectifier K+ channels (Kir) dilates small cerebral and coronary arteries in responses to elevated potassium[J]. Biophys J,1994,66:A144.
    [156]Yang GD, Wu LY, Jiang B, et al. H2S as a Physiologic Vasorelaxant:Hypertension in Mice with Deletion of Cystathionine γ-Lyase [J]. Science,2008,322(5901): 587-590.
    [157]Geng B, Cui Y, Zhao J, et al. Hydrogen sulfide downregulates the aortic L-arginine/nitric oxide pathway in rats [J]. Am J Physiol Regul Integr Comp Physiol, 2007,293:R1608-1618.
    [158]Oh GS, Pao HO, Lee BS, et al. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heine oxygenase-lexpression in RAW264.7 macrophages stimulated with lipopolysaccharide [J]. Free Radic Biol Med,2006,41:106-119.
    [159]周晓红,韦鹏,凌毅群等,内源性H2S对LPS所致大鼠急性肺损伤时肺动脉高压的影响及其与一氧化氮的相互作用[J].中国病理生理杂志,2006,22:715-721.
    [160]Jeong SO, Pae HO, Oh GS, et al.Hydrogen sulfide potentiates interleukin-1 beta-induced nitric oxide production via enhancement of extracellular signal-regulated kinase activation in rat vascular smooth muscle cells [J]. Biochem Biophys Res Commun.2006,345:939-944.
    [161]Zhang QY, Du JB, Zhou WJ, et al. Impact of hydrogen sulfide on carbon monoxide/heme oxygenase pathway in the pathogenesis of hypoxic pulmonary hypertension [J]. Biochem Biophys Res Commun,2004,317:30-37.
    [162]Puranik M, Weeks CL, Lahaye D, et al. Dynamics of carbon monoxide binding to cystathionine beta-synthase [J]. J Biol Chem,2006,281:13433-13438.
    [163]Wu L, Cao K, lu Y, et al. Different mechanisms underlying the stimulation of K (Ca) channels by nitric oxide and carbon monoxide [J]. J Clin Invest,2002,110:691-700.
    [164]Ushiyama M, Morita T, Katayama S. Carbon monoxide regulates blood pressure cooperatively with nitric oxide in hypertensive rats [J]. Heart Vessels,2002,16: 189-195.
    [165]Hosoki R, Matsuki N, Kimura H. The Possible Role of Hydrogen Sulfide as an Endogenous Smooth Muscle Relaxant in Synergy with Nitric Oxide [J]. Biochem Biophys Res Commun [J].1997,237(3):527-531.
    [166]杜军保,金红芳,气体信号分子间的相互作用[J].中国医学杂志,2008,88(34)2380-2382.
    [167]Burrnge K, Hood L, Ragan MA. Advanced computing for systems biology [J]. Brief Bioinform,2006,7:390-398.
    [168]蒲丹,唐朝枢.关注生物活性小分子物质的研究[J].国外医学·生理、病理科学与临床分册.2004,24(5):393-398
    [169]Suarez I, Bodega G, Fernandez B.Glutamine synthetase in brain:effect of ammonia[J]. Neurochem Int.2002,41(2-3):123-42.
    [170]Butterworth RF. Pathophysiology of hepatic encephalopathy:a new look at ammonia [J]. Metab Brain Dis.2002,17(4):221-7.
    [171]Seiler N. Ammonia and Alzheimer's disease [J]. Neurochem Int 2002,41:189-207
    [172]Anderson KE, Brandt L, Hindfelt B, Ljunggren B. Cerebrovascular effects of ammonia in vitro[J]. Acta Physiol Scand 1981,113:349-353.
    [173]袁建琴,李方晖,付德荣等.乳酸的最新研究进展[J].西安体育学院学报,2009,26:198-201
    [174]Davis JA. Anaerobic threshold:review of the concept and directions for future research [J]. Med Sci Sports Exerc,1985,17:6-18.
    [175]Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis [J]. Am IP hysiol,2004,287:R502-516.
    [176]Brooks GA. Lactate shuttles in nature [J]. Biochem Soc Trans,2002,30:258-264.
    [177]Cerdan S, Rodrigues TB, Sierra A, et al. The redox switch/redox coupling hypothesis [J]. Neurochem Int,2006,48:523-530.
    [178]Fattor JA, Miller BF, Jacobs KA. And Brooks Ga. Catecholamine response is attenuated during moderate-intensity exercise in response to the'lactate clamp'[J]. Am J Physiol.2005,288:E143-E147.
    [179]Philp A, Macdonald AL, Watt PW. Lactate-a signal coordinating cell and systemic function [J]. J Exp Biol,2005,208:4561-4575.
    [180]Trabold O, Wagner S, Wicke C, et al. Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing [J]. Wound Repair Regen,2003,11:504-509.
    [181]马延超,张缨.丙酮酸研究进展[J].中国运动医学杂志,2004,23(4):468-470.
    [182]赵喜红,何小维,李彦萍.丙酮酸盐的生理功效及其应用研究进展[J].酿酒科技,2007,152(2):80-83.
    [183]Mallet RT. Pyruvate:metabolic protector of cardiac performance [J]. J Proc Exp Biol Med,2000,223:136-148.
    [184]Olivencia-Yurvati AH, Blair JL, Baig M, et al. Pyruvate enhanced cardioprotection during surgery with cardiopul-monary by pass [J]. J Cardiothorac Vasc Anesth,2003, 17(3):715.
    [185]Lloyd S, Brocks C, Chatham JC. Differential modulation of glucose, lactate, and pyruvate oxidation by insulin and dichloroacetate in the rat heart [J]. Am J Physiol Heart Circ Physiol,2003,285(1):163.
    [186]Cortez M Y, Torgan CE, Brozinick JT, et al. Effects of pyruvate and dihy-droxyacetone consumption on the growth and metabolic state of obese Zucker rats[J], Am J Clin Nutr,1991,53 (4):847-853.
    [187]Stanko RT, Reiss Reynolds H, Hoyson R, et al. Plasma lipid concentrations in hyperlipidemic patients on the growth and metabolic state of obese Zncker rats[J], Am J Clin Nutr,1992, (56):950-954.
    [188]Stanko RT. Enhancement of arm exercise endurance capacity with dihydroxyacetone and pyruvate[J]. J Appl Physiol,1990,68:199-124.
    [189]Stone MH. Effects of in-season (5 weeks) creatine and pyruvate supplementation on anaerobic performance and body composition in American football players [J]. Int J Sport Nutr,1999,9:146-165.
    [190]Shapiro R:Genetic effects of bisulfite (sulfur dioxide). Mutat Res,1977,39: 149-175.
    [191]Green LF. Sulfur Dioxide and Food Preservation (A Review) [J]. Food Chem,1976, 1:103-124.
    [192]Joslyn MA, Braverman JB. The chemistry and technology of the pretreatment and preservation of fruit and vegetable products with sulfur dioxide and sulfites [J]. Adv Food Res,1954,5:97-160.
    [193]MY Ali, CY Ping, Y-YP Mok, L Ling, M Whiteman, M Bhatia, PK Moore. Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide? [J]. Br J Pharmacol,2006,149(6):625-634.
    [194]Wang Y, Bukoski RD. Use of acute phenolic denervation to show the neuronal dependence of Ca2+ induced relaxation of isolated arteries [J]. Life Sci,1999, 64:887-894.
    [195]Fujimoto S, Asano T, Sakai M, Sakurai K, Takagi D, Yoshimoto N, and Itoh T. Mechanisms of hydrogen peroxideinduced relaxation in rabbit mesenteric small artery [J]. Eur J Pharmacol,2001,412:291-300.
    [196]杜淑旭,张春雨,金红芳等.二氧化硫衍生物舒张大鼠离体主动脉血管环的效应及其机制研究[J].北京大学学报(医学版),2006,38(6):581-585.
    [197]杜淑旭,金红芳,卜定方等。内源性二氧化硫及其生成酶在大鼠体内的生成与分布[J].中国病理生理杂志,2008,24(11):2108-2112.
    [198]Zhang QX, Meng ZQ, The vasodilator mechanism of sulfur dioxide on isolated aortic rings of rats:Involvement of the K+ and Ca2+ channels[J]. Eur J Pharmacol,2009,602:117-123.
    [199]王荣花,张宝娓,唐朝枢.红细胞与血小板的L-精氨酸/NO系统在心血管疾病中的变化[J].心血管病学进展,2003,24(4):243-7.
    [200]Schachter, D. L-Glutamine in vitro regulates rat aortic glutamate content and modulates nitric oxide formation and contractility responses [J]. Am J Physiol cell physiol,2007,293:C142-C151.
    [201]Geng B, Cui Y, Zhao J, Yu F, Zhu Y, Xu G, Zhang Z, Tang C, Du J. Hydrogen sulfide downregulates the aortic L-arginine/nitric oxide pathway in rats [J]. Am. J. Physiol. Regul Integr Comp Physiol.2007,293(4):R1608-1618.
    [202]Bradford, MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal. Biochem. 1976,72:248-254.
    [203]Leoncini G, Bruzzese D, Signorello MG. The L-argi-nine/NO pathway in the early phases of platelet stimulation by collagen [J]. Biochem Pharmacol,2005, 69(2):289-296.
    [204]Jerzy Buzek, Manfred Jaschik, Gas-Liquid Equilibria In The System SO2-Aqueous Solutions Of NaHSO3/Na2SO3/Na2SO4 [J].Chemical Engineering Science,1995, 50(19):3067-3075.
    [205]Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxan t in synergy with nitric oxide [J]. Biochem Biophys Res Commun,1997,237(3):527-531.
    [206]Yan H, Du JB, Tang CS. The possible role of hydrogen sulfide on the pathogenesis of spontaneous hypertension in rats [J]. Biochem Biophys Res Commun,2004,313 (2):22-27.
    [207]王宏宇,张维忠,龚兰生等.高血压病大动脉扩张性与左室肥厚关系的探讨[J].中华心血管病杂志,2000,28(3):177-180.
    [208]Omar HA, Mohazzab, KM, Mortelliti, MP, Wolin, MS.02 dependent modulation of calf pulmonary artery tone by lactate:role of H2O2 and cGMP [J]. American Journal of Physiology,1993,168:L141-145.
    [209]Omar HA, Figueroa R, Tejani N, Wolin MS. Properties of a lactate-induced relaxation in human placental arteries and veins[J]. American Journal of Obstetrics and Gynecology,1993,169:912-918.
    [210]Travis W. Hein, Wenjuan Xu, and Lih Kuo, Dilation of Retinal Arterioles in Response to Lactate:Role of Nitric Oxide, Guanylyl Cyclase, and ATP-Sensitive Potassium Channels [J]. IOVS,2006,47(2):693-698.
    [211]McKinnon W, Aaronson PI, Knock G, Graves J, Poston L. Mechanism of lactate-induced relaxation of isolated rat mesenteric resistance arteries[J]. Journal of Physiology 1996,490 (3):783-792
    [212]Bangsboo, J., Johansen, L., Graham, T.& Saltin, B. Lactate and H+ effluxes from human skeletal muscles during intense, dynamic exercise[J]. Journal of Physiology, 1993,462:115-133.
    [213]Huckabee WE. Abnormal resting blood lactate. The significance of hyperlactatemia in hospitalized patients[J]. American Journal of Medicine,1961,30:833-848.
    [214]Robergs RA, Ghiasvand F, Parker D. Biochemistry of exercise-induced metabolic acidosis [J]. Am J Physiol Regul Integr Comp Physiol,2004,287:502-516.
    [215]王立丰,卢健,陈彩珍.对乳酸代谢研究的新认识[J].吉林体育学院学报,2009,25(3):74-76.
    [216]Ing TS, Patel BP, Patel JA, et al. Effects of a pH 7.4, lactate-based and a pH 7.4, bicarbonate-based peritoneal dialysis solutions on neutrophil superoxide generation [J]. Int J Artif Organs,1996,19 (12):700-703.
    [217]West GA, Leppla DC, Simard JM. Effects of external pH on ionic currents in smooth muscle cells from the basilar artery of the guinea pig [J]. Circ Res,1992,71: 201-209.
    [218]Klockner U, Isenberg G. Calcium channel current of vascular smooth muscle cells: Extracellular protons modulate gating and single channel conductance [J]. J Gen Physio,1994,103:665-678.
    [219]Klockner U, Isenberg G. Intracellular pH modulates the availability of vascular L-type Ca2+ channels [J]. J Gen Physiol,1994,103:647-663.
    [220]Ray CJ, Marshall JM. The cellular mechanisms by which adenosine evokes release of nitric oxide from rat aortic endothelium [J]. J Physiol,2006,570:85-96.
    [221]Nichols WW. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms [J]. Am J Hypertens,2005,18:3-10.
    [222]Tsuneyoshi, I., Kanmura, Y., Yoshimura, N. Lipoteichoic acid from Staphylococcus aureus depresses contractile function of human arteries in vitro due to the induction of nitric oxide synthase [J]. Anesth Analg,1996,82,948-953.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700