复合BMSCs包芯结构骨支架材料修复兔桡骨骨缺损的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨科临床上造成大段骨缺损的疾病非常常见,例如:严重的创伤、骨质疏松病人的骨折、肿瘤、肌肉骨骼系统的先天性畸形等。治疗上述疾病需要切除病损的骨质,必然导致骨的大段缺损,骨缺损后的重建问题成为治疗的最大挑战。近些年,骨组织工程不断取得突破性进展,逐渐成为治疗大段骨缺损最有前景的方法。骨组织工程主要包括3个主要因素,其中骨支架材料作为种子细胞和活性因子的载体,为新生骨的生成提供支撑,成为骨组织工程最关键的一个因素。合适的结构和物理性能以及良好的生物相容性是作为理想的骨支架材料两个最重要的要求:作为临时的支撑结构,骨支架材料决定新生骨最终的生成形状,并影响复合在支架材料上的细胞间的相互作用,支架材料表面的亲水性和粗糙程度等不同,在其表面生长的细胞也会表现出不同的生物活性。
     在以前的研究中,通过低温成型技术,我们已经制备出具有三维结构的PLGA/β-TCP复合支架材料,而且通过体内和体外实验均已经证实PLGA/β-TCP复合支架材料具有良好的加工和成型特性、较高的空隙率、良好的机械强度和合适的降解速度,能够满足骨组织工程理想支架材料的要求。但是,PLGA/β-TCP复合支架材料表面具有强烈的疏水性,不利于细胞的粘附、增殖和成骨分化,大大影响了其作为支架材料的修复能力。支架材料具有较好的亲水性和良好的生物相容性,不但可以确保细胞在支架材料表面的粘附、增殖和分化,而且能够促进氧气和细胞必须的营养物质顺利进入支架材料,这对于骨缺损的成功修复至关重要。因此,为了使PLGA/β-TCP复合支架材料更适合细胞的粘附、增殖和分化,改变材料的表面特性非常重要。
     研究证实,多孔支架材料表面覆盖一层胶原以后,材料的吸水率会得到有效提高,而且有研究表明,骨髓基质干细胞如果在I型胶原上培养,其粘附、增殖和成骨分化能力也会得到显著提高。基于以上原因,我们制备出了内PLGA/β-TCP外I型胶原的包芯结构骨支架材料,此材料内层为PLGA/β-TCP复合支架材料,在其表面覆盖一层I型胶原。本实验主要包括以下几部分的研究:
     1基于仿生学原理,模拟人体骨组织真实结构,结合低温沉积技术,构建仿生结构组织工程骨构建修复方案,开发可控的环形套管喷头,通过快速成型的方法,制造出所需的材料、结构、细胞分布高度仿生的复杂的三维结构骨支架-包芯结构骨支架材料。
     2以PLGA/β-TCP复合支架材料作为对照组,通过体外和骨髓基质干细胞(BMSCs)共培养的观察实验,对包芯结构骨支架材料的物理性能和生物相容性进行评价。外观形态通过扫描电镜观测;物理性能通过如下指标测定:孔隙率、孔径、压缩强度和杨氏模量;亲水性通过吸水率评价;骨髓基质干细胞在支架材料上的粘附率通过细胞计数测定,增殖率通过MTT方法测定,成骨能力通过碱性磷酸酶活性的检测进行评价;细胞在支架材料上的生长情况通过扫描电镜观测;实验结果证实,包芯结构骨支架材料和对照组都有良好的物理性能,包芯结构骨支架材料的亲水性较对照组显著提高(p<0.01),细胞在包芯结构骨支架材料上的粘附、增值及成骨分化能力明显优于(p<0.05)对照组。
     3兔桡骨大段骨缺损修复实验:把各组支架材料和骨髓基质干细胞复合,随后植入到兔桡骨大段骨缺损模型里进行兔桡骨骨缺损修复的对比研究。通过X线、MicroCT、组织学和荧光双标等方法观察支架材料的成骨情况、降解情况和修复兔桡骨大段骨缺损的情况;实验结果证实,48周后,包芯结构骨支架材料在骨缺损部位完全降解,骨塑型完成,成功修复了兔桡骨大段骨缺损,而且支架材料的降解速度和成骨速度匹配良好,相对于PLGA/β-TCP复合支架材料,包芯结构骨支架材料表现出更好的成骨活性和修复大段骨缺损的能力。
     包芯结构骨支架材料具有良好的物理性能及生物相容性,在复合BMSCs的条件下,能很好的修复兔桡骨大段骨缺损,包芯结构骨支架材料作为骨组织工程理想的支架材料,具有良好的临床应用前景。
Large bone defects, such as acute injuries, fall fractures in osteoporotic patients, or tumors and congenital malformations of the musculoskeletal system, are very common in the clinical cases of orthopedics. It is necessary to resect the affected parts of the bone, which is a major therapeutic challenge for the reconstructive surgery after resection. Recently, great progress has been made in bone tissue engineering,which is promising for treatment of bone defects and bone regeneration. Scaffold is one of the critical elements, and it is generally acknowledged that appropriate physical structure and good biocompatibility are two important characteristics that are considered ideal for bone tissue engineering. The scaffold, as a temporary template or substrate, formulates the final shape of the new bone, and the architecture of the scaffold, a key property of the scaffolds, determines its interaction with the targeted cells. Target cells behave distinctively when they grow on different scaffolds.(hydrophilicity and surface roughness, etc.).
     In the previous study, we had fabricated3-dimensional porous poly(lactic-co-glycolic acid)(PLGA)/β-tricalciumphosphate (β-TCP)(PLGA/β-TCP) scaffold via low-temperature deposition manufacturing (LDM). In vitro and in vivo experiments had proved that the scaffold had favourable mechanical strength, high pority ratio, adjustable biodegradation rate, and facility of process and molding, which satisfied the essential requirements of the scaffold for the bone tissue engineering. However, the hydrophobic surface of PLGA/β-TCP is not adequate for cell adhesion, proliferation and osteoblastic differentiation, which limited the repairing ability of the scaffold. Satisfactory hydrophilicity and favourable biocompatibility of the scaffold could guarantee the cells to adhere, proliferate and differentiate, and it also could promote infiltration of oxygen and nutritive material of the body fluid inside the scaffold, which is vital to the successful repair of bone defects. Therefore, it is important to modify the surface of the scaffold to achieve satisfied surface characteristics for cell adhesion, proliferation and differentiation.
     Research proved that water-absorption ratio of the porous scaffold could be improved remarkably by covering the surface of the scaffold with collagen. Some studies reported that the adhesion, proliferation and the differentiation to osteoblast directionally of the bone marrow stromal cells (BMSCs) could be improved when the cells cultured on the Type Ⅰ collagen. For these reasons, we have fabricated the core-sheath structure composite scaffold composed of PLGA/β-TCP skeleton wrapped with Type Ⅰ collagen on the surface.
     This research can be subdivided into the following3parts:
     1. Preparation of the core-sheath structure composite scaffold. The core-sheath structure composite scaffold was a3-dimensional structural bone bracket stuff fabricated by a kind of controllable tachy-forming annulus drivepipe sprayer via LDM. Its materials and structure of the scaffold are fairly biomimetic, and the production of the scaffold is based on the bionic principle through simulating human bone actual architecture.
     2. Examining the physical properties and the biocompatibility of the core-sheath structure composite scaffold in comparison with PLGA/β-TCP skeleton in vitro. Physical properties were evaluated by means of analyzing the pority ratio, aperture, compressive strength and Young's modulus. The morphology of the scaffolds and the BMSCs on the surfaces of the scaffolds were investigated by Scanning electron microscope (SEM). The hydrophilicity was assessed by means of water absorption, and the proliferation of the cells were assessed by3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay (MTT). The function of the differentiated BMSCs was monitored by measuring alkaline phosphates activity (ALP) of the cells. The results indicated that physical properties of the novel scaffold were as good as those of the control group, hydrophilicity was observably better (p<0.01) than that of control group, and abilities of proliferation and osteogenic differentiation of BMSCs on novel scaffold were significantly greater (p<0.05) than those of control group.
     3. Study on treatment of bone defect of rabbit radius of the core-sheath structure composite scaffold in comparison with PLGA/β-TCP skeleton. BMSCs were seeded into each group of the composite scaffold in order to repair1.5cm segmental defect of the rabbit radius. The scaffolds'degradation rate and the new bone formation were evaluated by radiograph, Micro CT and histology. The results suggested that the core-sheath structure composite scaffold was degradated completely in bone defect position and bone remodeling was completed at the same time, and repaired the bone defect successfully in48weeks after postoperation, in addition, the new bone formation rate and the scaffolds'degradation rate was matching. The osteogenic capacity and the ability of repairing the bone defect of the novel scaffold were significantly greater than those of control group.
     Our research has demonstrated that the core-sheath structure composite scaffold possesses preferable physical properties and biocompatibility, and can repair the bone defect successfully supplemented with bone marrow stromal cells, which suggests that the novel scaffold may act as an ideal implant into bone defect, and has high value in bone tissue engineering.
引文
[1]Langer R, Tissue Engineering.Scienes.1993,260(5110):529
    [2]张晨,高景恒,组织工程的提出及其研究现状.实用美容整形外科杂志,1996,7(1):46
    [3]张涤生,组织工程学简介.中华整形烧伤外科杂志,1998,14(3):218
    [4]Crane GM, Lshaug SL, Mikos AG, et al. Bone Tissue Engineening, Nature Medicine,1995,1(12):1322
    [5]Vacanti CA, Upton J, Tissue Engineered morphogenesis of cartiloge and bone by means of cell transplontion using synthetic Biodegradable polymer Matrices. Clin Plast Surg,1994,27(3):445
    [6]Fini M, Motta A, Torricelli P, et al. The healing of confined critical size cancellous defects in the presence of silk fibroin hydroge1. Biomaterials,2005,26(17):3527-3523.
    [7]Morita Y, Tomita N, Aoki H, et al. Visco-elastic properties of cartilage tissue regenerated with fibroin sponge. Biomed Mater Eng,2002,12(3):291-298.
    [8]Sharma B, Elisseeff JH. Engineering structurally organized cartilage and bone tissues[J]. Ann Biomed Eng,2004,32(1):148-159
    [9]Deville S, Saiz E, Tomsia AP. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials,2006:27(32):5480-5489.
    [10]Deville S, Saiz E, Tomsia AP, et al. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering[J]. Biomaterials,2006,27(32):5480-5489.
    [11]Morishita T, Honoki K, Ohgushi H, et al. Tissue engineering approach to the treatment of bone tumors:three cases of cultured bone grafts derived from patients' mesenchymal stem cells. Artif Organs,2006;30(2):115-118.
    [12]Tan KK, Tan GH, Shamsul B S, et al. Bone graft substitute using hydroxyapatite scaffold seeded with tissue engineered autologous osteoprogenitor cells in spinal fusion; early result in a sheep model. Med J Malaysia,2005;60Suppl C:53-58.
    [13]赵丽君,毛天球,陈富林,等.不同类型骨组织工程支架材料的比较研究[J].中国临床康复,2003,7(4):29-30.
    [14]Eggli PS, Muller W, Schenk RK. Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bony ingrowth and implant substitution. Clin Orthop Relat Res,1988;(232):127-138.
    [15]Ducheyne P, el-Ghannam A, Shapiro I. Effect of bioactive glass templates on osteoblast proliferation and in vitro synthesis of bone-like tissue. J Cell Biochem,1994;56(2):162-167.
    [16]王大平,韩云,朱伟民,等.不同孔径纳米羟基磷灰石人工骨修复兔桡骨缺损效果比较[J].中国组织工程研究与临床康复,2007,11(48):9641-9645.
    [17]Spoerke ED, Murray NG, Li H, et al. A bioactive titanium foam scaffold for bone repair[J]. Acta Biomater,2005,1(5):523-533.
    [18]Ren T, Ren J, Jia X, et al. The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds. J Biomed Mater Res A,2005:74(4):562-569.
    [19]Puelacher W C, Vacanti J P, Ferraro N F, et al. Femoral shaft reconstruction using tissue-engineered growth of bone. J Oral Maxillofac Surg,1996;25(3):223-228.
    [20]Gunatillake P, Mayadunne R, Adhikari R. Recent developments in biodegradable synthetic polymers. Biotechnol Ann Rev,2006,12:301-472.
    [21]Middleton JC, Tipton AJ. Synthetic biodegradable polymers as medical devices. Med Plast Biom ater,1998,21:2335-2346.
    [22]Anseth K S, Svaldi D C, Laurencin C T et al. Photopolymerisation of novel degradable networks for orthopaedic applications Washington, DC: American Chemical Society,1997,189-202.
    [23]Temenoff J S, Mikos A G. Injectable biodegradable materials for orthopedic tissue engineering. Biomaterials,2000,2:2405-2412.
    [24]Ren T, Ren J, Jia X, et al. The bone formation in vitro and mandibular defect repair using PLGA porous scafolds. J Biomed Mater Res A,2005,74(4):562-569.
    [25]姚晖,杜昶,杨韶华,等.纳米羟晶/胶原仿生骨修复家兔颅颌骨缺损的实验研究[J].透析与人工器官,2000,11(2):5-8.
    [26]朱伟民,王大平,孟志斌,等.纳米羟基磷灰石人工骨修复骨缺损的实验研究[J].中国临床解剖学杂志,2006,24(6):670-673.
    [27]Chen G, Sato T, Ushida T, et al. Tissue engineering of cartilage using a hybrid scafold of synthetic polymer and collagen. Tissue Eng,2004,10(3-4):323-330.
    [28]陈鹏,毛天球,刘冰,等.纳米羟基磷灰石复合胶原材料负载骨髓基质干细胞修复颅骨极限缺损的实验研究[J].临床口腔医学杂志,2005,21(12):730-732.
    [29]Christenson E M, Anseth K S, van den Beucken JJ, et al. Nanobio material applications in orthopedics. J Orthop Res,2007,25(1):11-22.
    [30]Link DP, van den Dolder J, Jurgens W J, et al. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles. Biomaterials,2006,27(28):4941-4947.
    [31]Yin Y, Ye F, Cui J, et al. Preparation and characterization of macroporous chitosan-gelatin/beta-tricalcium phosphate composite scaffolds for bone tissue engineering. J Biomed Mater Res A,2003,67(3):844-855.
    [32]王新,刘玲蓉,张其清.纳米羟基磷灰石-壳聚糖骨组织工程支架的研究.中国修复重建外科杂志,2007,21(2):120-124.
    [33]Park YJ, Lee YM, Park SN, et al. Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration. Biomaterials,2000,21(2):153-159.
    [34]Holt GE, Halpem JL, Dovan TT, et al. Evolution of an in vivo bioreactor. J Orthp Res,2005,23(4):916-923.
    [35]Saito N, Okada T, Horiuchi H, et al. Local bone formation by jnjection of recombinant human bone morphogenetic protein-2contained in polymer carriers. Bone,2003,32(4):381-386
    [36]王嫣,陈小菊,王兰,等.海藻酸钠凝胶对骨髓间充质干细胞生物学效应的初步研究[J].重庆医科大学学报,2006,31(4):478-481,536.
    [37]刘雷,李起鸿,唐康来,等.异种脱蛋白组织工程骨支架材料的制备及理化特性研究[J].第三军医大学学报,2007,29(1):12-14.
    [38]吕仁发,周强.胶原在骨组织工程应用中的体外制备及生物相容性评价.中国临床康复,2005,9(24):194-195.
    [39]Miao X, Tan L-P, Tan L-S, et al. Porous calcium phosphate ceramics modified with PLGA-bioactive glass[J]. Mater Sci Eng C,2007,27(2):274-279.
    [40]Perka C, Spitzer RS, Lindenhayn K, et al. Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomed Mater Res,2000,49(3):305-311.
    [41]Rocha L B, Goissis G, Rossi M A. Biocompatibility of anionic collagen matrix as scaffold for bonehealing. Biomaterials,2002,23(2):449-456.
    [42]Sato M, Asazuma T, Ishihara M, et al. An atelocollagen honeycomb-shaped scafford with a membrane seal (ACHMS-scaffold) for the culture of annulus fibrosus cells from an intervertebral disc. J Biomed Mater Res A,2003,64(2):248-256.
    [43]Di Cesare PE, Frenkel SR, Carlson CS, et al. Reqional gene therapy for full-thickness articular cartilage lesions using naked DNA with a collagen matrix. J Orthop Res,2006,24(5):1118-1127.
    [44]Meinel L, Fajardo R, Hofmann S, et al. Silk implants for the healing of critical size bone defects. Bone,2005,37(5):688-698.
    [45]Xingdong Zhang, Huip in Yuan, Kde Groot. Calcium phosphate biomaterials with intrinsic osteo-inductivity. Notebook of the6th World Biomaterials Congress, Hawaii, May,2000.
    [46]Seol Y J, Lee JY, Park Y J, et al. Chitosan sponges as tissue engineering scaffolds for bone formation. Biotechnol Lett,2004,26(13):1037-1041.
    [47]Klokkevold P R, Vandemark L, Kenney EB, et al. Osteogenesis enhanced by chitosan(poly-N-acetyl glucosaminoglycan) in vitro. J Periodontol,1996,67(11):1170-1175.
    [48]候春林,陈爱民.几丁糖凝胶预防骨感染的实验研究[J].中国修复重 建外科杂志,1996,10(3):176-179.
    [49]张华林,陈治清.羊毛角蛋白作为骨组织工程支架材料的研究进展[J].国际口腔医学杂志,2007,34(3):390-394.
    [50]霍美蓉,周建平.药用辅料研究新进展-生物可降解聚合物.中国天然药物,2003,1:246-251.
    [51]王红梅,陈庆华,潘兴华等.羟基磷灰石/β-磷酸三钙/海藻酸钠复合多孔支架的制备与研究.佛山陶瓷,2006,16(3):13-16.
    [52]Paige KT,Cima LG, Yaremchuk MJ, et al. De novo cartilage generation using calcium alginate-chondrocyte constracts. Plast Reconstr Surg,1996,97(1):168-178
    [53]Zhu L, Liu W, Cui L, et al. Tissue-engineered bone repair o f goat-femur defects with osteogenically induced bone marrow stromal cells. Tissue Eng,2006,12(3):423-433.
    [54]张阳德,顾红,李晓莉.骨组织工程中的支架材料[J].中国医学工程,2005,13(2):199-202
    [55]马秦,毛天球,刘宝林,等.rhBMP-2、胶原、珊瑚复合骨诱导骨形成生物活性的实验研究.华西口腔医学杂志,2000,18(2):94.
    [56]Tsuang YH. Lin FH. Sun JS. et al. In vitro cell behavior of osteoblasts on Pyrost bone substitute. Anat Rec,1997,247(2):164-169.
    [57]Mooney D.J., Mazzoni C.L., Breuer C.K., McNamara K., Hern D., Vacanti J.P.,. Langer R. Stabilized polyglycolic acid fiber-based tubes for tissue engineering. Biomaterials,1996,17(2):115-24.
    [58]Yoon Sung Nam,Tae Gwan Park. Biodegradable Polymeric microcellular foam by modified thermally induced phase separation method. Biomaterials,1999,20(19):1783-1790.
    [59]Schugens CS, Grandfils CH, Moonen G. Biomed Mater Res,1995,29(1):1349-1362.
    [60]Mikos AG, Bao Y, Cima LG. Preparation of Poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. Biomed Mater Res,1993,27(2):183-189
    [61]Mikos AG, Thorsen AJ, Czerwonka LA. et al. Wetting of poly(L-lactic acid) and poly(DL-lactic-co-glycolic acid) foams for tissue culture. Biomaterials,1994,15(1):55-58.
    [62]Whang K, Thomas CH, Healy K E. A novel method to fabricate bioabsorbable scaffolds. Polymer,1995,36(4):837-842.
    [63]Yoo J, Cho K, Bae W S, el al. Transformation-toughened ceramic multilayers with compositional gradients. Arn Cer Soc,1998,81(1):21-32.
    [64]Nakahara H, Dennis JE, Brudee SP, et, al. In vitro differentiation of bone and hypertrophic cartilage from periosteal-derived cells. Exp Cell Res,1991,195(2):492-50
    [65]Bratt-Leal AM, Carpenedo RL, McDevitt TC. Engineering the embryoid body microenvironment to direct embryonic stem cell diferentiation. Biotechnol Prog,2009,25(1):43-51
    [66]Hyslop LA, Armstrong L, Stojkovic M, et al. Human embryonic stem cells:biology and clinical implications. Expert Rev Mol Med,2005,7(19):1-21.
    [67]Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science,2007,318(5858):1917-1920.
    [68]Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell,2007,131(5): 861-872.
    [69]Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell,2009,4(5):381-384.
    [70]Dai F, Shi D, He W, et al. hCTLA4-gene modified human bone marrow-derived mesenchymal stem cells as allogeneic seed cells in bone tissue engineering. Tissue Eng,2006,12(9):2583-2590.
    [71]Hou T, Xu J, W u X, et al. Umbilical cord Wharton's Jelly:a new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Eng Part A,2009,15(9):2325-2334
    [72]Derubeis AR, Cancedda R. Bone marrow stromal cells in bone engineering: limitations and recent advances [J]. Ann Biomed Eng,2004,32(1):160-165
    [73]Zohar R, Sodek J, Mcculloch CA. Characterization of stromal progenitor cells enriched by flow cytomerty[J]. Blood,1997,90(9):3471-3480
    [74]Encina NR, Billotte WG, Hofmann MC. Immunomagnetic isolation of osteoprogenitors from human bone marrow stroma[J]. Lab Invest,1999,79(4):449-455
    [75]Li YJ, Batra NN, You L, et al. Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation[J]. J Orthop Res,2004,22(6):1283-1289
    [76]Sikavitsas VI, Bancroft GN, Lemoine JJ, et al. Flow perfusion engances the calcified matrix deposition of marrow stromal cells in biodegradable nonwoven fiber mesh scafolds[J]. Ann Biomed Eng,2005,33(1):63-70
    [77]Koike M, Shimokawa H, Kanno Z, et al. Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2[J]. J Bone Miner Metab,2005,23(3):219-225
    [78]Tognarini I, Sorace S, Zonefrati R, et al. In vitro diferentiation of human mesenchymal stem cells on Ti6A14V surfaces[J]. Biomaterials,2008,29(7):809-824.
    [79]Kim SS, Park MS, Gwak SJ, et al. Accelerated bonelike apatite growth on porous polymer/ceramic composite scafolds in vitro[J]. Tissue Eng,2006,12(10):2997-3006.
    [80]Jabbarzadeh E, Jiang T, Deng M, et al. Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scafolds for bone tissue engineering[J]. Biotechnol Bioeng,2007,98(5):1094-1102
    [81]Simpson RL, Wiria FE, Amis AA, et al. Development of a95/5poly(L-lactide-co-glycolide)/hydroxylapatite and beta-tricalcium phosphate scafold as bone replacement material via selective laser sintering[J]. J Biomed Mater Res B Appl Biomater,2007,6(26):1266-1270.
    [82]Huang YC, Kaigler K, Rice KG, et al. Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-bone regeneration[J]. J Bone Miner Res,2005,20(5):848-857
    [83]Marx RE. Platelet-rich plasma:evidence to support its use[J]. j Oral Maxillofae Surg,2004,62:489-496
    [84]Aprornmaeklong P, Konchel M, Depprich R, et al. Influence of platelet-rich plasma(PRP)on osteogenic differentiation of rat bone marrow stromal cells, an in vitro study [J]. Int J OralMax. illofac Surg,2004,33(1):60-70
    [85]Lucarelli E, Beccheroni A, Donati D. Platelet-derived growth factors enhance proliferation of human stromal stem cells[J]. Biomaterials,2003,24:3095-3100
    [86]Lieberman JR, Kaluiski A, Stevenson S, et al. The effect of gene therapy with bone morphogenetic pretein-2producing bone marrow cells on the repair of segmental femoral defects in rats [J]. J Bone Joint Am,1999,81(7):905-917
    [87]Partidge K, Yang X, Clarke NM, et al. Adenoviral BMP-2gene transfer in mesenchymal stem cells, in vitro and in vivo bone formation on biodegradable polymer scaffolds[J]. Biochem Biopgys Res Commun,2002,292:144-152
    [88]郑启新,郭晓东,杜靖远,等.bFGF.基因转染对成骨细胞生物学行为的影响[J].中华外科杂志,2000,26(10):735-738
    [89]Chen TL. Inhibition of growth and diferentiation of osteoprogenitors in mouse bone morrow stromal cell cultures by increased donor age and glucocorticoid treatment[J]. Bone,2004,35(1):83-95
    [90]Abdallah BM, Haack—Sorensen M, Brens JS, et al. Maintenance of diferentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite of extensive proliferation[J]. Biochem Biophy Res Conmmun,2005,326(3):527-538
    [91]Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:implications for cell-based therapies. Tissue Eng,2001,7(2):211-228.
    [92]De Ugret DA, Alfonso Z, Zuk PA, et al. Defferendial expression of stem cells mobilization-assciated molecules on mutilineage cells from adipose tissue and bone marrow. Immunol Lett,2003,89(2-3):267-270.
    [93]雷华,李青峰.脂肪干细胞的研究进展.中华整形外科杂志,2003,19(6):465-466.
    [94]Zaragosi LE, Ailhand G, Dalai C. Autocrine fibroblast growth factor2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells,2006,24(11):2412-2419
    [95]Dudas JR, Marra KG, Cooper GM, et al. The osteogenic potential of adipose-derived stem cells for the repair of rabbit calvarial defects. Ann Plast Surg,2006,56(5):543-548.
    [96]Erickson GR, Gimble JM, Franklin DM, et al. Chondmgenic potentials of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun,2002,290(2):763-769.
    [97]Saford KM, Hicok KC, Saford SD, et al. Neuogenic diferentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun,2002,294(2):371-379.
    [98]EI-Ghalbzouri A, Van Den, Bogaerdt AJ. et al. Human adipose tissue-drived cells delay re-epithelialization in comparison with skin fibroblast in organotypic skin culture. Br J Dermatol,2004,150(3):44.4—454.
    [99]Rangappa S, Fen C, Lee EH, et al. Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Ann Thorac Surg,2003,75(3):775-779.
    [100]Zhang DZ, Gai LY, Liu HW, et al. Transplantation of autologous adipose-derived stem cells ameliorates cardiac function in rabbits myocardial infarction. Chin Med J,2007,120(4):300-307.
    [101]Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a sourse of multipotent stem cells. Mol Biol Cell,2002,13(12):4279-4295.
    [102]Ogawa R, Wizuno H, Hyakusoku H, et al. Chondragenic and osteogenic diferentation of adipose-derived stem cells isolated from GFP transgenic mice. J Nippon Med Sch,2004,71(4):240-241.
    [103]Malaren A. Ethical and social considerations of stem cell research [J]. Nature,2001,414(6859):129-131.
    [104]温叶飞,胡帼颖,张志雄,等.种子细胞与组织工程的研究[J].透析与人工器官,2009,20(2):16-33.
    [105]Reijnders CM, Bravenboer N, Tromp AM, et al. Effect of mechanical loading on insulin-like growth factor-I gene expression in rat tibia [J]. J Endocrinol,2007,192(1):131-140.
    [106]朱丹华,舒晓春.骨髓间充质干细胞成骨分化的潜能和影响因素[J].实用医学杂志,2009,25(15):2596-2598
    [107]Ng F, Boucher S, Koh S, et ol. PDGF, TGF-β, and FGF signaling is important for diferentiation and growth of mesenchymal stem cells(MSCs):transcriptional profiling can identify markers and signaling pathways important in diferentiation of MSCs into adipogenic, chondro-genic, and osteogenic lineages[J]. Blood,2008,112(2):295-307
    [108]Yang X, Chen L, Xu X, et al. TGF-beta/Smad3signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage [J]. J Cell Biol,2001,153(1):35-46.
    [109]Heng BC, Cao T, Lee EH. Directing stem cell diferentiation into the chondrogenic lineage in vitro [J]. Stem Cells,2004,27(7):1152-1167.
    [110]沈干,汪铮,从笑倩,等.组织工程中的新型种子细胞-胚胎干细胞[J].国外医学:生物医学工程分册,2001,24(3):97-101,133.
    [111]杨志明,黄富国,秦廷武,等.生物衍生组织工程骨植骨的初步临床应用[J].中国修复重建外科杂志,2002,16(5):311-314.
    [112]陈伟良,藕小平,王建广,等.人颌骨骨膜成骨细胞复合异体部分脱钙骨的成骨实验研究[J].口腔颌面外科杂志,2004,14(2):112-114.
    [113]Hankey DP, McCabe RE, Doherty MJ, et ol. Enhancement of human osteoblast proliferation and phenotypic expression when cultured in human serum [J]. Acta Orthop Scand,2001,72(4):395-403
    [114]Qu-Peterson Z, Deasy B, Jankowski R, et al. Identification of a novel population of muscle stem cells in mice:potential for muscle regeneration. J Cell Biol,2002,157:851-864.
    [115]Asakura A, Komaki M, Rudnicki M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation,2001,68:245-253.
    [116]Asakura A, Seale P, Girgis-Gabardo A, et al. Myogenic specification of side population cells in skeletal muscle. J Cell Biol,2002,159:123-134.
    [117]Gussoni E,Soneoka Y, Strickland CD, et al. Dystrophin expression in the mdx mouse restored by stem cell transplatation. Nature,1999,401:390-394.
    [118]Wright V, Peng H, Usaa A, et al. BMP4-expressing muscle-derived stem cells differentiated into osteogenic lineage and improve bone healing in immuncompetent mice[J]. Mol Ther,2002,6(2):169-178.
    [119]Shan HC, Peng H, Usas A, et al. Ex vivo gene therapy-induced endochondral bone form ation:comparison of muscle-derived stem cells and diferent subpopulations of primary muscle-derived cells[J]. Bone,2004,34(6):982-992.
    [120]Lu L, Yaszemski MJ. Mikos AG. TGF-beta Ⅰ release from biodegradable polymer microparticles:its effects on marrow stromal osteoblast function[J]. J Bone Joint Surg Am,2001,1(2):82-91.
    [121]Lane JM, Bostrom MP. Bone grafting and new composite biosynthetic graft materials. Instr Course Lect.1998;47:525-534.
    [122]Liu X, Ma PX. Polymeric scaffolds for bone tissue engineering. Ann Biomed Eng.2004;32(3):477-486.
    [123]Li Z, Ramay HR, Hauch KD et al. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials.2005;26(18):3919-3928.
    [124]Ma L, Shi Y, Chen Y et al. In vitro and in vivo biological performance of collagen-chitosan/silicone membrane bilayer dermal equivalent. J Mater Sci Mater Med.2007;18(11):2185-2191.
    [125]Marom R, Shur I, Solomon R et al. Characterization of adhesion and differentiation markers of osteogenic marrow stromal cells. J Cell Physiol.2005;202(1):41-48.
    [126]Vaz CM, Van Tuijl S, Bouten CV et al. Design of scaffolds for blood vessel tissue engineering using a mult-layering electrospinning technique. Acta Biomaterialia.2005;1(5):575-82.
    [127]Lin AS, Barrows TH, Cartmell SH. Microarchitectural and mechanical characterization of oriented porous polymer scaffolds. Biomaterials,2003,24(3):481-489.
    [128]Li S,De Wijn JR,Li J. Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Tissue Eng,2003,(90):535-548.
    [129]Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials,2003,24(13):2161-2175.
    [130]Deschamps AA, Claase MB, Sleijster WJ. Design of segmented poly(ether ester) materials and structures for the tissueengineering of bone. J Control Release,2002,78(1-3):175-186.
    [131]Pelissier P, Villars F, Mathoulin—Pelissier S. Influences of vascularization and osteogenic cells on heterotopic bone formation within a madreporic ceramic in rats. Plast Reconstr Surg,2003,111(6):1932-1941.
    [132]Sun W, Starly B, Darling A. Computer-aided tissue engineering: application to biomimetic modelling and design of tissue scaffolds. Biotechnol Appl Biochem,2004,39(Pt1):49-58.
    [133]Athanasiou KA, Agrawal CM, Barber FA. Orthopaedic applications for PLA——PGA biodegradable polymers. Arthroscopy,1998,14(7):726-737.
    [134]Le Geros RZ. Properties of osteoconductive biomaterials:calcium phosphates[J]. Clin Orthop,2002,395:81-98.
    [135]Agrawal C, Achanasion KA. Technique to control pH in vicinity of biodegrading PLA-PGA implants[J],1997,38(2):105-114.
    [136]Roy TD, Simon JL, Ricci JL, Rekow ED, Thompson VP, Parsons JR. Performance of degradable composite bone repair products made via three-dimensional fabrication techniques. J Biomed Mater Res,2003,66A(2):283-291.
    [137]Linhart W, Peters F, Lehmann W. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res,2001,54:162-171.
    [138]Yunyu Hu, Chao Zhang, Shuming Zhang,et al. Development of a porous poly(L-lactic acid)/hydroxyapatite/collagen scaffold as a BMP delivery system and its use in healing canine segmental bone defect. J Biomed Mater Res,2003,67(2):591-598.
    [139]Andre FV, Chevallay B, Orly I. A cellular mineral deposition in collagen-based biomaterials incubated in cell culture media(J). Caicif Tissue lnt,2000,66(3):204-211.
    [140]Kim S, Mooney DJ. Development of biocompatible synthetic extra cellular matrices for tissue engineering [J]. Trends Biotechnol,1998,16(5):224-230.
    [141]M Taira, Y Araki. J Takahashi. Scaffold consisting poly (lactide-cap-rolactone) sponge, collagen gel and bone marrow stromal cells for tissue engineering. Journal of Material Science Letters,2001,20:1773-1774.
    [142]Wei Tan, Raj Krishnaraj, Tejal A. Evaluation of nanostructured composite collagen-chitosan Matrice for tissue engineering. Tissue Engineering,2001,7(2):203-210.
    [143]Kohei Tsuchiya, Taisuke Mori, Guoping Chen, et al. Custom-shaping system for bone regeneration by seeding marrow stromal cells onto a weblike biodegradable hybrid sheet Cell Tissue Res,2004,316:141-15.
    [144]Sauli Kujala, Timo Raatikainen, Jorma Ryhanen. Composite implant of native bovine bone morphogenetic protein (BMP), collagen carrier and biocoral in the treatment of resistant ulnar nonunions:report of five preliminary cases. Arch Orthop Trauma Surg,2004,124:26-30
    [145]Silva TS, Primo BT, Silva Junior AN et al. Use of calcium phosphate cement scaffolds for bone tissue engineering:in vitro study. Acta Cir Bras.2011;26(1):7-11.
    [146]Li Z, Ramay HR, Hauch KD et al. Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials.2005;26(18):3919-28.
    [147]Karageorgiou V, Kaplan D. Porosity of3D biomaterial scaffolds and osteogenesis. Biomaterials.2005;26(27):5474-91.
    [148]Lane JM, Bostrom MP. Bone grafting and new composite biosynthetic graft materials. Instr Course Lect.1998;47:525-34.
    [149]de Barros Coelho M, Magalhaes Pereira M. Sol-gel synthesis of bioactive glass scaffolds for tissue engineering:effect of surfactant type and concentration. J Biomed Mater Res B Appl Biomater.2005;75(2):451-6.
    [150]Gao J, Niklason L, Langer R. Surface hydrolysis of poly(glycolic acid) meshes increases the seeding density of vascular smooth muscle cells. J Biomed Mater Res.1998;42(3):417-424.
    [151]Yang CY, Huang LY, Shen TL et al. Cell adhesion, morphology and biochemistry on nano-topographic oxidized silicon surfaces. Eur Cell Mater.2010;20:415-430.
    [152]Coelho NM, Gonzalez-Garcia C, Planell JA et al. Different assembly of type IV collagen on hydrophilic and hydrophobic substrata alters endothelial cells interaction. Eur Cell Mater.2010;19:262-72.
    [153]Gibson LJ. The mechanical behaviour of cancellous bone. J Biomech.1985;18(5):317-328.
    [154]Moursi AM, Globus RK, Demsky CH. Interactions between integrin receptors and fibronectin are required for calvarial osteoblast differentiation in vitro. J Cell Sci.1997;110(18):2187-2196.
    [155]Shi S, Wang XH, Guo G et al. Preparation and characterization of microporous poly(D,L-lactic acid) film for tissue engineering scaffold. Int J Nanomedicine.2010;5:1049-1055.
    [156]Biazar E, Heidari M, Asefnejad A et al. The relationship between cellular adhesion and surface roughness in polystyrene modified by microwave plasma radiation. Int J Nanomedicine.2011;6:631-639.
    [157]Gibson LJ. The mechanical behaviour of cancellous bone. J Biomech.1985;18(5):317-28.
    [158]Xie XH, Wang XL, Zhang G et al. Structural and degradation characteristics of an innovative porous PLGA/TCP scaffold incorporated with bioactive molecular icaritin. Biomed Mater.2010;5(5):054109.
    [159]Zhou Y, Chen F, Ho ST et al. Hutmacher DW. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials.2007;28(5):814-124.
    [160]Ruan J, Wang K, Song H et al. Biocompatibility of hydrophilic silica-coated CdTe quantum dots and magnetic nanoparticles. Nanoscale Res Lett.2011;6(1):299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700