太阳帆航天器动力学与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深空探测贯穿人类发展史,在科学、技术、政治和文化方面都有重要意义。随着深空探测任务距地球越来越远,燃料成为限制深空探测发展的一个重要因素。于是,人们提出了多种新型的推进方式,其中太阳帆可以提供连续小推力且比冲无限大,被认为是最实际的方法之一。NASA和ESA有多项相关飞行任务正在研制之中。太阳帆航天器的动力学与控制问题是理论研究的重点,对飞行任务的实现具有重要意义。
     太阳帆航天器不同于传统航天器,轨道和姿态是强耦合的。本文给出了耦合系统在周期轨道上稳定的条件;在轨道不影响姿态的情况下,推导了耦合系统的稳定性与轨道稳定性、姿态稳定性的关系。在只考虑轨道动力学的情况下,分析了太阳帆的被动控制。被动控制要求太阳帆的法线方向与太阳光之间的夹角保持不变,此时太阳帆的轨道总是稳定的且其轨道参数由太阳帆的初始角动量唯一确定。根据被动分析结果和耦合系统稳定的条件,设计了能在日心悬浮轨道和人工拉格朗日点被动稳定飞行的太阳帆结构。
     太阳帆技术在未来很长时间内无法达到多个任务提出的太阳帆尺寸要求。本文提出了太阳帆航天器编队飞行的概念,研究了几种简单姿态控制律下,各种悬浮轨道附近相对运动的稳定性。定义了一套描述椭圆相对轨道的相对轨道根数,分析了简单控制律下稳定相对轨道的特征,结果表明相对轨道的形状和空间指向都受到限制。为了得到更丰富的相对轨道,同时考虑到相对速度测量困难,研究了仅利用位置反馈进行相对轨道设计的方法。并利用数值算例验证了该设计方法的有效性。
     拉格朗日点附近编队研究中很重要的一个领域为编队控制。研究结果表明:利用脉冲控制很难实现高精度编队,太阳帆能提供微牛以下的连续小推力可以满足小尺度高精度编队需求。由于太阳光压力的方向受到限制,并非所有编队控制都能利用太阳帆。本文给出了太阳帆控制能力范围内的直线编队和圆形编队,利用数值算例验证了太阳帆实现编队控制的可行性。
     在小行星牵引任务中,引力拖车方法的优点是不依赖小行星特性、可靠性高,缺点是偏移能力有限。本文将太阳帆控制在小行星附近的悬浮轨道,实现对小行星轨道的偏移;进一步利用引力拖车编队提高偏移能力,研究了悬浮轨道上引力拖车编队的控制策略。最后,比较了普通引力拖车和太阳帆引力拖车的偏移能力。
Deep space exploration throughout the history of human being is very important in science, technology, politics and culture. Fuel becomes a bottleneck of the development of deep space explorations as the missions are far from the earth. Many new types of propulsion are proposed, where solar sail that can provide low thrust with infinite impulse is considered to be one of the most practical methods. There are several missions related to solar sail being studied by NASA and ESA. The dynamics and control of sailcraft is the key point of theoretical research, which is also very important for the achievement of solar sail missions.
     Different from traditional spacecraft, the orbit and attitude of solar sail are coupled strongly. Firstly, this thesis gives the conditions of solar sail being stable on periodic orbits and investigates the dependence of the coupled system stability on the orbit and attitude stability when only the attitude influences the orbit. Then, the passive control of solar sail is analyzed with only orbit dynamics considered. Passive control requires the angle between the normal vector of solar sail and the solar light direction to be constant. With passive control, the solar sail orbit is stable and its initial momentum determines the orbit parameters. Based on the conclusions of passive control and stable conditions of the coupled system, the passive stability configurations of solar sail on displaced solar orbit and at artificial Lagrange point are designed.
     Solar sail technology will not meet the solar sail size requirements in a long time. This thesis proposes the concept of solar sail formation flying and investigates the stability of relative motion near displaced orbits with several attitude control laws. A set of relative orbit elements are defined to describe the elliptic relative orbits. The shape and normal of the relative orbit are restricted to certain ranges. With the difficulty of measuring relative velocity considered, a relative orbit design method is proposed to obtain diverse relative orbits with only position feedback. Numerical simulations are employed to validate the design method.
     Formation control is one of the important research fields in formation flying around Lagrange point. The research results show that the impulse control can not achieve high-precision formation and the solar sail that can provide low thrust of micro-newton is able to achieve small-size high-precision formation. However, solar sail cannot realize all formation control because the direction of the solar sail radiation pressure force is restricted to certain range. This thesis gives the linear and circular formations that require the control forces within the capability of solar sail and numerical simulations are employed to test the validation of the solar sail control.
     The merits of gravitational tractor in asteroid deflections are its high reliability and independence of asteroid characteristics, and the demerit is its low deflection efficiency. In this thesis, the asteroid deflection is realized by controlling the gravitational tractor on a displaced orbit above the asteroid. The gravitational tractor formation flying is proposed to enhance the deflection ability and two formation control strategies are investigated. Lastly, the deflection capabilities of traditional gravitational tractor and solar sail gravitational tractor are compared.
引文
[1]李俊峰,宝音贺西.深空探测中的动力学与控制.力学与实践, 2007, 29(4):1:9.
    [2] Spudis P D. Solar system science and exploration. John Hopkins APL Technical Digest, 2005, 26(4): 315-320.
    [3] Messina P, Vennemann D, Gardini B. The European Space Agency exploration programme Aurora. First Space Exploration Conference: Continuing the Voyage of Discovery, Orlando, Florida, 2005: 1-30.
    [4] Kozawa H. The new Japanese Space Vision. 56th International Astronautical Congress of the International Astronautical Federation. Fukuoka:the International Academy of Astronautics, and the International Institute of Space Law, 2005:17-21
    [5] Nah R S. Fuel-optimal low-thrust Earth-Mars trajectories. J Guidance, Control, and Dynamics, 2001, 24(6):1100-1107.
    [6] Clark B, Faulconer C, Gamber T. Formulation of discovery-class mission concepts. IEEE Aerospace and Electronic Systems Magazine, 2006, 21(4): 27-33.
    [7] Tsu T C. Interplanetary travel by solar sail. American Rocket Society Journal, 1959, 29:422-427.
    [8] London H S. Some exact solutions of the equations of motion of a solar sail with a constant setting. American Rocket Society Journal, 1960, 30:198-200.
    [9] Koblik V V. Controlled solar sailing transfer flights into near-Sun orbits under restrictions on sail temperature. Cosmic Research, 1996, 34:572-578.
    [10] Zhukov A N, Lebedev V N. Variational problem of transfer between heliocentric circular orbits by means of a solar sail. Cosmic Research, 1964, 2:41-44.
    [11] Sauer C G. Optimum solar sail interplanetary trajectories. AAS/AIAA Astrodynamics Conference, 1976, AIAA 76-792.
    [12] Sackett L L, Edelbaum T N. Optimal solar sail spiral to escape. AAS/AIAA Astrodynamics Conference. Jackson Hole: American Astronautical Society and American Institute of Aeronautics and Astronautics, 1977:34.
    [13] Green A J. Optimal escape trajectory from a high Earth orbit by use of solar radiation pressure. Master of Science Thesis, Cambridge, Massachusetts Institute of Technology, 1977.
    [14] Fekete T A. Trajectory design for solar sailing from low-Earth orbit to the Moon. AAS/AIAA Spaceflight Mechanics Meeting, 1992, AAS-92-184.
    [15] Coverstone V L, Prussing J E. Technique for escape from geosynchronous transfer orbit using a solar sail. Journal of Guidance, Control, and Dynamics, 2003, 26(4):628-634.
    [16] Mengali G, Quarta A A. Earth escape by ideal sail and solar-photon thrustor spacecraft.Journal of Guidance, Control, and Dynamics, 2004, 27(6):1105-1108.
    [17] Macdonald M, McInnes C R. Realistic Earth escape strategies for solar sailing. Journal of Guidance, Control, and Dynamics, 2004, 28(2):315-323.
    [18] Austin R E, Dod R E, Terwilliger C H. The Ubiquitous Solar Electric Propulsion Stage. Acta Astronautica, 1997, 4:671-694.
    [19] Forward R L. Light-levitated geostationary cylindrical orbits. Journal of the Astronomical Sciences, 1981, 29(1): 73-80.
    [20] McInnes C R, Simmons J F L. Solar sail Halo orbits I: heliocentric case. Journal of Spacecraft and Rockets, 1992, 29(4):466-471.
    [21] McInnes C R. Passive control of displaced solar sail orbits. Journal of Guidance, Control, and Dynamics, 1998, 21(6): 975-982.
    [22] Molostov A A, Shvartsburg A A. Heliocentric Halos for a solar sail with absorption. Soviet Physics Dokladv, 1992, 37(3): 149-152.
    [23] Molostov, A.A., and Shvartsburg, A.A.,“Heliocentric Synchronous Halos for a Solar Sail with Absorption,”Soviet Physics Doklady, vol. 37, No. 4, 1992, pp. 195-197.
    [24] McInnes C R, Simmons J F L. Solar sail Halo orbits II: geocentric case. Journal of Spacecraft ad Rockets, 1992, 29(4): 472-479.
    [25] McInnes C R, McDonald A J C, Simmons J F L. Solar sail parking in restricted three-body system. Journal of Guidance, Control, and Dynamics, 1994, 17(6), 399-406.
    [26] McInnes C R. Artificial lagrange points for a partially reflecting solar sail. Journal of Guidance, Control and Dynamics, 1999, 22(1):185-187.
    [27] Baoyin H X, McInnes C R. Solar sail equilibria in the elliptical restricted three-body problem. Journal of Guidance, Control, and Dynamics, 2006, 29(3):538-543.
    [28] Baoyin H X, McInnes C R. Solar sail Halo orbits at the Sun-Earth artificial L1 point. Celestial Mechanics and Dynamical Astronomy, 2006, 94:155–171.
    [29] Waters T J, McInnes C R. Periodic orbits above the ecliptic in the solar-sail restricted three-body problem. Journal of Guidance, Control, and Dynamics, 2007, 30(33):687-693.
    [30] Diedrich B L. Attitude control and dynamics of solar sail. Master of Science Thesis, Washington, University of Washington, 2001.
    [31] Metter E, Acikmese A, Ploen S. Attitude dynamics and control of solar sails with articulated vanes. AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, 2005, AIAA 2005-6081.
    [32] Bladt J J, Lawrence D A. Solar sail attitude control performance comparison. Advances in the Astronautical Sciences, 2005, 121:31-50.
    [33] Wie B. Solar sail attitude control and dynamics, part 1. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 526-535.
    [34] Wie B. Solar sail attitude control and dynamics, part 2. Journal of Guidance, Control, and Dynamics, 2004, 27(4):536-544.
    [35] Wie B, David M. Robust attitude control systems design for solar sail, part 1: proellantless primary ACS. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, 2004, AIAA 2004-5010.
    [36] Wie, B, David M. Robust attitude control systems design for solar sail, part 2: proellantless primary ACS. AIAA Guidance, Navigation, and Control Conference and Exhibit, Providence, Rhode Island, 2004, AIAA 2004-5011.
    [37] Kolk V, Christel B, Flandro G A. Solar sail passive attitude stability and control. AIP Conference Proceedings. Albuquerque: American Institute of Physics, 2001:373-378.
    [38] West J L, Derbes B. Solar sail vehicle system design for the geostorm warning mission. AIAA Space 2000 Conference, Long Beach, CA, 2000, AIAA 2000-5326.
    [39] West J L. The geostorm warning mission: Enhanced opportunities based on new technology. 14th AAS/AIAA Space Flight Mechanics Conference, Maui, Hawaii, 2004, AAS 04-102.
    [40] Lisano M, Lawrence D, Piggott, S. Solar sail transfer trajectory design and station keeping control for missions to the sub-L1 equilibrium region. 15th AAS/AIAA Space Flight Mechanics Conference, Copper Mountain, Colorado, 2005, AAS-05-219.
    [41] Leipold M, Lingner S, Borg E, Brueckner J. Mercury imaging from a Sun-synchronous solar sail orbiter. Journal of the British Interplanetary Society, 1996, 49(3):105-112.
    [42] Leipold M, Borg E, Lingner S, Pabsch A, Sachs R, Seboldt W. Mercury orbiter with a solar sail spacecraft. Acta Astronautica, 1995, 35: 635-644.
    [43] Leipold M, Seboldt W, Lingner S, Borg E, Herrmann A, Pabsch A, Wagner O, Bruckner J. Mercury sun-synchronous polar orbiter with a solar sail. Acta Astronautica, 1996, 39(1-4): 143-151.
    [44] http://www.kp.dlr.de/SolarSail/new.html
    [45] Nishimura Y, Tsuda Y, Mori O, Kawaguchi J. The deployment experiment of solar sail with a sounding rocked. 55th International Astronautical Congress 2004, Vancouver; Canada, 2004: 1-8.
    [46] David L, Billy D, Daisy G, Dave F. Vacuum deployment and testing of a 4-quadrant scalable inflatable rigidizable solar sail system. 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit, Tucson, AZ, USA, 2005:1-9.
    [47] David L, Billy D, David S, Troy M. Vacuum deployment and testing of a 20m solar sail system. 47st AIAA/ASME/ASCE/AHS/ASC Structures Dynamics, and Materials Conference, Newport, RI, USA, 2006:1-14.
    [48] Friedman L, Pichkhadze K, Kudryashov V, Rogovsky G, Linkin V, Gotlib V, Lipatov A, Cantrell J, Garvey J. COSMOS 1: the attempt to fly the first solar sail mission. 34th COSPAR Scientific Assembly, The Second World Space Congress, Houston, TX, USA, 2002, IAA-11-1-03.
    [49] Gordon S C. Orbit Determination Error Analysis and Station-Keeping for Libration Point Trajectories. Doctor Dissertation, Purdue:Purdue University, 1991
    [50] McInnes C R. Solar Sail Mission Applications for Non-Keplerian Orbits. Acta Astronautica, 1999, 45(4-9): 567-575.
    [51] Wie B. Hovering control of a solar sail gravity tractor spacecraft for asteroid deflection. The 2007 Planetary Defense Conference, Washington, D.C., March, 2007, AAS 07-145.
    [52] McInnes C R. Non-Keplerian orbits for Mars solar reflectors. Journal of the British Interplanetary Society, 2002, 55(3-4): 74-84.
    [53] Scheeres D J, Vinh N X. Dynamical and control of relative motion in an unstable orbit. In Proceedings of the AAS/AIAA Astrodynamics Specialists Conference, Denver, Colorado, 2000, AIAA 2000-4135.
    [54] Gurfil P, Kasdin N J. Dynamics and control of spacecraft formation flying in three-body trajectories. In Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, 2001, AIAA 2001-4026.
    [55] Gurfil P, Idan M, Kasdin N J. Adaptive neural control of deep-space formation flying. In Proceedings of the American Control Conference, Anchorage, Alaska, 2002, 4: 2842-2847.
    [56] Hamilton N H. Formation flying satellite control around the L2 Sun-Earth libration point. Master’s thesis, Washington, George Washington University, 2001.
    [57] Folta D, Carpernter J R, Wagner C. Formation flying with decentralized control in libration point orbits. In International Symposiium:Spaceflight Dynamics, Biarritz, France, 2000: 217–227.
    [58] Gomez G, Lo M, Masdemont J, Museth K. Simulation of formation flight near lagrange points for the TPF mission. In Proceedings of the AAS/AIAA Astrodynamics Specialists Conference, Quebec, Canada, 2001, AAS -01-305.
    [59] Barden B T, Howell K C. Fundamental motions near collinear libration points and their transitions. Journal of the Astronautical Sciences, 1998, 46(4):361-378.
    [60] Barden B T, Howell K C. Formation flying in the vicinity of libration point orbits. Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Monterey, United States, 1998:969-988.
    [61] Barden B T, Howell KC. Dynamical issues associated with relative configurations of multiple spacecraft near the Sun-Earth/Moon L1 Point. In Proceeding of the AAS/AIAA Astrodynamics Specialists Conference, Girdwood, Alaska, 1999, AAS 99-450.
    [62] Howell K C, Marchand, B G. Control strategies for formation flight near the libration points. American Astronautical Society, 2003, Paper 03-113.
    [63] Howell K C, Marchand, B G. Natural and non-natural spacecraft formations near the L1 and L2 libration points in the Sun-Earth/Moon ephemeris system. Dynamical Systems, 2005, 20(1): 149 -173.
    [64] Marchand B G, Howell K C. Formation flight near L1 and L2 in the Sun-Earth/Moon ephemeris system including solar radiation pressure. Advances in the Astronautical Sciences, 2004, 116, 1-36.
    [65] Marchand B G. Spacecraft formation keeping near the libration points of the Sun-Earth/Moon system. Doctoral Thesis of Science, Purdue University, Purdue, 2004.
    [66] Izzo D, Negueruela C, Ongaro F. Strategies for near Earth object impact hazard mitigation. 15th AAS/AIAA Space Flight Mechanics Conference. Colorado: American Astronautical Society, 2005, AAS 05-147.
    [67] Ahrens T J, Harris A W. Deflection and fragmentations of near Earth asteroids. Nature, 1992, 360(6403): 429-433.
    [68] McInnes R C. Deflection of near-Earth asteroids by kinetic energy impacts from retrograde orbits. Planetary and Space Science, 2004, 52(4):587– 590.
    [69] Melsoh H J. Solar asteroid diversion. Nature, 1993, 366(4):21-22.
    [70] Joseph N S. Asteroid hazard mitigation using the Yarkovsky effect. Science, 2002, 296(5):7-7.
    [71] Lu E T, Love S G. Gravitational tractor for towing asteroids. Nature, 2005, 438(7065) :177-178.
    [72] McInnes C R. Near Earth object orbit modification using gravitational coupling. Journal of Guidance, Control and Dynamic, 2007, 30(3):870-873.
    [73] Gazi V. Swarm aggregations using artificial potentials and sliding mode control. Robotics, IEEE Transactions, 2005, 21(6):1208-1214.
    [74] Gazi V, Passino, K M. A class of attractions/repulsion functions for stable swarm. Aggregations. International Journal of Control, 2004, 77(18):1567–1579.
    [75] Izzo D, Pettazzi L. Autonomous and distributed motion planning for satellite swarm. Journal of Guidance, Control and Dynamics, 2007, 30(2): 449-459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700