复杂太空环境下柔性绳系卫星动力学与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绳系卫星是人类认知太空的一种新型飞行器,在空间科学、深空探测等领域具有重要价值,受到人们的广泛关注。随着科学技术的日趋进步与成熟,西方国家正争相对绳系卫星系统的理论、地面实验及在轨飞行进行深入研究。众所周知,绳系卫星系绳的柔性、太空环境的复杂性及相应的控制理论等都是当前绳系卫星研究的难点,对这些问题的研究与解决显得十分迫切。本文主要内容如下:
     首先,通过将柔性系绳离散为一系列绳结点,在绳结点进/出卫星体时考虑系统自由度变化,建立了时变自由度绳系卫星动力学模型。模型充分考虑了系绳的柔性、粘弹性、“火箭项”、耗散作用以及系绳与卫星本体间摩擦、冲击对Kepler轨道的影响,很好地揭示了绳系卫星运行过程中系绳构形的变化规律。
     然后,提出一套改进的有限差分方法来计算时变多自由度系统的动力学响应。算法的核心思想是在每一次迭代循环中对系统自由度变化与否进行判定,一旦自由度发生变化,则通过重新划分系绳单元,添加(或删除)相应结点的信息,重置系统质量、阻尼和刚度矩阵及位移和荷载向量,使得迭代计算可以继续进行直至得出最终响应结果。此算法略去了多余的结点计算,提高了计算效率,可推广至一维连续体系统释放/回收过程的动力学研究中。
     随后,研究了各种真实太空环境摄动因素对复杂绳系卫星系统的动力学影响。数值结果表明,热效应与太空碎片撞击对系统作用十分显著;J2摄动与大气阻力对绳系卫星的影响取决于绳系卫星系统所处的轨道倾角与高度;随Kepler轨道偏心率的变化,绳系卫星系统将发生分岔,出现周期运动、概周期运动及混沌运动;而太阳光压力对绳系卫星作用则是非常微小的。
     综合考虑以上各种太空摄动因素的存在,提出了柔性绳系卫星系统的有效控制方法。采用子星端喷气控制并设计了一套含约束条件的PID控制器对柔性绳系卫星模型的俯仰姿态进行了有效控制。研究表明,该方法可有效实现任意椭圆轨道下绳系卫星系统的俯仰姿态运动及混沌运动控制。
     最后,讨论了电动力绳系卫星以及绳系捕捉等所涉及到的绳系系统的动力学与控制问题。
Tethered satellites, satellites recently innovated for space probe, have become a prominent tool inscientific studies of space and outer space. Researches on theories and experimental methodologies(ground or orbital) regarding tethered satellites have been intensified in Eastern countries, as scienceand technology develop. Among them all, flexibility of the space tether, complexity of the space, andpertinent controlling mechanisms are, without doubt, the most difficult. Solving these issues hastherefore become the most urgent task at hand. This dissertation will focus the following aspects:
     First, the flexible tether is modeled as a series of elements with lumped masses. The number ofdegrees-of-freedom of the tethered satellite system is investigated as the discrete lumped mass pointsare transferred from inside (outside) of the satellite to the outside (inside). Flexibility, viscoelasticity,“rocket term”, and dissipation effect of the space tether are taken into proper account within thismodel, as well as the friction between tethers and satellites, and its impact on Keplerian orbit. Themodel is therefore an adequate explanation of changes to the tether configuration within an operatingtethered satellite system.
     An improved finite difference method is then presented to calculate the dynamical response ofthe proposed model with a time-varying number of degrees-of-freedom. The core of this method is toidentify changes in the number of degrees-of-freedom of the tethered system within each iteration step.Once the value changes, the tether is re-devided into a different set of units, with properties of eachtether node added or removed, and its lumped mass, damping and stiffness matrices, and displacementand force vectors updated. The calculation continues till a final result can be obtained. Redundantcalculations in this model of node properties are removed, and thus computation efficiency can beobtained. The method can be extended to calculate the dynamics of one-dimensional continuumduring deployment/retrieval.
     After that, a dynamics analysis is carried out to study the impact of environment perturbations inthe space on complicated systems of tethered satellites. Simulation results have indicated thatinfluences of heating effect and debris impact on the system are significant. Impacts of J2perturbationand atmospheric drag depend on the inclination and altitude of the orbit where the tethered satellitesystem is located. As the orbital eccentricity changes, the different types of pitch motions such as theperiodic motion, quasi-periodic motion, and chaotic motion will occur in the system. Impact of solarpressure on the tethered satellite appears to be slight.
     Taking into account all the space perturbations discussed above, an effective approach ispresented to control the flexible tethered satellite system. Pitch altitude of the satellite system can beregulated through jet force control of satellites within the system. A PID controller subject to a set ofconstraints is designed to achieve the result. Case studies indicate that, with the proposed method,pitch or chaotic motions of the tethered satellites in arbitrary elliptic orbits can be effectivelycontrolled.
     Finally, the dynamics of electrodynamic tethered satellites and tether capturing involving cablesystems and related control methodologies are discussed.
引文
[1] Snoddy W C. Scientific and technical applications of a tethered satellite system. The17thAerospace Sciences Meeting, New Orleans, USA,1979.
    [2] Vetrella S, Moccia A. The tethered satellite system as a new remote sensing platform.International Journal of Remote Sensing,1987,8(3):369~383.
    [3]朱仁璋.绳系卫星系统动力学、运动学与控制评述纲要.航天器工程,1998,7(4):22~26.
    [4] Kumar K. Review of dynamics and control of nonelectrodynamic tethered satellite systems.Journal of Spacecraft and Rockets,2006,43(4):705~720.
    [5] Kojima H, Furukawa Y, Trivailo P M. Experimental verification of periodic libration of tetheredsatellite system in elliptic orbit. Journal of Guidance, Control, and Dynamics,2011,34(2):614~618.
    [6] Cosmo M L, Lorenzini E C. Tethers in Space Handbook (3rd edn.). Washington DC, NASA,1997.
    [7]荀兴宇,马兴瑞,邵成勋.绳系卫星系统研究概况.航天器工程,1995,4(4):34~42.
    [8] Artsutanov Y. To the cosmos by electric train. Young Persons’ Pravda, July31st,1960,supplement (in Russian).
    [9] Fletcher H J, Rongved L, Yu E Y. Dynamics analysis of a two-body gravitationally orientedsatellite. Bell System Technical Journal,1963,42(5):2239~2266.
    [10] Isaacs J D, Vine A C, Bradner H et al. Satellite elongation into a true “sky-hook”. Science,1966,151(3711):682~683.
    [11] Connell G M. Optimal configurations for hinged, two-body satellites. Journal of Spacecraft andRockets,1969,6(9):1024~1030.
    [12] Ebner S G. Deployment dynamics of rotating cable-connected space stations. Journal ofSpacecraft and Rockets,1970,7(10):1274~1275.
    [13] Bainum P M, Evans K S. Three-dimensional motion and stability of two rotatingcable-connected bodies. Journal of Spacecraft and Rockets,1975,12(4):242~250.
    [14] Bainum P M, Evans K S. Gravity-gradient effects on the motion of two rotating cable-connectedbodies. AIAA Journal,1976,14(1):26~32.
    [15] Kane T R, Levinson D A. Deployment of a cable-supported payload from an orbiting spacecraft.Journal of Spacecraft and Rockets,1977,14(7):409~413.
    [16] Allais E, Bergamaschi S. Dynamics of tethered satellites two alternative concepts for retrieval.Meccanica,1979,14(2):103~111.
    [17] Spencer T M. Atmospheric perturbation and control of a shuttle/tethered satellite. Automatica,1980,16(6):629~636.
    [18] Banerjee A K, Kane T R. Tethered satellite retrieval with thruster augmented control.AIAA/AAS Astrodynamics Conference, San Diego, USA,1982.
    [19] Beletsky V V, Levin E M. Stability of a ring of connected satellites. Acta Astronautica,1985,12(10):765~769.
    [20] Misra A K, Xu D M, Modi V J. On vibrations of orbiting tethers. Acta Astronautica,1986,13(10):587~597.
    [21] Vu-Quoc L, Simo J C. Dynamics of earth-orbiting flexible satellites with multibody components.Journal of Guidance, Control, and Dynamics,1987,10(6):549~558.
    [22] Kline-Schoder R, Powell J D. Experiments with the KITE attitude control simulator. The3rdInternational Conference on Tethers in Space-Toward Flight, San Francisco, USA,1989.
    [23] Fujii H, Uchiyama K, Kokubun K. Mission function control of tethered subsatellitedeployment/retrieval: In-plane and out-of-plane motion. Journal of Guidance, Control, andDynamics,1991,14(2):471~473.
    [24] Carroll J A. SEDS deployer design and flight performance. Space Programs and TechnologiesConference and Exhibit, Huntsille, USA,1993.
    [25] Bergamaschi S, Bonon F, Merlina P et al. Theoretical and experimental investigation of TSS-1dynamics. Acta Astronautica,1994,34(1):69~82.
    [26] Bergamaschi S, Bonon F, Legnami M. Spectral analysis of tethered satellite system-mission1vibrations. Journal of Guidance, Control, and Dynamics,1995,18(3):618~624.
    [27] Pasca M, Lorenzini E C. Two analytical models for the analysis of a tethered satellite system inatmosphere. Meccanica,1997,32(4):263~277.
    [28] Pascal M, Djebli A, EL Bakkali L. Laws of deployment/retrieval in tether connected satellitessystems. Acta Astronautica,1999,45(2):61~73.
    [29] Maccone C. Laydown of a tether from earth visible location to far side for Lunar SETI.Advances in Space Research,2000,26(2):359~370.
    [30] Cho S, Kim J. Analysis of the Motion of a Tether-Perturbed Satellite. Journal of Astronomy andSpace Science,2003,20(4):319~326.
    [31] Cosmo M L, Lorenzini E C, Gramer D J et al. TESSX: A mission for space exploration withtethers. The41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Tucson,USA,2005.
    [32] Williams P. Optimal deployment and offset control for a spinning flexible tethered formation.AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, USA,2006.
    [33] Nohmi M. Mission design of a tethered robot satellite “STARS” for orbital experiment. The18th IEEE International Conference on Control Applications, Saint Petersburg, Russia,2009.
    [34] Williams P, Ockels W. Climber motion optimization for the tethered space elevator. ActaAstronautica,2010,66(9~10):1458~1467.
    [35] Yasaka T, Hatsuda T. Geostationary tether satellite system and its application to communicationsystems. IEEE Transactions on Aerospace and Electronic Systems,1988,24(1):68~75.
    [36] Carroll J A, Oldson J C. Tethers for small satellite applications. AIAA/USU Small SatelliteConference, Logan, USA,1995.
    [37] Vigneron F R, Schultz F, Jablonski A M et al. Tether deployment and trajectory modeling forspace plasma science missions. Journal of Spacecraft and Rockets,2000,37(1):78~85.
    [38] Rugescu R D. Tethers as far mission descent-return tools. The55th International AstronauticalCongress, Vancouver, Canada,2004.
    [39] Gill E, Maessen D, Laan E et al. Atmospheric aerosol characterization with the dutch–ChineseFAST formation flying mission. Acta Astronautica,2010,66(7~8):1044~1051.
    [40] Nishida S-I, Kawamoto S. Strategy for capturing of a tumbling space debris. Acta Astronautica,2011,68(1~2):113~120.
    [41] Estes R D, Lorenzini E C, Santangelo A. An overview of electrodynamic tethers. The38thAerospace Sciences Meeting&Exhibit, Reno, USA,2000.
    [42]金栋平,文浩,胡海岩.绳索系统的建模、动力学和控制.力学进展,2004,34(3):304~313.
    [43] Cartmell M P, McKenzie D J. A review of space tether research. Progress in AerospaceSciences,2008,44(1):1~21.
    [44]孔宪仁,徐大富.空间绳系研究综述.航天器环境工程,2010,27(6):775~783.
    [45] Béda P B. On saddle-node bifurcation and chaos of satellites. Nonlinear Analysis, Theory,Method&Applications,1997,30(8):4881~4886.
    [46] Pradeep S, Kumar K. Extension of tethered satellites in the atmosphere. Acta Astronautica,2003,52(1):1~10.
    [47] Padgett D A, Mazzoleni A P. Analysis and design for no-spin tethered satellite retrieval. Journalof Guidance, Control, and Dynamics,2007,30(5):1516~1519.
    [48] He Y, Liang B, Xu W. Study on the stability of tethered satellite system. Acta Astronautica,2011,68(11~12):1964~1972.
    [49] Jin D P, Hu H Y. Optimal control of a tethered subsatellite of three degrees of freedom.Nonlinear Dynamics,2006,46(1~2):161~178.
    [50] Williams P. In-plane payload capture with an elastic tether. Journal of Guidance, Control, andDynamics,2006,29(4):810~821.
    [51] Wen H, Jin D P, Hu H Y. Advances in dynamics and control of tethered satellite systems. ActaMechanica Sinica,2008,24(3):229~241.
    [52] Beletsky V V, Kasatkin G V, Starostin E L. The pendulum as a dynamical billiard. Chaos,Solutions&Fractals,1996,7(8):1145~1178.
    [53] Steiner W. Transient chaotic oscillations of a tethered satellite system. Acta Mechanica,1998,127(1~4):155~163.
    [54] Sanyal A K, Shen J, Harris McClamroch N. Dynamics and control of an elastic dumbbellspacecraft in a central gravitational field. The42nd IEEE Conference on Decision and Control,Maui, USA,2003.
    [55] Sidorenko V V, Celletti A. A “spring-mass” model of tethered satellite systems: Properties ofplanar periodic motions. Celestial Mechanics and Dynamical Astronomy,2010,107(1~2):209~231.
    [56] Puig-Suari J, Longuski J M, Tragesser S G. Aerocapture with a flexible tether. Journal ofGuidance, Control, and Dynamics,1995,18(6):1305~1312.
    [57] Biswell B L, Puig-Suari J. Three-dimensional hinged-rod Model for elastic aerobraking tethers.Journal of Guidance, Control, and Dynamics,1998,21(2):286~295.
    [58] Menon C, Bombardelli C, Bianchini G. Spinning tethered formation with self-stabilising attitudecontrol. The56th International Astronautical Congress, Fukuoka, Japan,2005.
    [59] Williams P. Deployment/retrieval optimization for flexible tethered satellite systems. NonlinearDynamics,2008,52(1~2):159~179.
    [60] Williams P. Electrodynamic tethers under forced-current variations part2: Flexible-tetherestimation and control. Journal of Spacecraft and Rockets,2010,47(2):320~333.
    [61] Carter J T, Greene M. Simulation of single tether systems. Simulation,1992,58(1):42~48.
    [62]朱仁璋,雷达,林华宝.绳系卫星系统复杂模型研究.宇航学报,1999,20(3):7~12.
    [63] Williams P, Trivailo P. Performance optimization for a towed cable system with attached windsock. Journal of Guidance, Control, and Dynamics,2006,29(6):1415~1417.
    [64] Fujii H A, Watanabe T, Kusagaya T et al. Dynamics of a flexible space tether equipped with acrawler mass. Journal of Guidance, Control, and Dynamics,2008,31(2):436~439.
    [65] Pasca M, Pignataro M, Luongo A. Three-dimensional vibrations of tethered satellite systems.Journal of Guidance, Control, and Dynamics,1991,14(2):312~320.
    [66] Kokubun K, Fujii H A. Deployment/retrieval control of a tethered subsatellite under effect oftether elasticity. Journal of Guidance, Control, and Dynamics,1996,19(1):84~90.
    [67] Yu S H. Dynamic model and control of mass-distributed tether satellite system. Journal ofSpacecraft and Rockets,2002,39(2):213~218.
    [68] Krupa M, Poth W, Schagerl M et al. Modelling, dynamics and control of tethered satellitesystems. Nonlinear Dynamics,2006,43(1~2):73~96.
    [69] Ellis J R, Hall C D. Model development and code verification for simulation of electrodynamictether system. Journal of Guidance, Control, and Dynamics,2009,32(6):1713~1722.
    [70] Naka T, Ogawara K. Nonholonomic control of a multi-link-modeled tether system. The42ndAIAA Aerospace Sciences Meeting and Exhibit, Reno, USA,2004.
    [71] Valverde J, Escalona J L, Domínguez J et al. Stability and bifurcation analysis of a spinningspace tether. Journal of Nonlinear Science,2006,16(5):507~542.
    [72] Valverde J, van der Heijden G H M. Magnetically-induced buckling of a whirling conductingrod with applications to electrodynamic space tethers. Journal of Nonlinear Science,2010,20(3):309~339.
    [73] Fritzkowski P, Kaminshi H. A discrete model of a rope with bending stiffness or viscousdamping. Acta Mechanica Sinica,2010,27(1):108~113.
    [74] Kumar K D, Kumar K. Attitude maneuver of dual tethered satellite platforms through tetheroffset change. Journal of Spacecraft and Rockets,2001,38(2):237~242.
    [75] Nohmi M. Attitude control of a tethered space robot by link motion under microgravity. The2004IEEE International Conference on Control Applications, Taipei, Taiwan,2004.
    [76] Nohmi M, Yamamoto T, Takagi Y. Microgravity experiment for attitude control of a tetheredbody by arm link motion. The2007IEEE International Conference on Mechatronics andAutomation, Harbin, China,2007.
    [77]王晓宇,文浩,金栋平.考虑姿态的绳系卫星后退时域回收控制.力学学报,2010,42(5):919~925.
    [78] Mankala K K, Agrawal S K. Dynamic modeling and simulation of satellite tethered systems.American Society of Mechanical Engineer,2005,127(2):144~156.
    [79] Mankala K K, Agrawal S K. Dynamic modeling of satellite tether systems using newton’s lawsand Hamilton’s principle. Journal of Vibration and Acoustics,2008,130(1):014501.1-014501.6
    [80] Kojima H, Sugimoto T. Stability analysis of in-plane and out-of-plane periodic motions ofelectrodynamic tether system in inclined elliptic orbit. Acta Astronautica,2009,65(3~4):477~488.
    [81] Steiner W, Zemann J, Steindl A et al. Numerical study of large amplitude oscillations of atwo-satellite continuous tether system with a varying length. Acta Astronautica,1995,35(9~11):607~621.
    [82] Wiedermann G, Schagerl M, Steindl A et al. Computation of force controlled deployment andretrieval of a tethered satellite system by the finite element method. European Conference onComputational Mechanics, Wünchen, Germany,1999.
    [83] Weiss H. Dynamics of geometrically nonlinear rods: II Numerical methods and computationalexamples. Nonlinear Dynamics,2002,30(4):383~415.
    [84]张伟,温洪波,姚明辉.黏弹性传动带内1:3共振时的周期和混沌运动.力学学报,2004,36(4):443~454.
    [85] Chen L Q. Analysis and control of transverse vibrations of axially moving strings. AppliedMechanics Reviews,2005,58(2):91~116.
    [86] Kawaguti K, Terumichi Y, Takehara S et al. The study of the tether motion with time-varyinglength using the absolute nodal coordinate formulation with multiple nonlinear time scales.Journal of System Design and Dynamics,2007,1(3):491~500.
    [87] Takehara S, Terumichi Y, Nohmi M et al. Numerical and experimental approaches on themotion of a tethered system. Journal of System Design and Dynamics,2008,2(5):1106~1117.
    [88] Williams P, Lansdorp B, Ockels W. Nonlinear control and estimation of a tethered kite inchanging wind conditions. Journal of Guidance, Control, and Dynamics,2008,31(3):793~798.
    [89] Belyakov A, Seyranian A P, Luongo A. Dynamics of the pendulum with periodically varyinglength. Physica D,2009,238(16):1589~1597.
    [90] Williams P. Optimal control of electrodynamic tether orbit transfers using timescale separation.Journal of Guidance, Control, and Dynamics,2010,33(1):88~98.
    [91]刘延柱.航天器姿态动力学.北京:国防工业出版社,1995.
    [92] Bursa M. Parameters of common relevance of astronomy, geodesy, and geodynamics. Journal ofGeodesy,2000,66(2):193~197.
    [93]申文斌,陈巍,韩建成等.内核晃动对地球主惯性矩的时变性影响.测绘科学,2009,34(3):7~10.
    [94] Siouris G M. Gravity modeling in aerospace applications. Aerospace Science and Technology,2009,13(6):301~315.
    [95] Ross I M. Linearized dynamic equations for spacecraft subject to J2perturbations. Journal ofGuidance, Control, and Dynamics,2003,26(4):657~659.
    [96] Hamel J-F, de Lafontaine J. Linearized dynamics of formation flying spacecraft on aJ2-perturbed elliptical orbit. Journal of Guidance, Control, and Dynamics,2007,30(6):1649~1658.
    [97] Vadali S R. Model for linearized satellite relative motion about a J2-perturbed mean circularorbit. Journal of Guidance, Control, and Dynamics,2009,32(5):1687~1691.
    [98] Williams P, Yeo S, Blanksby C. Heating and modeling effects in tethered aerocapture missions.Journal of Guidance, Control, and Dynamics,2003,26(4):643~654.
    [99] Hurlbut F C, Potter J L. Tethered aerothermodynamic research needs. Journal of Spacecraft andRockets,1991,28(1):50~57.
    [100] Krischke M, Lorenzini E C, Sabath D. A hypersonic parachute for low-temperature re-entry.Acta Astronautica,1995,36(5):271~278.
    [101] Sanmartin J R, Lorenzini E C, Martinez-Sanchez M. Electrodynamic tether applications andconstraints. Journal of Spacecraft and Rockets,2010,47(3):442~456.
    [102] Bonzani I, Zavattaro Chiado Piat M G. Quasi-analytical solutions for the dynamics of a class oftethered satellites with Danby’s aerodynamical drag. Celestial Mechanics,1985,37(4):371~385.
    [103] Puig-Suari J, Longuski J M. Modeling and analysis of orbiting tethers in an atmosphere. ActaAstronautica,1991,25(11):679~686.
    [104] Biswell B, Puig-Suari J. Stability and control of an atmospheric tether with a lifting probe.Journal of Guidance, Control, and Dynamics,1999,22(5):664~670.
    [105] Taylor J. A software suite for the analysis of atmospheric drag on spinning space tether systems.The41st Aerospace Sciences Meeting and Exhibit, Reno, USA,2003.
    [106] Burs L, Pál á.大气密度的一些近似公式及其在人造卫星运动理论中的应用比较.飞行器测控技术,1983,2(3):64~76.
    [107] Picone J M, Hedin A E, Drob D P et al. NRLMSISE-00empirical model of the atmosphere:Statistical comparisons and scientific issues. Journal of Geophysical Research,2002,107(A12):1468~1483.
    [108] Zakrzhevskii A E, Pirozhenko A V. Motion parameters of an electrodynamic tether in orbit.International Applied Mechanics,2007,43(3):335~343.
    [109] Williams P, Hyslop A, Stelzer M et al. YES2optimal trajectories in presence of eccentricity andaerodynamic drag. Acta Astronautica,2009,64(7~8):745~769.
    [110] El-Saftawy M I, Ahmed M K M, Helali Y E. The effect of direct solar radiation pressure on aspacecraft of complex shape I.The equations of motion. Astrophysics and Space Science,1998,259(2):141~149.
    [111] Melton R G. Comparison of direct optimization methods applied to solar sail problems.AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Monterey, USA,2002.
    [112] Smirnov G V, Ovchinnikov M, Guerman A. Use of solar radiation pressure to maintain a spatialsatellite formation. Acta Astronautica,2007,61(7~8):724~728.
    [113] Capó-Lugo P A, Bainum P M. Solar pressure effects for a constellation in highly elliptical orbit.Journal of Guidance, Control, and Dynamics,2009,32(2):675~679.
    [114] Oishi A, Hirayama H, Hanada T et al. Assessment of collision risk to electrodynamic tetherused for de-orbiting. The55th International Astronautical Congress, Vancouver, Canada,2004.
    [115] Anselmo L, Pardini C. The survivability of space tether systems in orbit around the earth. ActaAstronautica,2005,56(3):391~396.
    [116] Chobotov V A, Mains D L. Tether satellite system collision study. Acta Astronautica,1999,44(7~12):543~551.
    [117] Gittins G L, Swinerd G G, Lewis H G et al. A study of debris impact collision probabilities tospace tethers. Advances in Space Research,2004,34(5):1080~1084.
    [118] Pardini C, Hanada T, Krisko P H et al. Are de-orbiting missions possible using electrodynamictethers? Task review from the space debris perspective. Acta Astronautica,2007,60(10~11):916~929.
    [119]刘丽丽,文浩,金栋平等.空间碎片对绳系卫星冲击的影响分析.振动与冲击,2009,28(7):12~16.
    [120] Djebli A, EL Bakkali L, Pascal M. On fast retrieval laws for tethered satellite systems. ActaAstronautica,2002,50(8):461~470.
    [121] Steindl A, Steiner W, Troger H. Optimal control of retrieval of a tethered subsatellite. IUTAMSymposium on Chaotic Dynamics and Control of Systems and Processes in Mechanics, Rome,Italy,2003.
    [122] Barkow B, Steindl A, Troger H. A targeting strategy for the deployment of a tethered satellitesystem. IMA Journal of Applied Mathematics,2005,70(5):626~644.
    [123] Mantri P, Mazzoleni A P, Padgett D A. Parametric study of deployment of tethered satellitesystems. Journal of Spacecraft and Rockets,2007,44(2):412~424.
    [124] Kumar K D, Patel T R. Dynamics and control of multi-connected satellites aligned along localhorizontal. Acta Mechanica,2009,204(3~4):175~191.
    [125] Smirnov N N, Demyanov Y A, Zvyaguin A V et al. Dynamical simulation of tether in orbitdeployment. Acta Astronautica,2010,67(3~4):324~332.
    [126] Mankala K K, Agrawal S K. A boundary controller based on linear infinite dimensional systemfor station keeping of a tethered satellite system. The2006American Control Conference,Minneapolis, USA,2006.
    [127] Larsen M B, Blanke M. Control by damping injection of electrodynamic tether system in aninclined orbit. The2009American Control Conference, St. Louis, USA,2009.
    [128] Inampudi R, Schaub H. Two-craft tether formation relative equilibria about circular orbits andlibration points. Acta Astronautica,2011,68(11~12):1761~1773.
    [129] Nakanishi K, Fujii H A. Periodic motion of multi-compound-tether satellite system. The56thInternational Astronautical Federation Congress, Fukuoka, Japan,2005.
    [130] Nakanishi K, Kojima H, Watanabe T. Trajectories of in-plane periodic solutions of tetheredsatellite system projected on van der Pol planes. Acta Astronautica,2011,68(7~8):1024~1030.
    [131] Dignath F, Schiehlen W. Control of the vibrations of a tethered satellite system. Journal ofApplied mathematics and Mechanics,2000,64(5):715~722.
    [132] Peláez J, Andrés Y N. Dynamic stability of electrodynamic tethers in inclined elliptical orbits.Journal of Guidance, Control, and Dynamics,2005,28(4):611~622.
    [133] Celletti A, Sidorenko V. Some properties of the dumbbell satellite attitude dynamics. CelestialMechanics and Dynamical Astronomy,2008,101(1~2):105~126.
    [134] Kojima H, Sugimoto T. Switching delayed feedback control for an electrodynamic tether systemin an inclined elliptic orbit. Acta Astronautica,2010,66(7~8):1072~1080.
    [135] Williams P. Optimal control of a spinning double-pyramid earth-pointing tether formation. ActaAstronautica,2009,64(11~12):1191~1223.
    [136] Ellis J R, Hall C D. Out-of-plane librations of spinning tethered satellite systems. CelestialMechanics and Dynamical Astronomy,2010,106(1):39~67.
    [137] Kumar K, Kumar K D. Auto-attitude stabilization of a twin-satellite system through very shorttethers. Journal of Spacecraft and Rockets,1998,35(2):199~204.
    [138] Cho S, McClamroch N H. Attitude control of a tethered spacecraft. American ControlConference, Denver, USA,2003.
    [139] Warnock T W, Cochran J E. Predicting the orbital lifetime of tethered satellite systems. ActaAstronautica,1995,35(2~3):193~203.
    [140] Djebli A, Pascal M. A new method for the orbital modification of a tether connected satellitesystem. Acta Mechanica,2004,167(1~2):113~122.
    [141]王维,宝音贺西,李俊峰.绳系卫星的动态释放变轨.清华大学学报(自然科学版),2008,48(8):1351~1354.
    [142] Sakamoto Y, Yotsumoto K, Sameshima K et al. Methods for the orbit determination of tetheredsatellites in the project QPS. Acta Astronautica,2008,62(2~3):151~158.
    [143] Takeichi N, Natori M C, Okuizumi N. Dynamic behavior of a tethered system with multiplesubsatellites in elliptic orbits. Journal of Spacecraft and Rockets,2001,38(6):914~921.
    [144] Pizarro-Chong A, Misra A K. Dynamics of a multi-tethered satellite formation. AIAA/AASAstrodynamics Specialist Conference and Exhibit, Providence, USA,2004.
    [145] Kim M, Hall C D. Dynamics and control of rotating tethered satellite systems. Journal ofSpacecraft and Rockets,2007,44(3):649~659.
    [146] Guerman A D, Smirnov G, Paglione P et al. Stationary configurations of a tetrahedral tetheredsatellite formation. Journal of Guidance, Control, and Dynamics,2008,31(2):424~428.
    [147] Zhao J, Cai Z Q, Qi Z H. Dynamics of variable-length tethered formations near libration points.Journal of Guidance, Control, and Dynamics,2010,33(4):1172~1183.
    [148] Kojima H, Iwashima H, Tribailo P M. Libration synchronization control of clusteredelectrodynamic tether system using kuramoto model. Journal of Guidance, Control, andDynamics,2011,34(3):706~718.
    [149] Sasaki S, Oyama K I, Kawashima N et al. Results from a series of tethered rocket experiments.Journal of Spacecraft and Rockets,1987,24(5):444~453.
    [150] Tyc G, Han R P S, Vigneron F R et al. Tether dynamics investigations for the CanadianOEDIPUS sounding rocket program. AIAA/AAS Astrophysics Conference, Hilton Head, USA,1992.
    [151] Tyc G, Vigneron F R, Jablonski A M et al. Flight dynamics results from the OEDIPUS-C tethermission. AIAA/AAS Astrodynamics Conference, San Diego, USA,1996.
    [152] Dobrowolny M, Stone N H. A technical overview of TSS-1: the first tethered-satellite systemmission. IL Nuovo Cimento,1994,17(1):1~12.
    [153] Stone N H, Raitt W J, Wright K H. The TSS-1R electrodynamic tether experiment: Scientificand technological results. Advances in Space Research,1999,24(8):1037~1045.
    [154] Barnds W J, Coffey S, Davis M. Determination of TiPS libration using laser radar. The SPIEConference on Laser Radar Technology and Applications Ⅲ,Orlando, USA,1998.
    [155] Gates S S, Koss S M, Zedd M F. Advanced tether experiment deployment failure. Journal ofSpacecraft and Rockets,2001,38(1):60~68.
    [156] Vaughn J A, Curtis L, Gilchrist B E. Review of the ProSEDS electrodynamic tether missiondevelopment. The40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, FortLauderdale, USA,2004.
    [157] Hoyt R, Slostad J, Twiggs R. Mutli-application survivable tether experiment. The39thAIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Huntsville, USA,2003.
    [158] Steindl A, Troger H. Is the sky-hook configuration stable? Nonlinear Dynamics,2005,40(4):419~431.
    [159] G rdsback M, Tibert G. Deployment control of spinning space webs. Journal of Guidance,Control, and Dynamics,2009,32(1):40~50.
    [160] Woo P, Misra A K. Dynamics of apartial space elevator with multiple climbers. ActaAstronautica,2010,67(7~8):753~763.
    [161] Gong S P, Gao Y F, Li J F. Solar sail formation flying on an inclined Earth orbit. ActaAstronautica,2011,68(1~2):226~239.
    [162] He X, Powell J D. Tether damping in space. Journal of Guidance, Control, and Dynamics,1990,13(1):104~112.
    [163] Crellin E B, Janssens F, Poelaert D et al. On balance and variational formulations of theequation of motion of a body deploying along a cable. Journal of Applied Mechanics,1997,64(2):369~374.
    [164]李东旭.高等结构动力学.北京:科学出版社,2010:258~260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700