高效液相色谱电化学发光传感器新技术及气质联用方法研究和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
色谱(Chromatography)是一种高效的分离技术,目前已被广泛地应用到食品安全、药物分析、环境监测、毒物分析、质量控制、生物化工和医疗卫生等领域。高效液相色谱(High-performance liquid chromatography, HPLC)和气相色谱(Gas chromatography, GC)具有分离效能高、选择性好和分析速度快等优点,是目前应用最广泛的两种色谱技术。
     电化学发光(Electrochemiluminescence, ECL)是通过电化学的方法激发的一种发光现象,是电化学和化学发光相结合的产物。电化学发光不但保留了化学发光原有检出限低、线性范围宽的特点,而且还表现出一些独特的优点,如反应可控性强、节省试剂、可进行原位检测等。但同时,电化学发光选择性差的缺点限制了它的进一步应用。为了拓宽它的应用范围,将电化学发光和分离技术联用是必要的。HPLC和ECL联用不但可以克服单一使用ECL选择性差的缺点,而且可以提高HPLC的灵敏度,是一种应用前景较好的检测技术。
     气相色谱-质谱(GC/MS)是一种强大的分析技术,兼具气相色谱的强分离效能和质谱的强定性能力。采用GC/MS对食品等基质复杂的样品进行检测,不但可以实现食品中多种杂质和待测物的高效分离,而且也可以对待侧物进行准确定性。
     本论文首先概述了高效液相色谱、电化学发光传感器和气相色谱-质谱的研究进展,并对近年来高效液相色谱-电化学发光传感器的应用研究以及气相色谱-质谱在食品安全方面的应用进行了归纳和总结。
     在研究部分,采用对钉联吡啶固定能力强、固定容量大的Nepem-105D全氟液体离子交换溶液和Nepem-211全氟离子交换电导膜来修饰电极。在此基础上设计一种能够实用于HPLC检测的,结构简单、死体积小的流通式ECL检测池。由于Nepem-105D在全氟乙烯基醚结构类似的骨架结构上有更多的支链;C-F键的键长短,键能高(486千焦耳/摩尔),富电子的氟原子具有强烈电负性,导致在相邻之间的氟原子相互排斥。氟原子和氟原子聚合物的C-C沿锯齿链螺旋状分布。同时,由于氟原子体积大于氢原子,它提供了更好地覆盖的C-C链,形成低表而自由I能氟化物保护层。由于Nepem-105D具有良好的热稳定性,化学稳定性和高交换容量,适合通过离子交换来固定Ru(bpy)32+,用于设计简单的单铂丝流通式HPLC-ECL检测器。Nepem-211全氟离子交换电导膜是用Nepem-105D全氟液体离子交换剂,通过树脂流动和掺杂技术制成的一种既具有强的阳离子交换势和高交换容量、高的抗张强度、高的选择性和各向同性,又有高的电导率(0.1s/cm),薄膜厚度可调,自湿度好,线性膨胀低。已被用于燃料电池、钒电池和电渗析等方面。大容量的Ru(bpy)32+可以牢固地固定在这种电导膜上,再紧密地缠绕在回型铂丝上做成工作电极。由此构建的流通式ECL传感器,抗有机溶剂能力强,具有较长期的稳定性。特别适合作为HPLC的检测器。在优化电化学发光传感器条件的基础上,通过对色谱分离条件的优化,建立一套高效液相色谱电化学发光传感器联用新体系,并将这套新体系应用于食品和生物样品的检测。
     此外,本研究还利用GC/MS的超强的分离和强定性能力对脂肪含量高的糕点样品的防腐剂以及食用菌、茶叶、蔬菜等植物性食品中的多种农药残留量进行了检测。具体研究工作为:
     基于Nepem-105D全氟离子交换溶液形成的离子交换膜将钌联吡啶(II)固定于单根铂丝电极表面设计制成了一种微型电化学发光传感器,此传感器仅由两根铂丝和一个毛细玻璃管组成,结构非常简单。在最佳实验条件下,连续6次测定氧氟沙星标准溶液(0.3μg mL-1)的日内差为3.6%,连续3天日间差为6.8%。将此传感器与高效液相色谱联用,建立了一套新型的HPLC-ECL检测系统,此系统中,化学发光试剂是被固定的,而且可以反复使用。不需要外加发光试剂流路,装置非常简单,色谱柱后没有液体流入,不会造成样品稀释和峰扩展。由于发光试剂反复使用,大大降低了试剂成本,也减小了试剂排放造成的环境污染。应用此系统成功测定了牛乳样品中的多种FQs药物残留以及血清样品中的3种镇吐药含量。
     以Nepem-211离子交换电导膜固定钌联吡啶为基础,设计了一个灵敏的流通式ECL传感器。该传感器抗有机溶剂能力强,稳定性好。将此传感器和HPLC联用同时测定红霉素(8.0ngμL*1)和克拉霉素(4.0ngμL-1)11次得到的化学发光强度的RSD分别为1.40%和1.76%,此联用系统成功测定了蜂蜜和猪肉样品中的红霉素和克拉霉素以及尿样中的3种三环类抗抑郁药物。
     采用相互饱和的乙腈和正己烷,通过快速漩涡混合萃取或超声萃取,在对糕点中富马酸二甲酯萃取的同时实现了对脂肪杂质的去除,建立了一步三相快速提取糕点中富马酸二甲酯的方法。该方法简单、快速、可靠。本研究首次采用GC-ECD实现了对食品中富马酸二甲酯的测定,并将此方法与GC-FID和CG/MS的方法进行了比较,三种方法均可以实现对糕点中富马酸二甲酯的测定,CG/MS的灵敏度最高,GC-ECD的灵敏度高于GC-FID.
     建立了采用气质联用仪同时测定有机氯、有机磷、拟除虫菊酯类和氨基甲酸酯类共4类49种农药的方法。蔬菜和干性食品中的农药分别用乙腈和丙酮提取,提取液浓缩后采用固相萃取净化。连续三年对286份蔬菜以及30份食用菌和35份袋泡茶样品的农残进行了监测。监测结果显示:袋泡茶、叶类蔬菜、鲜食用菌的农药检出率高于干食用菌。依据GB2763-2012判定,有2.10%的蔬菜样品农药残留超标。
Chromatography is a powerful separation technology. Nowdays, it has been widely used in analytical chemistry field, e.g. food safety, pharmaceutical analysis, environment inspection, toxicological analysis, quality control, biological chemistry, clinical etc. Among numerous chromatography methods, high-performance liquid chromatography (HPLC) and gas chromatography (GC) are the most popular tools due to high separation efficiency, improved selectivity, the fast speed of analysis.
     Electrochemiluminescence (ECL) is the light-emitting phenomena initiated by electrochemical method. It is the combination of CL and electrochemistry. Whilst retaining the advantages of the very low detection limits and the wide linear dynamic range inherent to conventional CL method, ECL also offers many additional advantages, e.g., controllable chemiluminescence reaction, reduced reagent consumption and in situ ECL generation. However, the poor Selective of this method limits its further application. To widen its application, separation technology should be coupled with ECL. HPLC coupled to ECL detection represents an interface between the selectivity of a powerful separation method and the sensitivity of this detection technique.
     GC/MS is a powerful analytical tool due to high qualitative ability of MS and efficient separations for analytes. When GC/MS was used in food analysis, interfering substances can be separated from analytes by GC and analytes can be accurate detection by MS. Thus, GC/MS is a proper choice to detect thermally stabile, low-polar and volatile analytes in food matrices. With these distinguished advantages, GC/MS is extensively employed for food safety.
     In this Paper, Advances in HPLC, ECL sensor and GC/MS research in the past years are reviewed. HPLC-ECL system and the application of GC/MS in food safety are also introduced briefly.
     Nepem-105D perfluorinated ion exchange solution and Nepem-211perfluorinated ion exchange conductance membrane which not only has high capability and high capacity for immobilization of Ru(bpy)32+, but also has high conductivity were used to modify electrode. On this basis, a simple ECL flow cell with low dead volume and good compatibility for HPLC analysis was developed. Nepem-105D has a branched chain perfluorinated vinyl ether structure on a skeletal structure similar to that of PTFE. Since the C-F bond length is short, the bond energy is high (486kJ/mol) and electron-rich fluorine atoms are strongly electronegative, resulting in mutual repulsion between adjacent fluorine atoms and fluorine atoms along the zigzag polymer C-C chain spiral distribution. Also, because the fluorine atomic volume is bigger than the hydrogen atom, it provides better coverage of the C-C chains, forming a low surface free energy fluoride protection layer. As Nepem-105D has good thermal stability, chemical stability and high exchange capacity, Ru(bpy)32+can be exchanged through the ion-exchange process and electrostatic adsorption. Thus, it can be used to develop a simple single Pt wire HPLC-ECL detector. Nepem-211perfluorinated ion exchange conductance membrane is made by new resin flow technology based on Nepem-105D. Resin flow technology can combine with adulterate technology, so Nepem-211has many outstanding features:it not only has the high tensile strength, high selection, isotropy, high conductance (0.1s/cm), but also the effect of self-humidifying and with low linear expansion. It has been applied in fuel cell, vanadium batteries, electrolyzer, electrodialysis and solid electrolyte membrane of electrochemical sensors. Nepem-211membrane has higher exchange capacity, so more Ru(bpy)32+can be immobilized. Immobilized Ru(bpy)32+cannot migrate into the electro-inactive hydrophobic region with time, and it is not destroyed upon exposure to mobile phase containing high organic content. So the flow sensor has high sensitivity and a long life. It is very suitable for HPLC analysis. Based on the optimal conditions of ECL detector and chromatographic separation, a new HPLC-ECL system was established. This system was used to detect trace pharmaceuticals in food and biological samples (eg. blood, urine). In addition, GC/MS was used to detect dimethyl fumarate in cakes and49kinds of pesticide residues in plant-based foods.The main researches are as follows:
     A simple, stable and sensitive ECL sensor was developed based on tris(2,2-bipyridyl)ruthenium(II) immobilized on the surface of a Pt wire with Nepem-105D ion exchange solution. It contains only two Pt wires and a matrass. Under optimal conditions, six repeat injections of0.3μg ml-1OFL solution was3.6%and the inter-day precision was6.8%on three consecutive days. The sensor was used as a detector of HPLC. In this HPLC-ECL system, luminescence reagent Ru(bpy)32+was immobilized and can be reused, therefore, no Ru(bpy)32+delivery system is needed, the experimental setup was simplified. There is no post column reagent addition, which would dilute analytes, potentially leading to chromatographic band-broadening. Furthermore, the reagent cost and its contamination to the environment were reduced. The HPLC-ECL was used for the determination of multiple target fluoroquinolone residues in milk and three antiemetic drugs in human serum successfully.
     A sensitive and robust electrogenerated chemiluminescence (ECL) flow sensor was developed in this work. It was based on Ru(bpy)32+immobilized with Nepem-211membrane, which has good electrical conductivity, and high exchange capacity for immobilization of Ru(bpy)3+. The flow sensor has good stability. The precision of11repeat injections of8.0ngμL-1erythromycin,4.0ngμL-1clarithromycin solutions were1.40%and1.76%, respectively. The proposed flow sensor has been used as a post-column detector in HPLC for determination of erythromycin and clarithromycin in honey and pork and doxepin, amitriptyline, and clomipramine in human urine.
     A method of one step rapid extraction of dimethyl fumarate in cakes using acetonitrile and n-hexane saturated each other was established. Dimethyl fumarate and fat impurities can be extracted by acetonitrile and n-hexane, respectively, at the same time. This pre-treatment method is simple, rapid and reliable. GC-ECD was used to analyze dimethyl fumarate of food at the first time in this study. Furthermore, it was compared with GC-FID and CG/MS, the sensitivity of GC-ECD method is higher than GC-FID method.
     A method for rapid determination of49kinds of pesticide residues in plant-based foods by GC/MS was established. The pesticide residues in vegetable samples and dry plant-based foods were extracted with acetonitrile and acetone, respectively. The extracting solution was clean-up by SPE after being concentrated.286vegetable samples,30edible mushrooms and35tea bags were analyzed in three consecutive years. The pesticides residue in tea bags, leafy vegetables and fresh edible mushrooms were higher than dry edible mushrooms. According to GB2763-2012, the pesticides level of2.10%vegetables exceeded maximum residue limits.
引文
[1]R. P. W. Scott. Chromatographic Detectors. Design, Function and Operation [M]. New York:Marcel Dekker,1996.
    [2]L. R. Snyder, J. J. Kirkland, J. W. Dolan. Introduction to Modern Liquid Chroamtography [M]. New York:John Wiley and Sons.,2010.
    [3]A. Tiselius, S. Claesson. Adsorption analysis by means of interferometric study [J]. Arkiv Kemi, Mineral Geol,1942,15B (18):1-6.
    [4]A. T. James, A. J. PMartin, S. S. Randall. Automatic fraction collectors and a conductivity recorder[J]. Biochem. J.,1951,49:293-299.
    [5]C. G. Horvath, S. R. Lipsky. Use of liquid ion exchange chromatography for the separation of organic compounds[J]. Nature,1966,211(5050):748-749.
    [6]B. J. Bomastyk, I. Petrovic, P. C. Hauser. Absorbance detector for high-performance liquid chromatography based on light-emitting diodes for the deep-ultraviolet range [J]. J. Chromatogr. A,2011,1218:3750-3756.
    [7]M. Swartz. HPLC detectors:a review [J]. J. Liq. Chromatogr. Related Technol., 2010,33:1130-1150.
    [8]廖雅桦,蒋腊梅,穆小丽等.凝胶渗透色谱-高效液相色谱一串联质谱法同时测定烟草中3种抑芽剂残留[J].分析实验室,2010,29(1):72-75.
    [9]赵建幸,罗雪美,詹一鸣等.高效液相色谱-紫外、荧光双检测器同时测定人尿中犬尿氨酸和犬尿喹啉酸[J].检验医学,2009,24(9):659-662.
    [10]R. J. Lewis, A. Yang, A. Jones. Rapid extraction combined with LC-tandem mass spectrometry (CREM-LC/MS/MS) for the determination of ciguatoxins in ciguateric fish flesh[J]. Toxicon,2009,54:62-66.
    [11]M. Arienzo, D. Cataldo, L. Ferrarab. Pesticide residues in fresh-cut vegetables from integrated pest management by ultra performance liquid chromatography coupled to tandem mass spectrometry [J]. Food Control,2013,31:108-115.
    [12]S. N. Sinha, K. Vasudev, M. Vishnu, V. Rao. Quantification of organophosphate insecticides and herbicides in vegetable samples using the "Quick Easy Cheap Effective Rugged and Safe" (QuEChERS)method and a high-performance liquid chromatography electrospray ionisation-mass spectrometry (LC-MS/MS) technique[J]. Food Chem.,2012,132:1574-1584.
    [13]J. Kuligowski, G. Quintas, S. Garrigues, et al. Recent advances in on-line liquid chromatography-infrared spectrometry (LC-IR) [J]. Trends Anal. Chem.,2010, 29(6):544-552.
    [14]O. Hendrawati, H. J. Woerdenbag, P. J. A. Michiels, et al. Identification of lignans and related compounds in Anthriscus sylvestris by LC-ESI-MS/MS and LC-SPE-NMR[J]. Phytochemistry,2011,72:2172-2179.
    [15]M. Cao, R. Muganga, I. Nistor, et al. LC-SPE-NMR-MS analysis of Strychnos usambarensis fruits from Rwanda[J]. Phytochem. Lett.,2012,5:170-173.
    [16]J. J. Fang, M. Kai, B. Schneider. Phytochemical profile of aerial parts and roots of Wachendorfia thyrsiflora L.studied by LC-DAD-SPE-NMR [J]. Phytochemistry, 2012,81:144-152.
    [17]S. Singh, T. Handa, M. Narayanam, et al. A critical review on the use of modern sophisticated hyphenated tools in the characterization of impurities and degradation products [J]. J. Pharm. Biomed. Anal.,2012,69:148-173.
    [18]C. G. Schluederberg. Actinic Electrolysis [J]. J. Phys. Chem.,1908,12:574-631.
    [19]E. Rampazzo, S. Bonacchi, D. Genovese, et al. Nanoparticles in metal complexes based electrogenerated chemiluminescence for highly sensitive applications [J]. Coord. Chem. Rev.,2012,256:1664-1681.
    [20]S. Das, A. M. Powe, G. A. Baker, et al. Molecular Fluorescence, Phosphorescence, and Chemiluminescence Spectrometry[J]. Anal. Chem.,2012,84:597-625.
    [21]Y. H. Xu, E. K Wang. Electrochemical biosensors based on magnetic micro/nano particles[J]. Electrochim. Acta,2012,84:62-73.
    [22]Q. Q Li, L. J. Zhang, J. G. Li, et al. Nanomaterial-amplified chemiluminescence systems and their applications in bioassays[J].Trends Anal.Chem.,2011,30(2): 401-413.
    [23]M. Su, W.Wei, S. Q. Liu. Analytical applications of the electrochemiluminescence of tris(2,2_-bipyridyl)ruthenium(II) coupled to capillary/microchip electrophoresis: A review [J]. Anal. Chim. Acta,2011,704:16-32.
    [24]J. L. Adcock, C. J. Barrow, N. W. Barnett, et al. Chemiluminescence and electrochemiluminescence detection of controlled drugs [J]. Drug Test. Anal.,2011, 3:145-160.
    [25]D. Christodouleas, C. Fotakis, A. Economou, et al. Flow-based methods with chemiluminescenece detection for food and enviromental analysis:a review[J]. Anal. Lett.,2011,44:176-215.
    [26]J. L. Lopez-Paz, M. Catala-Icardo. Analysis of pesticides by flow injection coupled with chemiluminescenece detection:a review[J]. Anal. Lett.,2011,44:146-175.
    [27]L. H. Guo, F. F. Fu, G. N. Chen. Capillaryelectrophoresis with electrochemiluminescence detection fundamental theory,apparatus,and applications [J]. Anal. Bioanal. Chem.,2011,399:3323-3343.
    [28]H.Yang, X. C. Li, F. J. Feng, et al. Electrochemiluminescence detection system for microchip capillary electrophoresis and its application to pharmaceutical analysis[J]. Microchim. Acta,2011,175:193-199.
    [29]J. D. Suk, A. J. Bard. Electrochemistry and electrogenerated chemiluminescence of organic nanoparticles[J]. J. Solid State Electrochem.,2011,15:2279-2291.
    [30]M. L. Liu, Z. Lin, J. M. Lin. A review on applications of chemiluminescence detection in food analysis[J]. Anal.Chim. Acta,2010,670:1-10.
    [31]D. L. Giokas, A. G. Vlessidis, G. Z. Tsogas, et al. Evmiridis Nanoparticle assisted chemiluminescence and its applications in analytical chemistry [J]. Trends Anal. Chem.,2010,29(10):1113-1126.
    [32]F. J. Lara, A. M. Garcia-Campana, J. J.Aaron. Analytical applications of photoinduced chemiluminescence in flow systems—A review[J]. Anal. Chim. Acta,2010,679:17-30.
    [33]E. N. Muzyka, N. N. Rozhitskii. Systems of Capillary Electrophoresis in Electrochemiluminescence Analysis[J]. J. Anal. Chem.,2010,65 (6):550-564.
    [34]H. Qi, Y. Peng, Q. Gao, et al. Applications of Nanomaterials in Electrogenerated Chemiluminescence [J]. Sensors,2009,9:674-695.
    [35]L. Gamiz-Gracia, A. M. Garcia-Campan, J. F. Huertas-Perez, et al. Chemiluminescence detection in liquid chromatography:Applications to clinical, pharmaceutical, environmental and food analysis—A review[J]. Anal. Chim. Acta, 2009,640:7-28.
    [36]L. H. Juan, H. Shuang, H. L. Zhe, et al. Progress in Ru(bpy)32+Electro generated Chemiluminescence[J].Chin. J. Anal. Chem.,2009,37(11):1557-1565.
    [37]M. Tsunoda. Chemiluminescence detection with separation techniques for bioanalytical applications [J]. Bioanal. Rev.,2009,1:25-34.
    [38]P. Bertoncello, R. J. Forster. Nanostructured materials for electrochemiluminescence (ECL) based detection methods:Recent advances and future perspectives[J]. Biosens. Bioelectron.,2009,24:3191-3200.
    [39]W. J. Miao. Electrogenerated Chemiluminescence and Its Biorelated Applications [J]. Chem. Rev.,2008,108:2506-2553.
    [40]C. A. Marquette, L. J. Blum. Electro-chemiluminescent biosensing[J]. Anal. Bioanal. Chem.,2008,390:55-168.
    [41]C. G Zoski. Handbook of Electrochemistry [M]. Netherlands:Elsevier B.V,2007.
    [42]R. Pyatia, M. M. Richter, ECL-Electrochemical luminescence [J]. Annu. Rep. Prog. Chem., Sect. C,2007,103:12-78.
    [43]C. A. Marquette, L. J. Blum. Applications of the luminol chemiluminescent reaction in analytical chemistry [J]. Anal. Bioanal. Chem.,2006,385:546-554.
    [44]B. A. Gorman, P. S. Francis, N. W. Barnett. Tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence [J]. Analyst,2006,131:616-639.
    [45]B. Y. Xue, E. K. Wang. Capillary electrophoresis coupling with electrochemiluminescence detection:a review [J]. Anal. Chim. Acta,2005, 533:113-120.
    [46]A. J. Bard. Electrogenerated Chemiluminescence [M]. Marcel Dekker, Inc. New York,2004.
    [47]M. M Richter. Electrochemiluminescence (ECL) [J]. Chem. Rev.,2004,104: 3003-3036.
    [48]S. Kulmala, J. Suomi. Current status of modern analytical luminescence methods [J]. Anal. Chim. Acta,2003,500:21-69.
    [49]电化学发光传感器研究进展[J].分析科学学报,2003,19(3):277-281.
    [50]M. M. Collinson, R. M. Wightman. High-frequency generation of electrochemiluminescence at microelectrodes[J]. Anal. Chem.,1993,65(19):2576-2582.
    [51]N. Harvey. Luminescence during electrolysis[J]. J. Phy. Chem.1929,33:1456-1459.
    [52]R. Wilson, D. J. Schiffrin. Electrochemically oxidized ferrocenes as catalysts for the chemiluminescence oxidation of luminol[J]. J. Electroanal. Chem.,1998, 448(1):125-130.
    [53]C. S. Ouyang, C. M. Wang. Clay-Enhanced Electrochemiluminescence and Its Application in the Detection of Glucose[J]. J. Electrochem.Soc.,1998,145 (8): 2654-2659.
    [54]张军瑞,陈健,刘仲明.电化学发光免疫检测技术研究进展[J].分析化学评述与进展,2010,38(8):1219-1226.
    [55]L. L. Zhang, X. W. Zheng. A novel electrogenerated chemiluminescence sensor for pyrogallol with core-shell luminol-doped silica nanoparticles modified electrode by the self-assembled technique[J]. Anal. Chim. Acta,2006,570:207-213.
    [56]J. Ballesta-Claver, I.F. Diaz Ortega, M.C. Valencia-Miron, L.F. Capitan-Vallvey. Disposable luminol copolymer-based biosensor for uric acid in urine[J]. Anal. Chim. Acta,2011,702:254-261.
    [57]S. H. Li, H. L.Tao, J. P. Li. Molecularly Imprinted Electrochemical Luminescence Sensor Based on Enzymatic Amplification for Ultratrace Isoproturon Determination[J]. Electroanalysis,2012,24(7):1664-1670.
    [58]N. Myung, Y. Bae, A. J. Bard. Effect of Surface Passivation on the Electrogenerated Chemiluminescence of CdSe/ZnSe Nanocrystals[J]. Nano. Lett, 2003,3(8):1053-1055.
    [59]G. Z. Zou, H. X. Ju. Electrogenerated Chemiluminescence from a CdSe Nanocrystal Film and Its Sensing Application in Aqueous Solution[J]. Anal. Chem., 2004,76(23):6871-6876.
    [60]X.F. Wang, Y. Zhou, J.J. Xu, et al. Signal-on electrochemiluminescence biosensors based on CdS-carbon nanotube nanocomposite for the sensitive detection of choline and acetylcholine [J]. Adv. Funct. Mater.,2009,19(9):1444-1450.
    [61]Y. Shan, J.J. Xu, H.Y chen. Distance-dependent quenching and enhancing of electrochemiluminescence from a CdS:Mn nanocrystal film by Au nanoparticles for highly sensitive detection of DNA[J]. Chem. Commun.,2009,8:905-907.
    [62]C.G. Shi, X. Shan, Z.Q. Pan, et al. Quantum dot (QD) modified carbon tape electrodes for reproducible electrochemiluminescence (ECL) emission on a paper-based platform[J]. Anal. Chem.,2012,84(6):3033-3038.
    [63]T. T. Hao, Z. Y. Guo, S. P. Du, et al. Ultrasensitive detection of carcinoembryonic antigen based on electrochemiluminescence quenching of Ru(bpy)32+by quantum dots[J]. Sens. Actuators, B,2012, (171-172):803-809.
    [64]C. X. Yu, J. L. Yan,Y. F. Tu. Study on CdTe Quantum Dots Electrochemilumine-scent Sensor Supported by Carbon Nano-tubes With ITO Basal Electrode[J]. AIP Conf. Proc.,2011,1341(1):415-419.
    [65]Z. Y. Guo, T. T. Hao, J. Duan, et al. Electrochemiluminescence immunosensor based on graphene-CdS quantum dots-agarose composite for the ultrasensitive detection of alpha fetoprotein[J]. Talanta,2012,89:27-32.
    [66]I. Rubinstein, A. J. Bard. Aqueous ECLsystems based on tris(2,2'-bipyridine) ruthenium(2+) and oxalate or organic acids[JJ. J. Am. Chem. Soc.,1981,103(3): 512-516.
    [67]W. Y. Lee. Tris(2,2'-bipyridine)ruthenium(Ⅱ)electrogenerated chemiluminescence in analytical science[J]. Microchim. Acta,1997,127(1-2):19-39.
    [68]H. S. White, A. J. Bard. Electrogenerated chemiluminescence electrogenerated chemiluminescence and chemiluminescence of the Ru(2,2'-bpy)32+-S2O82- system inacetonitrile-water solutions[J]. J. Amer. Chem. Soc.,1982,104(25):6891-6895.
    [69]A.J. Bard, Electrogenerated Chemiluminescence [M]. Marcel Dekker. New York, 2004.
    [70]K. B. Blodgett, I. Langmuir. Built-up films of barium stearate and their optical properties [J]. Phys. Rev.,1937,51(11):964-982.
    [71]H. Y. Wang, G. B. Xu, S. J. Dong. Electrochemistry and electrochemi-luminescence of stable tris(2,2'-bipyridyl)ruthenium(Ⅱ)monolayer assembled on benzene sulfonic acid modified glassy carbon electrode[J]. Talanta,2001,55(1):61-67.
    [72]X. M. Chen, G H. Wu, J. M. Chen, et al. A novel electrochemiluminescence sensor based on bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(Ⅱ) covalently combined with graphite oxide [J]. Biosens. Bioelectron.,2010,26(2): 872-876.
    [73]H. L. Qi, C. Wang, X. Y. Qiu, et al. Reagent-less electrogenerated chemiluminescence peptide-based biosensor for the determination of prostate-specific antigen[J]. Talanta,2012,100:162-167.
    [74]董绍俊,车广礼,谢远武.化学修饰电极[M].科学出版社.北京,1995.
    [75]J. M. Lin, F. Qu, M. Yamada. Chemiluminescent investigation of tris(2,2'-bipyridyl) ruthenium(II) immobilized on a cationic ion-exchange resin and its application to analysis[JJ. Anal. Bioanal. Chem.,2002,374:1159-1164.
    [76]B. Qi, X. B. Yin, Y. Du, X. R.Yang. Unique electrochemiluminescence behavior of Ru(bpy)32+ in a gold/Nafion/Ru (bpy)32+composite[J]. Mater. Lett.,2008,62: 458-461.
    [77]Z. L. Lu, S. J. Dong. Researches on chemically modified electrodesrPart XXIV. Preparation and characterization of nafion polymer film modified electrodes containing Fe(II)-pHen complex[J]. J. Electroanal. Chem.,1987,233(1-2):19-27.
    [78]J. Wang, T. Golden. Permselectivity and ion-exchange properties of Eastman-AQ polymers on glassy-carbon electrodes[J]. Anal. Chem.,1989,61(13):1397-1400.
    [79]董绍俊,田敏,刘柏峰.二茂铁-AQ修饰碳纤维微葡萄糖传感器的研究[J].分析化学,1993,21:255-258.
    [80]W. J. Vining, T. J. Meyer. A chemically modified electrode for the catalytic oxidation of chloride to chlorine[J]. J. Electroana. Chem.,1985,195(1):183-187.
    [81]W. J. Vining, T. J. Meyer. Redox properties of the water oxidation catalysts diaqua tetrakis(2,2'-bipyridine) oxoderuthenium(4+)in thin polymeric films Electrocatalytic oxidation of chloride to chlorine[J]. Inorganic Chem.,1986,25(12):2023-2033.
    [82]L. B. Zhang, J. Li, Y. H. Xu,et al.Solid-state electrochemiluminescence sensor based on the Nafion/poly(sodium4-styrene sulfonate)composite film[J]. Talanta, 2009,79(2):454-459.
    [83]H.J. Li, J.Chen, S. Han,et al. Electrochemiluminescence from tris(2,2'-bipyridyl)-ruthenium(II)-graphene-Nafion modified electrode[J]. Talanta,2009,79 (2): 165-170.
    [84]H. J. Liu, R.Yuan, Y. Q. Chai, et al. A novel solid-state electrochemiluminescence detector for capillary electrophoresis based on tris(2,2'-bipyridyl)ruthenium(II) immobilized in Nafion/PTC-NH2 composite film[J]. Talanta,2011,84(2): 387-392.
    [85]L. H. Zhang, S. J. Dong. Electrogenerated chemiluminescence sensors using Ru(bpy)32+doped in silica nanoparticlesfJ]. Anal.Chem.,2006,78 (14):5119-5123.
    [86]X. Hun, Z. J. Zhang. Electrogenerated chemiluminescence sensor for itopride with Ru(bpy)32+-doped silica nanoparticles/chitosan composite films modified electrode[J]. Sens. Actuators, B,2008,131:403-410.
    [87]L. Chu, G. Z. Zou, X. L. Zhang. Electrogenerated chemiluminescence sensor for formaldehyde based on Ru(bpy)32+ -doped silica nanoparticles modified Au electrode[J]. Mater. Sci. Eng., C,2012,32:2169-2174.
    [88]王炳全,程广金,董绍俊,溶胶-凝胶生物传感器[J].分析化学,1999,27:982-988.
    [89]O. Dvorak, K. M. D. Armond. Electrode modification by the sol-gel method[J]. J. Phys. Chem.,1993,97:2646-2648.
    [90]S. N. Ding, J. J. Xu, H. Y. Chen. Tris(2,2'-bipyridyl)ruthenium(II) zirconia Nafion composite films applied as solid-state electrochemiluminescence detector for capillary electrophoresis[J]. Electrophoresis,2005,26(9):1737-1744.
    [91]H. N. Choi, Y. K. Lyu, W. Y. Lee. Tris(2,2'-bipyridyl)ruthenium(II) Electrogenerated Chemiluminescence Sensor Based on Sol-Gel-Derived V205/Nafion Composite Films[J]. Electroanalysis,2006,18(3):275-281.
    [92]M. H. Xiang, R. Lei, N. Li, et al. Electrogenerated chemiluminescence of ruthenium(II) bipyridyl complex directly immobilized on glassy carbon electrodes[J]. J. Appl. Electrochem.,2009,39(6):921-925.
    [93]G. M. Cao, Q. Liu, Y. Huang, et al. Generation of gold nanostructures at the surface of platinum electrode by electrodeposition for ECL detection for CE [J]. Electrophoresis,2010,31(6):1055-1062.
    [94]X. P. Sun, Y.Du, S.J.Dong, et al. Method for effective immobilization of Ru(bpy)32+ on an electrode surface for solid-state electrochemiluminescene detection[J]. Anal. Chem.,2005,77(24):8166-8169.
    [95]X. P. Sun, Y. Du, L. X. Zhang, et al. Pt nanoparticles:Heat treatment-based preparation and Ru(bpy)32+-mediated formation of aggregates that can form stable films on bare solid electrode surfaces for solid-state electrochemiluminescence detection[J]. Anal. Chem.,2006,78(18):6674-6677.
    [96]刘洋,杨秀荣.有序介孔材料SBA-15吸附Ru(bpy)32+修饰电极的电化学发光研究[J].高等学校化学学报,2007,28(4):640-644.
    [97]K. Wang, H. N. Li, CJu, et al.3D nanostructured Ni(OH)2 microspHeres as an efficient immobilization matrix of Ru(bpy)32+ for high performance electrochemiluminescence sensor [J]. Talanta,2010,82(3):1068-1071.
    [98]B. Xing, X. B. Yin. Electrochemiluminescence from hydrophilic thin film Ru(bpy)32+ modified electrode prepared using natural halloysite nanotubes and polyacrylamide gel[J]. Biosens. Bioelectron.,2009,24(9):2939-2942.
    [99]W. Yun, Y. Xu, P. Dong, et al. Solid-state electrochemiluminescence sensor through the electrodeposition of Ru(bpy)3+/AuNPs/chitosan composite film onto electrode[J]. Anal. Chim. Acta,2009,635(1):58-62.
    [100]Z. M. Cai, Y. F. Wu, Y. H. Huang, et al. An electrochemiluminescence sensor based on a Ru(bpy)32+-silica-chitosan/nano gold composite film [J]. Talanta, 2012,94:356-360.
    [101]Q. Li, J. Y. Zheng, Y. L. Yan, et al. Electrogenerated Chemiluminescence of Metal-Organic Complex Nanowires:Reduced Graphene Oxide Enhancement and Biosensing Application[J]. Adv. Mater.,2012,24:4745-4749.
    [102]J. Li, F. N. Xiao, X. H. Xia. One-step immobilization of Ru(bpy)32+in a silica matrix for the construction of a solid-state electrochemiluminescent sensor with high performance[J]. Analyst,2012,137:5245-5250.
    [103]Q. G. Zhu, A. N. A. Sujari, S. A. Ghani. Nafion-MWCNT composite modified graphite paste for the analysis of quercetin in fruits of Acanthopanax sessiliflorus[J]. Sens. Actuators, B,2013,177:103-110.
    [104]B. Zhang, S. X. Shi, W.Y. Shi, et al. Assembly of ruthenium(II) complex/layered double hydroxide ultrathin film and its application as an ultrasensitive electrochemiluminescence sensor[J]. Electrochim. Acta,2012,67:133-139.
    [105]Y. L. Li, X. R. Yang, F. Yang, et al. Effective immobilization of Ru(bpy)32+by functional composite phosphomolybdic acid anion on an electrode surface for solid-state electrochemiluminescene to sensitive determination of NADH[J]. Electrochim. Acta,2012,66:188-192.
    [106]Y. F. Li, L. L. Liu, X. L. Fang, et al.Electrochemiluminescence biosensor based on CdSe quantum dots for the detection of thrombin [J]. Electrochim. Acta,2012, 65:1-6.
    [107]F. R. Sun, F. F. Chen, W. J. Fei, et al. A novel strategy for constructing electrochemiluminescence sensor based on CdS-polyamidoamine incorporating electrodeposited gold nanoparticle film and its application[J]. Sens. Actuators, B, 2012, (166-167):702-707.
    [108]Z. Y. Li, Y. H. Wang, W. J. Kong, et al. Ultrasensitive detection of trace amount of clenbuterol residue in swine urine utilizing an electrochemiluminescent immunosensor[J].Sens. Actuators, B,2012,174:355-358.
    [109]H. Y. Wang, W. Gong, Z. Tan, et al. Label-free bifunctional electrochemiluminescence aptasensor for detection of adenosine and lysozyme [J]. Electrochim. Acta,2012,76:416-423.
    [110]F. Roberto, F. Leite, C. M. Maroneze, et al. Development of a sensor for L-Dopa based on Co(DMG)2ClPy/multi-walled carbon nanotubes composite immobilized on basal plane pyrolytic graphite electrode [J]. Bioelectrochemistry,2012,86: 22-29.
    [111]G. Ziyatdinova, M. Morozov, H. Budnikov. MWNT-modified electrodes for voltammetric determination of lipophilic vitamins[J]. J. Solid State Electrochem., 2012,16:2441-2447.
    [112]R.Y. H. wang, G. R. Xu, J. Y. Han, et al. Determination of phenothiazine drugs using tris(2,2'-bipyridyl)ruthenium(II) electrogenerated chemiluminescence at DNA-modified electrode[J]. J. Electroanal. Chem.,2011,656:258-263.
    [113]Z. Zhao, X. M. Zhou. Ultrasensitive electrochemiluminescence detection of mercury ions based on DNA oligonucleotides and cysteamine modified gold nanoparticles probes[J]. Sens. Actuators, B,2012, (171-172):860-865.
    [114]Y. Chai, D. Y.T ian, H. Cui. Electrochemiluminescence biosensor for the assay of small molecule and protein based on bifunctional aptamer and chemiluminescent functionalized gold nanoparticles[J]. Anal. Chim. Acta,2012,715:86-92.
    [115]H.K. Zhou, N. Gan, T. H. Li, et al. The sandwich type electrochemiluminescence immunosensor for a-fetoproteinbased on enrichment by Fe3O4-Au magnetic nano probes and signal amplification by CdS-Au composite nanoparticles labeled anti-AFP [J]. Anal. Chim. Acta,2012,746:107-113.
    [116]X. L. Fang, M. Han, G. F. Lu, et al. Electrochemiluminescence of CdSe quantum dots for highly sensitive competitive immunosensing[J]. Sens. Actuators, B,2012, 168:271-276.
    [117]Y. L.Yuan, H. J. Li, S. Han, et al. Immobilization of tris(1,10-phenanthroline) ruthenium with graphene oxide for electrochemiluminescent analysis[J]. Anal. Chim. Acta,2012,720:38-42.
    [118]T. Wang, S. Y. Zhang, C. J. Mao, et al. Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor[J]. Biosens. Bioelectron.,2012,31:369-375.
    [119]X. Liu, L.Q. Luo, Y. P. Ding, et al. Simultaneous determination of L-cysteine and L-tyrosine using Au-nanoparticles/poly-eriochrome black T film modified glassy carbon electrode[J]. Bioelectrochemistry,2012,86:38-45.
    [120]S. W. Wang, Y. Zhang, J. H. Yu, et al. Application of indium tin oxide device in gold-coated magnetic iron solid support enhanced electrochemiluminescent immunosensor for determination of carcinoma embryonic antigen[J]. Sens. Actuators, B,2012, (171-172):891-898.
    [121]Y. L. Cao, R. Yuan, Y. Q. Chai, et al. Ultrasensitive luminol electrochemiluminescence for protein detection based on in situ generated hydrogen peroxide as coreactant with glucose oxidase anchored AuNPs@MWCNTs labeling[J]. Biosens. Bioelectron.,2012,31:305-309.
    [122]K. Zeng, M. L. Guo, Y. J. Zhang, et al. Thiol-ene click chemistry for the fabrication of Ru(bpy)32+-based solid-state electrochemiluminescence sensor[J]. Electrochem.Commun.,2011,13:1353-1356.
    [123]R. Lei, X. Y. Wang, S. F. Zhu, et al. A novel electrochemiluminescence glucose biosensor based on alcohol-free mesoporous molecular sieve silica modified electrode[J]. Sens. Actuators, B,2011,158:124-129.
    [124]L. Mao, R. Yuan, Y. Q. Chai, et al. A new electrochemiluminescence immunosensor based on Ru(bpy)32+-doped TiO2 nanoparticles labeling for ultrasensitive detection of human chorionic gonadotrophin[J]. Sens. Actuators, B, 2010,149:226-232.
    [125]S. R. Yuan, R. Yuan, Y. Q. Chai, et al. Sandwich-type electrochemiluminescence immunosensor based on Ru-silica@Au composite nanoparticles labeled anti-AFP[J]. Talanta,2010,82:1468-1471.
    [126]Y. Li, H. Qi, J. Yang, et al. Detection of DNA immobilized on bare gold electrodes and gold nanoparticle-modified electrodes via electrogenerated chemiluminescence using a ruthenium complex as a tag[J]. Microchim. Acta, 2009,164 (1-2):69-76.
    [127]L. Zhang, F. Wang, S. Dong. Layer-by-layer assembly of functional silica and Au nanoparticles for fabricating electrogenerated chemiluminescence sensor [J]. Electrochim. Acta,2008,53(22):6423-6427.
    [128]W. J. Li, R. Yuan, Y. Q. Chai, et al. Immobilization of horseradish peroxidase on chitosan/silica sol-gel hybrid membranes for the preparation of hydrogen peroxide biosensor [J]. J.Biochem. Biophys. Methods,2008,70:830-837.
    [129]X. Hun, Z. Zhang. Electrogenerated chemiluminescence sensor for metoclopramide determination based on Ru(bpy)32+-doped silica nanoparticles dispersed in Nafion on glassy carbon electrode[J]. J. Pharm. Biomed. Anal.,2008, 47(4-5):670-676.
    [130]Z. Y. Lin, J. H. Chen, G. N. Chen. An ECL biosensor for glucose based on carbon-nanotube Nafion film modified glass carbon electrode[J]. Electrochim. Acta,2008,53:2396-2401.
    [131]Y. Tao, Z. J. Lin, X. M. Chen, et al. Functionalized multiwallcarbon nanotubes combined with bis(2,2'-bipyridine)-5-amino-1,10-phenanthroline ruthenium(II) as an electrochemiluminescence sensor[J].Sens. Actuators, B,2008,129:758-763.
    [132]J. B. Noffsinger, N. D. Danielson. Liquid chromatography of aliphatic trialkylamines with post-column chemiluminescent detection using tris(2,2'-bipyridine) ruthenium (Ⅲ) [J]. J. Chromatogr. A,1987,387:520-524.
    [133]L. He, K. A. Cox, N. D. Danielson. Chemiluminescence Detection of Amino Acids, Peptides, and Proteins Using Tris-2,2'-Bipyridine Ruthenium (Ⅲ) [J]. Anal. Lett.,1990,23:195-210.
    [134]K. Uchikura, M.Kirisawa. Electrochemiluminescence Determination of D, L-Tryptophan Using Ligand-Exchange High-performance Liquid Chromatography [J]. Anal. Sci.,1991,7:971-973.
    [135]W. A. Jackson, D. R. Bobbitt. Chemiluminescent detection of amino acids using in situ generated Ru(bpy)33+[J]. Anal. Chim. Acta,1994,285:309-320.
    [136]D. R. Skotty, T. A. Nieman. Determination of oxalate in urine and plasma using reversed phase ion-pair high-performance liquid chromatography with tris(2,2'-bipyridyl)ruthenium(Ⅱ)-electrogenerated chemiluminescence detection [J]. J. Chromatogr. B,1995,655:27-36.
    [137]K. Tsukagoshi, K. Miyamoto, R. Nakajima, et al. Sensitive determination of metal ions by liquid chromatography with tris(2,2'-bipyridine) ruthenium (Ⅱ) complex electrogenerated chemiluminescence detection [J]. J. Chromatogr. Sci.,1990,28: 505-509.
    [138]M. A. Targrove, N. D. Danielson. High-performance liquid chromatography of clindamycin antibiotics using tris(bipyridine)-ruthenium(III) chemiluminescence detection [J]. J. Chromatogr. A,2001,919:331-337.
    [139]J. A. Holeman, N. D. Danielson. Microbore liquid chromatography of tertiary amine anticholinergic pharmaceuticals with tris(2,2'-bipyridine)ruthenium(III) chemiluminescence detection [J]. J. Chromatog. Sci.,1995,33:297-302.
    [140]J. S Ridlen, D. R Skotty, P. T. Kissinger, et al. Determination of erthromycin in urine and plasma using microbore liquid chromatography with tris(2,2'-bipyridyl)ruthenium(Ⅱ) electrogenerated chemiluminescence detection [J]. J. Chromatogr. B,1997,694:393-400.
    [141]T. Ikehara, N. Habu, I. Nishino, et al. Determination of hydroxyproline in rat urine by high-performance liquid chromatography with electrogenerated chemiluminescence detection using tris(2,2'-bipyridyl) ruthenium(II) [J]. Anal. Chim. Acta,2005,536:129-133.
    [142]N. kobayashi, A. miyamoto, K. uacikura. Column-Switching HPLC Determination of Mexiletine Using Tris(bipyridine)ruthenium(III) Electro generated Chemiluminescence and Precolumn Derivatization with Divinylsulfone[J]. Anal. Sci.,2010,26:1289-1294.
    [143]Y. shibano, S. taki, A. miyamoto, et al. Development and Application of a Method to Investigate Drug-Metabolizing Enzyme Inhibitors Using Sparteine for Probe of Cytochrome P450 2D6 and Tris(2,2_-bipyridine)ruthenium(II) Electrogenerated Chemiluminescence Detection[J]. Chem. Pharm. Bull.,2011,59(2):249-253.
    [144]K. Uchikura. Tris(2,2'-bipyridine)ruthenium(III) chemiluminescence detection of carbonyl compounds with methylmalonic acid [J]. Anal. Sci.,2000,16:453-454.
    [145]H. Morita, M. Konishi. Electrogenerated Chemiluminescence Derivatization Reagent,3-Isobutyl-9,10-dimethoxy-1,3,4,6,7,11 b-hexahydro-2H-pyrido [2,1-a] isoquinolin-2-ylamine, for Carboxylic Acid in High-Performance Liquid Chromatography Using Tris(2,2'-bipyridine)ruthenium(II) [J]. Anal. Chem.,2003, 75:940-946.
    [146]S. N. Brune, D. R. Bobbitt. Role of electron-donating/withdrawing character, pH, and stoichiometry on the chemiluminescent reaction of tris(2,2'-bipyridyl) ruthenium(III) with amino acids [J]. Anal. Chem.,1992,64:166-170.
    [147]W. Y. Lee, T. A. Nieman. Determination of dansyl amino acids using tris(2,2'-bipyridyl) ruthenium(II) chemiluminescence for post-column reaction detection in high-performance liquid chromatography [J]. J. Chromatogr. A.,1994, 659:111-118.
    [148]H. N. Choi, S. H. Cho, W. Y. Lee. Electrogenerated Chemiluminescence from Tris(2,2'-bipyridyl)ruthenium(II) Immobilized in Titania-Perfluorosulfonated Ionomer Composite Films [J]. Anal. Chem.,2003,75:4250-4256.
    [149]H, N, Choi, S. H. Cho, Y. J. Park, D. W, Lee, W. Y, Lee. Sol-gel-immobilized Tris(2,2,-bipyridyl)ruthenium(II) electrogenerated chemiluminescence sensor for high-performance liquid chromatography [J]. Anal. Chim. Acta,2005,541:49-56.
    [150]于萍,叶挺秀,邱彬,陈曦.几种醇类的固态电致化学发光-高效液相色谱检 测[J].中国科学B辑:化学,2009,399(8):825-831.
    [151]Y. H. Sun, Z. J. Zhang, Z. J. Xi, et al. Determination of itopride hydrochloride by high-performance liquid chromatography with Ru(bpy)32+ electrogenerated chemiluminescence detection[J]. Anal. Chim. Acta,2009,648:174-177.
    [152]H. Kodamatani, R. Kanzaki, T.Tomiyasu, et al. Determination of Organic and Inorganic Mercury Species as Emetine Dithiocarbamate Complexes by High-Performance Liquid Chromatography with Electrogenerated Tris(2,2'-bipyridine) ruthenium(III) Chemiluminescence Detection[J]. Anal. Lett., 2011,44(17):2769-2779.
    [153]R. Chiba, M. Soukura, S. Tatsuta. Solid-Phase Extraction and Determination of Sulpiride in Human Serum by High Performance Liquid Chromatography Using Electrogenerated Chemiluminescence Detection[J]. Anal. Lett.,2011,44 (9): 1559-1569.
    [154]T. P. Ruiz, C. M. Lozano, M. D. Garcia. High-performance liquid chromatography post-column chemiluminescence determination of aminopolycarboxylic acids at low concentration Levels using tris(2,2'-bipyridyl)ruthenium(Ⅲ)[J]. J. Chromatogr.A.,2007,1169:151-157.
    [155]T. Hori, H. Hashimoto, M. Konishi. Determination of erythromycin A in rat plasma and urine by high-performance liquid chromatography with chemiluminescence detection using Tris(2,2'-bipyridine)ruthenium(@)[J]. Biomed. Chromatogr.,2006,20:917-923.
    [156]王卫,内仓和雄.高效液相色谱一电化学发光检测法测定磷酸丙毗胺片中丙毗胺的含量[J].药物分析杂志,2005,25(11):1299-1302.
    [157]C. Q. Yi, P. W. Li, Y. Tao, X. Chen. High-Performance Liquid Chromatographic determination of Quinolizidine Alkaloids in Radix SopHora Flavescens Using Tris(2,2'-bipyridyl) Ruthenium(Ⅱ) Electrochemiluminescence[J]. Microchim. Acta,2004,147:237-243.
    [158]H. Kodamatani, K. Saito, N. Niina, et al. Sensitive determination of domoic acid using high-performance liquid chromatography with electrogenerated tris(2,2'-bipyridine)ruthenium(Ⅲ) chemiluminescence [J]. Anal. Sci.,2004,20: 1065-1068.
    [159]K. Uchikura. Determination of Aromatic and Branched-Chain Amino Acids in Plasma by HPLC with Electrogenerated Ru(bpy)33+ Chemiluminescence Detection[J]. Chem. Pharm. Bull.,2003,51(9):1092-1094.
    [160]X. B. Yin, S. Dong, E. K. Wang. Analytical applications of the electrochemiluminescence of tris(2,2'-bipyridyl) ruthenium and its derivatives[J]. Trends Anal. Chem.,2004,23:432-441.
    [1]骆承痒.乳与乳制品工艺学[M].北京:中国农业出版社,2001:36-47.
    [2]Drugs prohibited for extra label use in animals. Code of Federal Regulations 21.530.41.
    [3]Official Journal of the European Union, L22418 August 1990 Council Regulation 2377/90/EC of 26 June 1990 laying down a Community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin, Brussels, Belgium,1990.
    [4]The Positive List System for Agricultural Chemical Residues in Foods, Department of Food Safety, Ministry of Health, Labour and Welfare, June 2006.
    [5]Minstry of Agriculture of the People's Republic of China. No.235/2002,235/2003b, 235/2003c,235/2003d.
    [6]M. D. Marazuela, M. C. Moreno-Bondi. Multiresidue determination of fluoroquinolones in milk by column liquid chromatography with fluorescence and ultraviolet absorbance detection[J]. J. Chromatogr. A,2004,1034:25-32.
    [7]C. Ho, D. W. M. Sin, H. P. O. Tang, et al. Determination and on-line clean-up of (fluoro)quinolones in bovine milk using column-switching liquid chromatography fluorescence detection[J]. J. Chromatogr. A,2004,1061:123-131.
    [8]F. Canada-Canada, A. Espinosa-Mansilla, A. M. delaPen, et al. Determination of danofloxacin in milk combining second-order calibration and standard addition method using excitation-emission fluorescence data[J]. Food Chem.,2009,11: 1260-1265.
    [9]O. R. Idowu, J. O. Peggins. Simple, rapid determination of enrofloxacin and ciprofloxacin in bovine milk and plasma by high-performance liquid chromatography with fluorescence detection [J]. J. Pharm. Biomed. Anal.,2004, 35:143-153.
    [10]S.Bogialli, G. D'Ascenzo, A. Di Corcia, et al. A simple and rapid assay on hot water extraction and liquid chromatography-tandem mass spectrometry for monitoring quinolone residues in bovine milk[J]. Food Chem.,2008,108:354-360.
    [11].叶鹿鸣,谢东.高效液相色谱荧光检测法测定牛奶中3种氟喹诺酮残留研究[J].中国卫生检验杂志,2008,18:804-806.
    [12]D. A. Bohm, C. S. Stachel, P. Gowik. Multi-method for the determination of antibiotics of different substance groups in milk and validation in accordance with Commission Decision 2002/657/EC[J]. J. Chromatogr. A,2009,1216:8217-8223. [13] N. VanHoof, K. DeWasch, L. Okerman, et al. Validation of a liquid chromatography-tandem mass spectrometric method for the quantification of eight quinolones in bovine muscle, milk and aquacultured products[J]. Anal. Chim. Acta, 2005,529:265-272.
    [14]F. J. Lara, A. M. Garcia-Campana, F. Ales-Barrero, et al. Multiresidue method for the determination of quinolone antibiotics in bovine raw milk by capillary electrophoresis-tandem mass spectrometry [J]. Anal. Chem.,2006,78:7665-7673.
    [15]X. M. Zhou, D. Xing, D.B. Zhu, et al. Development and application of a capillary electrophoresis electrochemiluminescent method for the analysis of enrofloxacin and its metabolite ciprofloxacinin milk[J]. Talanta,2008,75:1300-1306.
    [16]G. H. wan, H. Cui,Y. L.Pan, et al. Determination of quinolones residues in prawn using high-performance liquid chromatography with Ce(IV)-Ru(bpy)32+-HN03chemiluminescence detection [J]. J.Chromatogr. B,2006,843: 1-9.
    [17]S. Ahmed, S. Fujii, N. Kishikawa, et al. Selective determination of quinones by high-performance liquid chromatography with on-line post column ultraviolet irradiation and peroxyoxalate chemiluminescence detection[J]. J. Chromatogr. A, 2006,1133:76-82.
    [1]J. Q. Zhang, J. S. Wu, P. Cheng. Drug Manual[M]. Beijing:People's Medical Publishing Press,2000:536.
    [2]O. A. Farghaly, M. A. Taher, A. H. Naggar, et al. Square wave anodic stripping voltammetric determination of metoclopramide in tablet and urine at carbon paste electrode[J]. Pharm. Biomed. Anal.,2005,38:14-20.
    [3]赵洁生,张相林,张欣.薄层色谱扫描法测定舒必利的血清浓度[J].中日友好 医院学报,1997,11(2):129-130.
    [4]闫小华,邓小敏,吴怀安.高效液相色谱法测定人血清中舒必利的浓度[J].中国医院药学杂志,2000,22(6):338-339.
    [5]祝文兵,阳利龙,曾欣.固相萃取-高效液相色谱法测定血浆舒必利浓度[J].医药导报,2007,26(5):487-489.
    [6]S. S. Sabnis, N. D. Dhavale, V. Y. Jadhav, et al. Spectrophotometric simultaneous determination of rabeprazole sodium and itopride hydrochloride in capsule dosage form[J]. Spectrochim. Acta A,2008,69(3):849-852.
    [7]N. Kaul, H. Agrawal, P. Maske, et al. Chromatographic determination of itopride hydrochloride in the presence of its degradation products[J]. J. Sep. Sci.,2005, 28:1566-1576.
    [8]B. H. Patel, B. N. Suhagia, M. M. Patel, et al. Determination of pantoprazole, rabeprazole, esomeprazole, domperidone and itopride in pharmaceutical products by reversed phase liquid chromatography using single mobile phase [J]. Chromatographia,2007,65:743-748.
    [9]汪新亮,吴基良.RP-HPLC法测定人血浆中盐酸伊托必利的浓度[J].咸宁学院学报医学版,2007,21(1):23-26.
    [10]S. S. Singh, M. Jain, K. Sharma, et al. Quantitation of itopride in human serum by high-performance liquid chromatography with fluorescence detection and its application to a bioequivalence study[J]. J. Chromatogr. B,2005,818:213-220.
    [11]Y. S. Chang, Y. R. Ku, K. C. Wen, et al. Analysis of synthetic gastrointestinal drugs in adulterated traditional chinese medicines by HPCE[J]. J. Liq. Chromatogr. Relat.Technol.,2000,23:2009-2019.
    [12]陈豪,谭志荣,郭栋等.高效液相色谱—串联质谱法测定人血浆中伊托必利的浓度[J].中国新药杂志,2008,17(21):1869-1872.
    [13]H. W. Lee, J. H. Seo, S. K. Choi, et al. Determination of itopride in human plasma by liquid chromatography coupled to tandem mass spectrometric detection: application to a bioequivalence study [J]. Anal. Chim. Acta,2007,583:118-123.
    [14]孙述文,吕九如.流动注射后化学发光法测定舒必利[J].陕西师范大学学报(自然科学版),2006,34(2):80-83.
    [15]N. A. Al-Arfaj. Flow-injection chemiluminescent determination of metoclopramide hydrochloride in pharmaceutical formulations and biological fluids using the [Ru(dipy)32+]permanganate system[J]. Talanta,2004,62:255-263.
    [16]吕海燕,李明月,于洪玲,唐玉海.毛细管电泳-电化学发光法测定盐酸伊托必利[J].药物分析杂志,2010,30(1):91-94.
    [17]上官荣,汪敬武,杨伟平.试剂固定化的流动注射化学发光测定盐酸伊托必利[J].分析试验室,2008,27(5):102-104.
    [18]M. Zorzi, P. Pastore, F. Magno. A Single Calibration Graph for the Direct Determination of Ascorbic and Dehydroascorbic Acids by Electrogenerated Luminescence Based on Ru(bpy)32+ in Aqueous Solution[J]. Anal. Chem.,2000,72, 4934-4939.
    [19].Y. H. Sun, Z. J. Zhang, Z. J. Xi, et al. Determination of itopride hydrochloride by high-performance liquid chromatography with Ru(bpy)32+ electro generated chemiluminescence detection[J]. Anal. Chim. Acta,2009,648,174-177.
    [1]T. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment:a review of recent research data[J]. Toxicol. Lett.,2002,131:5-17.
    [2]N. Gunesa, R. Cibikb, M. E. Gunesc, et al. Erythromycin residue in honey from the Southern Marmara region of Turkey[J]. Food Addit. Contain.,2008,25:1313-1317.
    [3]L.V. Bossche, A. Lodi, J. Schaar, et al. An interlaboratory study on the suitability of a gradient LC-UV method as a compendial method for the determination of erythromycin and its related substances[J]. J. Pharm. Biomed. Anal.,2010,53: 109-112.
    [4]A. Deubel, U. Holzgrabe. Development of an enhanced separation of erythromycin and its related substances by liquid chromatography [J]. J. Pharm. Biomed. Anal., 2007,43:493-498.
    [5]M. Pendela, L.V. Bossche, J. Hoogmartens, et al. Combination of a liquid chromatography-ultraviolet method with a non-volatile eluent, peak trapping and a liquid chromatography-mass spectrometry method with a volatile eluent to characterise erythromycin related substances [J]. J. Chromatogr. A,2008,1180: 108-121.
    [6]H. De Alwis, D. N. Heller. Multiclass, multiresidue method for the detection of antibiotic residues in distillers grains by liquid chromatography and ion trap tandem mass spectrometry[J]. J. Chromatogr. A,2010,1217:3076-3084.
    [7]E. GLor, J. V. Sancho, F. Hernandez. Multi-class determination of around 50 pharmaceuticals, including 26 antibiotics, in environmental and wastewater samples by ultra-high performance liquid chromatography-tandem mass spectrometry[J]. J. Chromatogr. A,2011,1218:2264-2275.
    [8]H. Berrada, F.Borrull, G Font, et al. Determination of macrolide antibiotics in meat and fish using pressurized liquid extraction and liquid chromatography-mass spectrometry[J]. J. Chromatogr. A,2008,1208:83-89.
    [9]M. Horie, H.Takegami, K.Toya, et al. Determination of macrolide antibiotics in meat and fish by liquid chromatography-electrospray mass spectrometry[J]. Anal. Chim. Acta,2003,492:187-197.
    [10]J. Shin, D. F. Pauly, J.A. Johnson, et al. Simplified method for determination of clarithromycin in human plasma using protein precipitation in a 96-well format and liquid chromatography-tandem mass spectrometry[J]. J. Chromatogr. B,2008, 871:130-134.
    [11]S. J. Choi, S. B. Kim, H.Y. Lee, et al. Column-switching high-performance liquid chromatographic determination of clarithromycin in human plasma with electrochemical detection[J]. Talanta,2001,54:377-382.
    [12]J. I. Wibawa, P. N. Shaw, D. A. Barrett. Quantification of clarithromycin, its 14-hydroxy and decladinose metabolites in rat plasma, gastric juice and gastric tissue using high-performance liquid chromatography with electrochemical detection[J]. J. Chromatogr. B,2003,783:359-366.
    [13]马红燕.片剂中红霉素的流动注射电化学发光分析法测定[J].化学试剂,2005,27(4):217-219.
    [14]F. M. Wang, J. H. Chen, L. M. Lin, et al. Determination of 12 macrolide antibiotics residues in products of animal origin by ultra performance liquid chromatography coupled with tendem mass spectrometry[J]. Journal of Instrumental Analysis,2009, 28:784-788.
    [1]A. R. Breaud, R. Harlan, M. Kozak, et al. A rapid and reliable method for the quantitation of tricyclic antidepressants in serum using HPLC-MS/MS[J]. Clin. Biochem.,2009,42:1300-1307.
    [2]G. A. Gilman, W. T. Rall, S. A. Nies, et al. The Pharmacological Basis of Therapeutics[M]. New York:McGraw-Hill,1996.
    [3]毛名扬,李顺炜,李国忠.HPLC法同时测定人血浆中多塞平、氯氮平浓度[J].安徽医药,2005,9(6):434-435.
    [4]M. Wozniakiewicz, R. W. Posluszny, A. Garbacik, et al. Microwave-assisted extraction of tricyclic antidepressants from human serum followed by high performance liquid chromatography[J]. J. Chromatogr. A,2008,1190:52-56.
    [5]J. Zhao, S.V. Olesik. Reversed-phase separation of basic tricyclic antidepressants using buffered and fluoroform-enhanced fluidity liquid mobile phases [J]. J. Chromatogr. A,2001,923:107-117.
    [6]R. Pirola, E. Mundo, L. Bellodi, et al. Simultaneous determination of clomipramine and its desmethyl and hydroxy metabolites in plasma of patients by high-performance liquid chromatography after solid-phase extraction[J]. J. Chromatogr. B,2002,772:205-210.
    [7]A. M. Nyanda, M. G. Nunes, A. Ramesh. A simple high-performance liquid chromatography method for the quantitation of tricyclic antidepressant drugs in human plasma or serum[J]. J. Toxicol. Clin. Toxicol.,2000,38:631-636.
    [8]A. Esrafili, Y. Yamini, S. Shariati. Hollow fiber-based liquid phase microextraction combined with high-performance liquid chromatography for extraction and determination of some antidepressant drugs in biological fluids[J]. Anal. Chim. Acta, 2007,604:127-133.
    [9]R. Ito, M. Ushiro, Y. Takahashi, et al. Improvement and validation the method using dispersive liquid-liquid microextraction with in situ derivatization followed by gas chromatography-mass spectrometry for determination of tricyclic antidepressants in human urine samples[J]. J. Chromatogr. B,2011,879:3714-3720.
    [10]T. Shinozuka, M. Terada, E.Tanaka. Solid-phase extraction and analysis of 20 antidepressant drugs in human plasma by LC/MS with SSI method[J]. Forensic. Sci. Int.,2006,162:108-12.
    [11]R. A. Breaud, R. Harlan, M. Kozak, et al. A rapid and reliable method for the quantitation of tricyclic antidepressants in serum using HPLC-MS/MS[J]. Clin. Biochem.,2009,42:1300-1307.
    [12]M. M. Zheng, S. T. Wang, W. K. Hu, et al. In-tube solid-phase microextraction based on hybrid silica monolith coupled to liquid chromatography-mass spectrometry for automated analysis of ten antidepressants in human urine and plasma[J]. J. Chromatogr. A,2010,1217:7493-7501.
    [13]H. Yoshida, K. Hidaka, J. Ishida, K. Yoshikuni, et al. Highly selective and sensitive determination of tricyclic antidepressants in human plasma using high-performance liquid chromatography with post-column tris(2,2'-bipyridyl) ruthenium(III) chemiluminescence detection[J]. Anal. Chim. Acta,2000,413: 137-145.
    [14]T. A. Ivandini, B. V. Sarada, C.Terashima, et al. Electrochemical detection of tricyclic antidepressant drugs by HPLC using highly boron-doped diamond electrodes[J]. J. Electroanal. Chem.,2002,521:117-126.
    [15]H. Kirchherr, W. N. Kuhn-Velten. Quantitative determination of forty-eight antidepressants and antipsychotics in human serum by HPLC tandem mass spectrometry:A multi-level, single-sample approach[J]. J. Chromatogr. B,2006, 843:100-113.
    [16]T. Shinozuka, M. Terada, E. Tanaka. Solid-phase extraction and analysis of 20 antidepressant drugs in human plasma by LC/MS with SSI method[J]. Forensic. Sci. Int.,2006,162:108-112.
    [1]许国旺,叶芬,孔宏伟,等.全二维气相色谱技术及其进展[J].色谱,2001,19(2):132-135.
    [2]Z. Liu, J. B. Phillips. Comprehensive Two-Dimensional Gas Chromatography using an On-Column Thermal Modulator Interface[J]. J. Chromatogr. Sci.,1991,29: 227-231.
    [3]C. J. Venkatramani, J. Xu, J. B. Phillips. Separation Orthogonality in Temperature Programmed Comprehensive Two-Dimensional Gas Chromatography[J]. Anal. Chem.,1996,68:1486-1492.
    [4]P. J. Marriott, P. Haglund, R. C. Yong. A review of environmental toxicant analysis by using multidimensional gas chromatography and comprehensive GC[J]. Clin. Chim. Acta,2003,328:1-19.
    [5]苏德民,姚发业,石竹.气相色谱-质谱联用及气相色谱-红外分析法测定白豆蔻挥发油成分[J].时珍国医国药,2007,18(5):1148-1149.
    [6]N. Campillo, R. Penalver, N. Aguinaga, et al. Solid-phasemicroextraction and gas chromatography with atomic emission detection for multiresidue determination of pesticides in honey[J].Anal. Chim. Acta,2006,562:9-15.
    [7]S. Brinkmanuat. Gas chromatographywith atomic emission detection:a powerful technique[J]. Trends Anal. Chem.,2002,21(9-10):618-626.
    [8]W. W. Li, D. P. Wu, S. H. Chen, et al. Study of the surface ionization detector for gas chromatography[J]. J. Chromatogr. A,2011,1218:6812-6816.
    [9]朱明华.仪器分析[M].高等教育出版社,2000,351.
    [10]X. Lu, J. L. Cai. Analysis of cigarette smoke condensates by comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry part 1: acidic fration[J]. Anal. Chem.,2003,75:4441-4451.
    [11]B. T. Weldegergis, A. Villiers, C. McNeish, et al. Characterisation of volatile components of Pinotage wines using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GCXGC-TOFMS) [J]. Food Chem.,2011,129:188-199.
    [12]S. C. Cunha, J. O. Fernandes. Quantification of free and total bisphenol A and bisphenol B in human urine by dispersive liquid-liquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography-mass spectrometry (MD-GC/MS) [J]. Talanta,2010,83:117-125.
    [13]A. S. Yazdi, H. Assadi, W. A. W. Ibrahim. Determination of Triazole Fungicides Using Hollow Fiber Liquid Phase Microextraction Prior to Gas Chromatography-Mass Spectrometry Analysis[J]. Ind. Eng. Chem. Res.,2012,51: 3101-3107.
    [14]C. P. Oliveira, A. R. Lafuente, N. F.Soares, et al. Multiple headspace solid phase microextraction as a powerful tool for the quantitative determination of volatile radiolysis products in a multilayer food packaging material sterilized with y-radiation[J]. J. Chromatogr. A,2012,1244:61-68.
    [15]J. M. Warren, D. R. Parkinson, J. Pawliszyn. Assessment of Thiol Compounds from Garlic by Automated Headspace Derivatized In-Needle-NTD-GC-MS and Derivatized In-Fiber-SPME-GC-MS[J]. J. Agric. Food Chem.,2013,61:492-500.
    [16]A. C. Soria, I. M. Castro, J. Sanz. Estimation of recovery by multistep purge and trap gas chromatographic-mass spectrometric analysis of honey volatiles[J]. J. Chromatogr. A,2007,1157:430-436.
    [17]B. G. Lopez, J. R. Molina, J. F. G. Reyes, et al. Rapid determination of BTEXS in olives and olive oil by headspace-gas chromatography/mass spectrometry (HS-GC-MS)[J]. Talanta,2010,83:391-399.
    [18]Z. Guadalupe, O. M. Pinill, G.alvaro, et al. Quantitative determination of wine polysaccharides by gas chromatography-mass spectrometry (GC-MS) and size exclusion chromatography (SEC) [J]. Food Chem.,2012,131:367-374.
    [19]C. Cagliero, C. Bicchi, C. Cordero, et al. Fast headspace enantioselective GC-mass spectrometric-multivariate statistical method for routine authentication of flavoured fruit foods[J]. Food Chem.,2012,132:1071-1079.
    [20]S. Dasgupta, K. Banerjee, S. Utture, et al. Extraction of pesticides, dioxin-like PCBs and PAHs in water based commodities using liquid-liquid microextraction and analysis by gas chromatography-mass spectrometry [J]. J. Chromatogr. A, 2011,1218:6780-6791.
    [21]M. Tankiewicz, C. Morrison, M. Biziuk. Multi-residue method for the determination of 16 recently used pesticides from various chemical groups in aqueous samples by using DI-SPME coupled with GC-MS[J]. Talanta,2013, 107:1-10.
    [22]L.Vallecillos, EvaPocurull, FrancescBorrull. Fully automated ionic liquid-based head space single drop microextraction coupled to GC-MS/MS to determine musk fragrances in environmental water samples[J]. Talanta,2012,99:824-832.
    [23]M. H. Naeeni, Y. Yamini, M. Rezaee. Combination of supercritical fluid extraction with dispersive liquid-liquid microextraction for extraction of organophosphorus pesticides from soil and marine sediment samples[J]. J. Supercrit. Fluids,2011,57: 219-226.
    [24]M. C. Santiago, F. P. Capote, J. G. G. Osuna, et al. Method based on GC-MS to study the influence of tricarboxylic acid cycle metabolites on cardiovascular risk factors[J]. J. Pharm. Biomed. Anal.,2013,74:178-185.
    [25]N. Chamkasem, L. W. Ollis, T. Harmon, et al. Analysis of 136 Pesticides in Avocado Using a Modified QuEChERS Method with LC-MS/MS and GC-MS/MS[J]. J. Agric. Food Chem.,2013,61:2315-2329.
    [26]J. Lu, J. Wu, P. J. Stoffella, et al. Analysis of Bisphenol A, Nonylphenol, and Natural Estrogens in Vegetables and Fruits Using Gas Chromatography Tandem Mass Spectrometry [J]. J. Agric. Food Chem.,2013,61:84-89.
    [27]X. Hou, M. Han, X. H. Dai, et al. A multi-residue method for the determination of 124 pesticides in rice by modified QuEChERS extraction and gas chromatography-tandem mass spectrometry[J]. Food Chem.,2013,138:1198-1205.
    [28]K. Banerjee, S. Mujawar, S. C. Utture, et al. Optimization of gas chromatography single quadrupole mass spectrometry conditions for multiresidue analysis of pesticides in grapes in compliance to EU-MRLs[J]. Food Chem.,2013,138: 600-607.
    [29]X. M. Xu, H. L. He, Y. Zhu, et al. Simultaneous determination of 3-monochloropropane-1,2-diol and acrylamide in food by gas chromatography-triple quadrupole mass spectrometry with coupled column separation[J]. Anal. Chim. Acta.,2013,760:93-99.
    [30]X. D. Pan, P. G. Wu, D. J. Yang, et al. Simultaneous determination of melamine and cyanuric acid in dairy products by mixed-mode solid phase extraction and GC-MS[J]. Food Control,2013,30:545-548.
    [31]A. Caligiani, G. Malavasi, G. Palla, et al. A simple GC-MS method for the screening of betulinic, corosolic, maslinic, oleanolic and ursolic acid contents in commercial botanicals used as food supplement ingredients [J]. Food Chem.,2013, 136:735-741.
    [32]P. Kaewsuya, W. E. Brewer, J. Wong, et al. Automated QuEChERS Tips for Analysis of Pesticide Residues in Fruits and Vegetables by GC-MS[J]. J. Agric. Food Chem.,2013,61:2299-2314.
    [33]L. Mondello, M. Zoccali, G. Purcaro, et al. Determination of saturated-hydrocarbon contamination in baby foods by using on-line liquid-gas chromatography and off-line liquid chromatography-comprehensive gas chromatography combined with mass spectrometry[J]. J. Chromatogr. A,2012,1259:221-226.
    [34]A. Balazs, M. Toth, B. Blazics, et al. Investigation of dietary important components in selected red fleshed applesby GC-MS and LC-MS[J]. Fitoterapia, 2012,83:1356-1363.
    [35]H. Kwon, S. J. Lehotay, L. G. Asteggiante. Variability of matrix effects in liquid and gas chromatography mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops[J]. J. Chromatogr. A,2012, 1270:235-245.
    [36]G. A. Bent, P. Maragh, T. Dasgupta. Acrylamide in Caribbean foods-Residual levels and their relation to reducing sugar and asparagine content[J]. Food Chem., 2012,133:451-457.
    [37]R. Montes, R. Segarra, M. Castillo. Trichothecenes in breakfast cereals from the Spanish retail market[J]. J. Food Compos. Anal.,2012,27:38-44.
    [38]J. Alin, M. Hakkarainen. Microwave Heating Causes Rapid Degradation of Antioxidants in Polypropylene Packaging, Leading to Greatly Increased Specific Migration to Food Simulants As Shown by ESI-MS and GC-MS[J]. J. Agric. Food Chem.,2011,59:5418-5427.
    [39]A. R. Fontana, M. M. Toro, J. C. Altamirano. One-Step Derivatization and Preconcentration Microextraction Technique for Determination of Bisphenol A in Beverage Samples by Gas Chromatography-Mass Spectrometry[J]. J. Agric. Food Chem.,2011,59:3559-3565.
    [40]A. Caligiani, G. Palla, F. Bonzanini, et al. A validated GC-MS method for the detection of tropane alkaloids in buckwheat (Fagopyron esculentum L.) fruits, flours and commercial foods [J]. Food Chem.,2011,127:204-209.
    [41]Y. P. Tan, K. Li, L. Hu, et al. Fast and Simple Droplet Sampling of Sap from Plant Tissues and Capillary Microextraction of Soluble Saccharides for Picogram-Scale Quantitative Determination with GC-MS[J]. J. Agric. Food Chem.,2010,58: 9931-9935.
    [42]A. R. Fontana, S. Patil, K. Banerijee, et al. Ultrasound-Assisted Emulsification Microextraction for Determination of 2,4,6-Trichloroanisole in Wine Samples by Gas Chromatography Tandem Mass Spectrometry [J]. J.Agric. Food Chem.,2010, 58:4576-4581.
    [43]T. K. Kim, S. Kim, K. G. Lee. Analysis of furan in heat-processed foods consumed in Korea using solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) [J]. Food Chem.,2010,123:1328-1333.
    [44]J. W. Wong, K. Zhang, K. Tech, et al. Multiresidue Pesticide Analysis in Fresh Produce by Capillary Gas Chromatography-Mass Spectrometry/Selective Ion Monitoring (GC-MS/SIM) and Tandem Mass Spectrometry (GC-MS/MS) [J]. J. Agric. Food Chem.,2010,58:5868-5883.
    [1]周家华.食品添加剂[M].北京:化学工业出版社,2001:11.
    [2]H. Y. Peng, G. D. A. Mireia, V. B. Mehta. Dimethyl Fumarate Inhibits Dendritic Cell Maturation via Nuclear Factor κB (NF-κB) and Extracellular Signal-regulated Kinase 1 and 2 (ERK1/2) and Mitogen Stress-activated Kinase 1 (MSK1) Signaling[J]. J. Biol. Chem.,2012,287:28017-28026.
    [3]A. M. D'Erme MD, A. Bassi MD, T. Lotti MD, et al. Dimethyl fumarate contact dermatitis of the foot:an increasingly widespread disease[J]. Int. J. Dermatol.,2012, 51:42-45.
    [4]游飞明.食品中富马酸二甲酯残留的气相色谱检测方法研究[J].中国卫生检验杂志,2011,21(2):327-328.
    [5]李敏珍.食品中富马酸二甲酯残留的气相色谱检测方法研究[J].中国石油和化工标准与质量,2011,5:14-15.
    [6]胡蓉,简云川,杨学军.分光光度法测定富马酸二甲酯的研究[J].西南民族学院选报:自然科学版,1996,22(3):292-293.
    [7]张杨,陈伟强.薄层法检测富马酸二甲酯方法探讨[J].中国卫生杂志,2001,11(6):7221.
    [8]L. G. Chen, X. Y. Cao, X. K. Pen. Determination of dimethyl fumarate in prepared-food by gas chromatography[J]. Food Machinery,2007,23(1):112-1141.
    [9]陈明,梁春穗,黄伟雄.广式月饼中富马酸二甲酯残留量测定方法[J].中国卫生检验杂志,2001,11(1):48.
    [10]李鹏,耿健强,李伟,董婉.气相色谱法测定食品中富马酸二甲酯[J].食品研究与开发,2011,32(3):136-138.
    [11]何小青,罗关中,蓝勇波,等.高效液相色谱法测定食品中富马酸二甲酯[J].光谱实验室,2004,21(4):701-704.
    [12]韩惠雯,黄菲菲.高效液相色谱法测定食品中的富马酸二甲酯的研究[J].上海农业学报,2009,25(3):72-74.
    [13]S. Liu, K. Su. Determination of antimicrobial p reservative dimethyl fumarate by high performance liquid chromatography[J]色谱,1998,16(2):180-181.
    [14]张娟.高效液相色谱法测定糕点中富马酸二甲酯[J].中国卫生检验杂志,2008,18(8):1559-1560.
    [15]寇立娟,梁春实,臧金海.中性氧化铝柱净化气相色谱/质谱法测定[J].食品中富马酸二甲酯的含量[J].食品与发酵工业,2009,(135)12:134-136.
    [16]L. Pablo, S. P. Lucia, R. Jorge, et al. Determination of dimethyl fumarate and other potential allergens in desiccant and antimould sachets[J]. Anal. Bioanal. Chem., 2009,394(8):2231-2239.
    [17]阚周密,林建阳,王戏丹.气相色谱/质谱联用法测定食品中富马酸二甲酯的含量[J],食品科学,2007,28(1):247-249.
    [18]Y. M. Kai, Y. H. Hu, R. R. Tang, et al. Solubility of dimethyl fumarate in water (methanol, ethanol,1-propanol) from (278.15 to 333.15) K[J]. Fluid Phase Equilib.,2013,344:19-26.
    [19]金良正,胡浩军.高脂糕点中富马酸二甲酯的气相色谱测定[J].中国卫生检验杂志,2006,16(10):1209.
    [20]曹华娟,冯家力,潘振球,等.食品中富马酸二甲酯残留的GC-MS法测定[J].实用预防医学,2005,12(1):173-174.
    [21]顾秀英,鲍忠远,许荣年,等.毛细管气相色谱法测定食品中富马酸二甲酯[J].食品科技,2006,(9):248-249.
    [22]邵昭明.毛细管柱气相色谱法测定月饼中富马酸二甲酯残留量[J].中国卫生检验杂志,2001,11(1):460.
    [23]L. Pablo, S. P. Lucia, G. J. Carmen. Determination of dimethyl fumarate in desiccant and mouldp roof agents using ultrasound-assisted extraction gas chromatography with electron-capture detection[J]. J. Chromatogr. A,2009,126 (30):5755-5758.
    [24]周慧敏,赵彤,姜俊,佟克兴.食品中富马酸二甲酯残留量的测定-气相色谱法[J].光谱实验室,2011,28(2):689-692.
    [1]M. I. Cervera, T. Portoles, E. Pitarch, et al. Application of gas chromatography time-of-flight mass spectrometry for target and non-target analysis of pesticide residues in fruits and vegetables[J]. J. Chromatogr. A,2012,1244:168-177.
    [2]X. Hou, M. Han, X. H. Dai, et al. A multi-residue method for the determination of 124 pesticides in rice by modified QuEChERS extraction and gas chromatography tandem mass spectrometry [J]. Food Chem.,2013,138:1198-1205.
    [3]C. H. Jia, X. D. Zhua, J. H. Wang, et al. Extraction of pesticides in water samples using vortex-assisted liquid-liquid microextraction[J]. J. Chromatogr. A,2010,1217: 5868-5871.
    [4]Z. Y. Sang, Y. T. Wang, Y. K. Tsoi, et al. CODEX-compliant eleven organophosphorus pesticides screening in multiple commodities using headspace solid phase microextraction-gas chromatography-mass spectrometry[J]. Food Chem.,2013,136:710-717.
    [5]J. H. Zhang, H. X. Gao, B. Peng, et al. Comparison of the performance of conventional, temperature-controlled, and ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction combined with high-performance liquid chromatography in analyzing pyrethroid pesticides in honey samples[J]. J. chromatogr. A,2011,1218:6621-6629.
    [6]A. Bidari, M. R. Ganjali, P. Norouzi, et al. Sample preparation method for the analysis of some organophosphorus pesticides residues in tomato by ultrasound-assisted solvent extraction followed by dispersive liquid-liquid microextraction[J]. Food Chem.,2011,126:1840-1844.
    [7]G Satpathya, Y. K.Tyagi, R. K. Gupta. A novel optimised and validated method for analysis of multi-residues of pesticides in fruits and vegetables by microwave assisted extraction (MAE)-dispersive solid-phase extraction (d-SPE)-retention time locked (RTL)-gas chromatography-mass spectrometry with Deconvolution reporting software (DRS) [J]. Food Chem.,2011,127:1300-1308.
    [8]D. S. Lu, X. L. Qiu, C. Feng, et al. Simultaneous determination of 45 pesticides in fruit and vegetable using an improved QuEChERS method and on-line gel permeation chromatography-gas chromatography/mass spectrometer[J]. J. Chromatogr. B,2012, (895-896):17-24.
    [9]M. H. Naeeni, Y. Yamini, M. Rezaee. Combination of supercritical fluid extraction with dispersive liquid-liquid microextraction for extraction of organophosphorus pesticides from soil and marine sediment samples[J]. J. Supercrit. Fluid,2011,57: 219-226.
    [10]G. C. Bedendo, E. Carasek. Simultaneous liquid-liquid microextraction and polypropylene microporous membrane solid-phase extraction of organochlorine pesticides in water,tomato and strawberry samples[J]. J. Chromatogr. A,2010,1217: 7-13.
    [11]S. Samadi, H. Sereshti, Y. Assadi. Ultra-preconcentration and determination of thirteen organophosphorus pesticides in water samples using solid-phase extraction followed by dispersive liquid-liquid microextraction and gas chromatography with flame photometric detection[J]. J. Chromatogr. A,2012,1219:61-65.
    [12]J. Wu, J. Lu, C. Wilson, et al. Effective liquid-liquid extraction method for analysis of pyrethroid and phenylpyrazole pesticides in emulsion-prone surface water samples[J]. J. Chromatogr. A,2010,1217:6327-6333.
    [13]R. Ma. G. Rodriguez, R. R. Otero, et al. Determination of 23 pesticide residues in leafy vegetables using gas chromatography-ion trap mass spectrometry and analyte protectants[J]. J. Chromatogr. A,2008, (1196-1197):100-109.
    [14]S. Boonchiangma, W. Ngeontae, S. Srijaranai. Determination of six pyrethroid insecticides in fruit juice samples using dispersive liquid-liquid microextraction combined with high performance liquid chromatography[J]. Talanta,2012,88: 209-215.
    [15]S. S. Caldas, F. P. Costa, E. G. Primel. Validation of method for determination of different classes of pesticides in aqueous samples by dispersive liquid-liquid microextraction with liquid chromatography-tandem mass spectrometric detection[J]. Anal. Chim. Acta,2010,665:55-62.
    [16]P. P. Zhou,Y. N. Wu, S. Yin, et al. National survey of the levels of persistent organochlorine pesticides in the breast milk of mothers in China[J]. Environ. Pollut.,2011,159:524-531.
    [17]S. Walorczyk, D. Drozdzynski, J. Kowalska, et al. Pesticide residues determination in Polish organic crops in 2007-2010 applying gas chromatography-tandem quadrupole mass spectrometry [J]. Food Chem.,2013,139:482-487.
    [18]Y. Fujii, Y. Ito, K. H. Harada, et al. Comparative survey of levels of chlorinated cyclodiene pesticides in breast milk from some cities of China, Korea and Japan[J]. Chemosphere,2012,89:452-457.
    [19]C. K. Bempah, A. B. Kwofie, et al. Residues of organochlorine pesticides in vegetables marketed in Greater Accra Region of Ghana[J]. Food Control,2012,25: 537-542.
    [20]C. J. Lagerkvist, M. Ngigi, J. J. Okello, et al. Means-End Chain approach to understanding farmers'motivations for pesticide use in leafy vegetables:The case of kale in peri-urban Nairobi, Kenya[J]. Crop Prot.,2012,39:72-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700