空间飞行器非线性姿态控制与最优制导
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了空间飞行器非线性姿态控制方法和月球探测器燃耗最优软着陆的最优轨道及最优制导律设计。研究内容主要分为两部分,一部分是研究分别以剪式陀螺系统和双框架控制力矩陀螺系统为执行机构的空间飞行器姿态控制方法,另一部分是研究月球探测器燃耗最优软着陆段三维动力学建模及最优轨道、最优制导律设计。具体内容如下:
     由一对可以同步进动的陀螺转子组成的剪式陀螺系统,当两个陀螺转子同步进动时,可以与星体产生动量交换,进行姿态控制。我们的目的是设计一个控制律保证两个陀螺转子可以同步进动。在工程中,系统经常受到时变未知扰动的影响,针对这些扰动,我们利用反馈线性化理论和递推李亚普诺夫方法设计了一种非线性闭环反馈控制律。可以证明,若系统中时变不确定项是有界的,则所设计的控制器可以保证系统跟踪误差和同步误差都是有界收敛的。并且证明了若给出合适的回转角指令,则系统的跟踪动力学也是有界的。
     针对由剪式陀螺驱动的空间飞行器回转运动控制中系统存在不确定参数及未知扰动的情况,我们利用反馈线性化理论和递推李亚普诺夫方法,结合tuningfunction方法设计了非线性自适应控制器。通过对系统中不确定项的估计,我们所设计的控制器可以使系统跟踪误差和同步误差随时间收敛至零。我们所设计的基于剪式陀螺的空间飞行器非线性姿态控制律可以用于完成月球探测器轨道舱的姿态控制任务,也可以应用于空间站或空间机动平台等其它空间飞行器的大角度快速姿态机动控制任务。
     针对空间飞行器三轴大角度快速姿态机动问题,我们推导得到了由双框架控制力矩陀螺系统操纵空间飞行器姿态机动的精确数学模型,并在此基础上基于李亚普诺夫第二法设计了空间飞行器三轴大角度姿态机动非线性控制律,在设计的同时证明了系统的稳定性。比较了在不同操纵律下系统回避和退出奇异状态的能力。并给出了双框架控制力矩陀螺系统奇异性定理,对三个双框架陀螺垂直安装及四个双框架陀螺平行安装两种构形方式进行了奇异性分析。并仿真验证了在这两种安装构形下系统大角度姿态机动的能力及当有陀螺失效时系统重构和恢复控制的能力。我们推导的基于双框架陀螺的空间飞行器动力学模型及所设计的控制律和操纵律不但可以用于进行月球探测器轨道舱、空间站等空间飞行器的姿态控制,而且也可以考虑应用于月球探测器着陆舱的姿态控制以及小型敏捷卫星、空间机器人等小型空间飞行器的姿态控制任务。
     针对月球探测器月面软着陆问题,首先在不考虑月球自转的情况下,通过建立月心惯性坐标系、探测器轨道坐标系及其转换关系,推导得到了月球探测器在三维空间飞行的动力学模型。在实际工程中,探测器的轨控发动机一般采用开关控制工作方式,其推力大小不能连续调节,并假设姿控系统可以实现快速准确姿态指令跟踪。因此,在轨控发动机推力为开关控制情况下,我们以软着陆过程中燃耗最优为指标,利用Pontryagin极大值原理,得到了发动机推力开关曲线和推力方向角的开环最优制导律。通过约束软着陆终端速度求解两点边值问题,得到了探测器软着陆的最优轨线。
     由于月球是一个自旋体,其自转会对探测器落点精度产生一定影响。为了提高制导精度,在考虑月球自转的基础上,通过引入月固坐标系,我们推导出了月球探测器在三维空间飞行的精确动力学模型。同样以燃耗最优为指标,利用Pontryagin极大值原理,得到了发动机推力开关曲线和推力方向角的开环最优制导律。综合考虑落点位置和速度约束求解两点边值问题,得到了探测器软着陆的最优轨线。
     通过引入两个新的状态方程,对推导得到的月球探测器软着陆三维精确动力学模型进行变换,使其具有仿射非线性系统的表达形式。并基于此新系统方程设计了具有闭环形式的非线性状态反馈最优控制器,其控制参数矩阵K是一个黎卡提类微分方程的解。针对矩阵K的求解,我们提出了一种较为实用的设计方法,即通过使闭环控制器在整个运行时间段上逼近开环计算得到的最优数值解来直接求解系数矩阵K,而避免了求解复杂的黎卡提类微分方程,显著降低了计算量。
This dissertation includes research of nonlinear attitude control of spacecraftand optimal guidance for soft landing of lunar module. It can be divided into twoparts: in the first part nonlinear attitude controls of spacecraft based on scissored pairof control moment gyros or double gimbal control moment gyros are studied; in thesecond part precise modeling, the optimal guidance and optimal trajectory design forlunar module soft landing are studied.
     The combination of a pair of gyros which could precess synchronously withinone gimbal is called scissored pair of control moment gyros, where the two gyrosmust synchronously precess for proper momentum exchange with the spacecraft. Soour aim is to design a controller which could guarantee the two gyros to precesssynchronously. To suppress external disturbances to the system, we design anonlinear feedback controller by using the method of feedback linearization,backstepping Lyapunov theory and young’s inequality. It can be proved that if theunknown disturbances are bounded, then the tracking error and the synchronizationerror are all bounded. Furthermore, the nonlinear tracking dynamics of the system areproved to be bounded in the case of a bounded command.
     Concerning both unknown inertia properties and unknown constant disturbances,we propose an adaptive control law for the closed-loop slewing motion controlutilizing the methods of feedback linearization, backstepping tuning function andLyapunov theory. Under this design the system tracking error and thesynchronization error converge to zero. The proposed nonlinear control law based onscissored pair of control moment gyros can be applied to many kinds of spacecraftssuch as lunar orbit module, space station and space platform.
     Concerning the attitude control of three axis large angle maneuver of spacecraft,we derived an exact mathematical description for the angular motion driven bydouble gimbal control moment gyros. A nonlinear control law is designed based onthe second method of Lyapunov. System capabilities to avoid or withdraw from thesingularity are studied under different steering laws. Moreover, a theorem about thesingularity of double gimbal control moment gyros’ system is proposed. Based onthis theorem the singularities of two configurations of double gimbal control momentgyros system are detailed. The first configuration consists of three orthogonally mounted double gimbal control moment gyros and the second configuration consistsof four parallel mounted double gimbal control moment gyros. Simulation resultsshow that both the two configurations can effectively fulfill tasks of trackingconstant torque commands and driving large angle attitude maneuvers, even some ofthe gyros fail in both the two configuration. The system dynamics and nonlinearcontrol law proposed for double gimbal control moment gyros can be applied toattitude control of lunar orbit module, lunar descent module and some other kinds ofspacecrafts.
     Three dimensional dynamics for lunar module soft landing were presented byintroducing two sets of coordinate without consideration of the moon rotation. Inpractice, the thrust of the module always works in switching mode which can not beadjusted smoothly. We assume that the attitude commands can be followed precisely.To realize the minimal fuel strategy, an optimal open loop guidance law is proposedbased on the maximum principle. By solving the two-point boundary value problemwith the constraints of final velocities, the optimal trajectory of the lunar soft landingis obtained.
     To enhance the precision of soft landing which would be influenced by themoon rotation, we introduce another coordinate, Lunar Centered Fixed Coordinate,and a precise three dimensional dynamic model with consideration of the rotation ofmoon is then derived. Using the minimal fuel consumption as an index, we present anopen loop optimal guidance law based on Pontryagin’s maximum principle. Optimaltrajectories are obtained by solving the two-point boundary value problem withconstraints of final velocities and locations.
     By introducing two new state equations, the system dynamics obtainedpreviously can be changed which would have the form of affine nonlinear systems.Based on the new equations, a closed loop optimal guidance law is designed with aparameter matrix K to be determined which is the solution of a riccati likedifferential equation. Here we propose a more practical method to calculate thematrix K that is to let the closed loop controller approximate the numerical solutionsobtained by an open loop optimization, such that it is avoided to solve the complexriccati like differential equation.
引文
1黄圳圭.航天器姿态动力学.国防科技大学出版社.1995:2~6
    2韦娟,袁建平.空间站姿态控制的一种新算法.飞行力学.2000,18(2):67~69
    3S. N. Singh, T. C. Bossart. Exact Feedback Linearization and Control of SpaceStation Using CMG. IEEE Transactions on Automatic Control,1993,38(1):184~187
    4J. J. Sheen, R. Bishop. Spacecraft Nonlinear Control. Journal of the AstronauticalSciences.1994,42(3):361~377
    5A. Defendini, J. Morand, P. Faucheux, P. Guay, C. Rabejac, K. Bangert, H.Heimel. Control Moment Gyroscope (CMG) Solutions for Small, Agile Satellites,Advances in the Astronautical Sciences. Proceedings of the28th Annual AASRocky Mountain Guidance and Control Conferences, United States,2005.Breckenridge, CO,2005:51~67
    6V. Lappas, W. H. Steyn, C Underwood. Design and Testing of A ControlMoment Gyroscope Cluster For Small Satellites. AIAA Journal of Spacecraft andRockets.2005,42(4):729~739
    7汤亮,徐世杰.采用单框架控制力矩陀螺群的卫星侧摆机动控制研究.航天控制.2003,21(2):1~5
    8A. Ellery. Robotic in-Orbit Servicers-the Need for Control Moment Gyroscopesfor Attitude Control. Aeronautical Journal.2004,108(1082):207~214
    9H. S.Oh, S. R. Vadali. Feedback Control and Steering Laws for Spacecraft UsingSingle Gimbal Control Moment Gyros. Journal of the Astronautical Sciences.1991,39(2):183~203
    10S. R. Vadali, H. S. Oh, S. R. Walker. Preferred Gimbal Angles for Single GimbalControl Moment Gyros. AIAA Journal of Guidance, Control, and Dynamics.1990,13(6):1090~1095
    11J. A. Paradiso. Global Steering of Single Gimballed Control Moment GyroscopesUsing a Directed Search. AIAA Journal of Guidance, Control, and Dynamics.1992,15(5):1236~1244
    12N. S. Bedrossian, J. A. Paradiso, E. V. Bergmann, D. Rowell. Steering LawDesign for Redundant Single-Gimbal Control Moment Gyroscopes. AIAAJournal of Guidance, Control, and Dynamics.1990,13(6):1083~1089
    13B. R. Hoelscher, S. R. Vadali. Optimal Open-Loop and Feedback Control UsingSingle Gimbal Control Moment Gyroscopes. Advances in the AstronauticalSciences.1993,82(1):237~255
    14吴忠,吴宏鑫.单框架控制力矩陀螺系统操纵律研究综述.宇航学报.2000,21(4):140~145
    15吴忠.单框架控制力矩陀螺动态操纵律设计.宇航学报.2005,26(1):24~28
    16吴忠.参数不确定SGCMG系统的鲁棒操纵律设计.宇航学报.2004,25(1):93~97
    17吴忠,丑武胜.考虑框架伺服特性时SGCMG系统操纵律设计.北京航空航天大学学报.2004,30(6):489~492
    18吴忠,吴宏鑫,李勇. SGCMG系统框架角轨迹跟踪自适应补偿控制.控制理论与应用.2001,18(2):210~216
    19吴忠,吴宏鑫,丑武胜. SGCMG系统运动奇异机理及研究进展.中国空间科学技术.2000,20(3):31~36
    20吴忠,丑武胜.单框架控制力矩陀螺系统的运动奇异及回避.北京航空航天大学学报.2003,29(7):579~582
    21吴忠,吴宏鑫. SGCMG系统非奇异路径规划.控制理论与应用.1999,16(1):21~26
    22吴忠,吴宏鑫.冗余SGCMG系统非奇异逆运动学闭环求解.航天控制.1998,16(3):8~16
    23B. Wie, D. Bailey, C. Heiberg. Singularity Robust Steering Logic for RedundantSingle-Gimbal Control Moment Gyros. AIAA Journal of Guidance, Control, andDynamics.2001,24(5):865~872
    24S. R. Vadali, S. Krishnan. Suboptimal Command Generation for Control MomentGyroscopes and Feedback Control of Spacecraft. AIAA Journal of Guidance,Control, and Dynamics.1995,18(6):1350~1354
    25J. J. Zhang, J. S. Li. Study on Steering Law of Large Spacecraft SGCMG SystemBased on Fuzzy Decision. Chinese Journal of Aeronautics.2001,14(2):100~105
    26G. Avanzini, G. Matteis. A Local Optimization Technique for Attitude MotionTracking Using Control Moment Gyroscopes. Journal of the AstronauticalSciences.2002,50(2):213~229
    27S. J. Paynter, R. H. Bishop. Singularities of Nonlinear Attitude Control withMomentum Management. AIAA Journal of Guidance, Control, and Dynamics.1997,20(6):1255~1257
    28T. Ozan, Y. Emre. A New Steering Law for Redundant Control MomentGyroscope Clusters. Aerospace Science and Technology.2005,9(7):626~634
    29N. S. Bedrossian, J. Paradiso, E. V. Bergmann, D. Rowell. Redundant SingleGimbal Control Moment Gyroscope Singularity Analysis. AIAA Journal ofGuidance, Control, and Dynamics.1990,13(6):1096~1101
    30H. Kurokawa. Constrained Steering Law of Pyramid-Type Control MomentGyros and Ground Tests. AIAA Journal of Guidance, Control, and Dynamics.1997,20(3):445~449
    31贾英宏,徐世杰.采用平行构型变速控制力矩陀螺群的航天器姿态控制.宇航学报.2003,24(5):490~495
    32张锦江.单框架控制力矩陀螺系统的构型分析和对比研究.中国空间科学技术.2003,23(3):52~56
    33吴忠,吴宏鑫.单框架控制力矩陀螺系统的构形分析.航天控制.1998,16(1):19~27
    34H. Schaub, J. L. Junkins. Singularity Avoidance Using Null Motion andVariable-Speed Control Moment Gyros. AIAA Journal of Guidance, Control, andDynamics.2000,23(1):11~16
    35H. Schaub, S. R. Vadali, J. L. Junkins. Feedback Control Law for Variable SpeedControl Moment Gyros. Journal of the Astronautical Sciences.1998,46(3):307~328
    36G. Avanzini, De G. Matteis. Variable Speed Control Moment Gyroscopes forReorientation Maneuvers of Rigid Spacecraft. Journal of the AstronauticalSciences.2004,52(4):531~548
    37V. J. Lappas, S. Asghar, P. L. Palmer, D. Fertin. Combined SingularityAvoidance for Redundant Control Moment Gyro Clusters. Collection ofTechnical Papers-AIAA Guidance, Navigation, and Control Conference, UnitedStates,2004. Providence, RI,2004:1902~1932
    38M. Romano, B. N. Agrawal. Attitude Dynamics/Control of Dual-Body Spacecraftwith Variable-Speed Control Moment Gyros. AIAA Journal of Guidance, Control,and Dynamics.2004,27(4):513~525
    39C. M. Roithmayr, C. D. Karlgaard, R. R. Kumar, D. M. Bose. Integrated Powerand Attitude Control with Spacecraft Flywheels and Control Moment Gyroscopes.AIAA Journal of Guidance, Control, and Dynamics.2004,27(5):859~873
    40D. J. Richie, P. Tsiotras, J. L. Fausz. Simultaneous Attitude Control and EnergyStorage Using VSCMGs-Theory and Simulation. Proceedings of the AmericanControl Conference, USA,2001. Arlington, VA,2001:3973~3979
    41H. Yoon, P. Tsiotras. Spacecraft Adaptive Attitude and Power Tracking withVariable Speed Control Moment Gyroscopes. AIAA Journal of Guidance,Control, and Dynamics.2002,25(6):1081~1090
    42贾英宏,徐世杰.采用变速控制力矩陀螺的一种姿态/能量一体化控制研究.宇航学报.2003,24(1):32~37
    43汤亮,徐世杰.灵敏小卫星能量/姿态一体化控制研究.北京航空航天大学学报.2005,31(6):668~672
    44R. J. Bauer. Kinematics and Dynamics of a Double-gimbaled Control MomentGyroscope. Mechanism and Machine Theory.2002,37(12):1513~1529
    45J. Ahmed, D. S. Bernstein. Adaptive Control of Double-Gimbal Control-MomentGyro with Unbalanced Rotor. AIAA Journal of Guidance, Control, and Dynamics.2002,25(1):105~115
    46A. Muise, R. I. Bauer. A Comparison of the Effectiveness of Double-AndSingle-gimbaled Control Moment Gyroscopes for Vibration Suppression.Transactions of the Canadian Society for Mechanical Engineering.2005,29(3):389~402
    47T. C. Liu, W. B. Chubb, S. M. Seltzer, Z. Thompson. Optimal Control of aVariable Spin Speed CMG System for Space Vehicles. IEEE Conference onDecision and Control, San Diego, USA,1973:722~726
    48J. Dzielski, D. Rowell, D. Wormley. Approach to Control Moment GyroscopeSteering Using Feedback Linerization. AIAA Journal of Guidance, Control, andDynamics.1991,14(1):96~106
    49S. Boyarski, J. Z. Ben-Asher. Minimum-Time Reorientation of a Two-Degree-of-Freedom Gyroscope. AIAA Journal of Guidance, Control, and Dynamics.1995,18(4):782~791
    50Y. Tsuneo. A Steering Law for Three Double-Gimbal Control Moment GyroSystems. NASA TM X-64926,1975
    51H. F. Kennel. Individual Angular Momentum Vector Distribution and RotationLaws for Three Double-gimbaled Control Moment Gyros. NASA TM X-53696,1968
    52H. F. Kennel. Steering Law for Parallel Mounted Double-Gimbaled ControlMoment Gyros-Revision A. NASA TM-82390,1981
    53L. F.Yang, W. H. Chang. Synchronization of Twin-Gyro Precession Under Cross-Coupled Adaptive Feedforward Control. AIAA Journal of Guidance, Control, andDynamics.1996,19(3):534~539
    54L. F. Yang, M. M. Mikulas, K. C. Jr. Park, R. Su. Slewing Maneuvers andVibration Control of Space Structures by Feedforward/Feedback Moment-GyroControls. ASME Journal of Dynamic Systems, Measurement, and Control.1995,117(3):343~351
    55D. Zhou, T. L. Shen. Adaptive Nonlinear Synchronization Control of Twin-GyroPrecession. Proceedings of8th International Conference on Control, Automation,Robotics and Vision, Kunming, China,2004:1188~1193
    56D. Zhou, T. L. Shen, K. Tamura. Adaptive Nonlinear Synchronization Control ofTwin-Gyro Precession. ASME Journal of Dynamic Systems, Measurement, andControl.2006,128(3):592~599
    57M. Tomizuka, J. S. Hu, T. C. Chin, T. Kamano. Synchronization of Two MotionControl Axes Under Adaptive Feedforward Control. ASME Journal of DynamicSystems, Measurement and Control.1992,114(2):196~203
    58T. Kamano, T. Suzuki, N. Iuchi, M. Tomizuka. Adaptive Feedforward Controllerfor Synchronization of Two Axes Positioning System. Transactions of the Societyof Instrument and Control Engineers.1993,29(7):785~791
    59范俭,李东升,闻邦椿.双机传动机械系统同步控制的研究.东北大学学报.1994,19(6):566~570
    60J. G. Tsao, L. T. Sheu, L. F. Yang. Adaptive Synchronization Control of theMagnetically Suspended Rotor System. Dynamics and Control.2000,10(2):239~253
    61赵春雨,朱洪涛,闻邦椿.多机传动机械系统的同步控制.控制理论与应用.1999,16(2):179~183
    62K. Li, M. A. Mannan, M. Xu, Z. Xiao. Electro-Hydraulic Proportional Control ofTwin-Cylinder Hydraulic Elevators. Control Engineering Practice.2001,9(4):367~373
    63Z. X. Jiao, J. X. Gao, Q. Hua, S. P. Wang. The Velocity Synchronizing Control onthe Electro-Hydraulic Load Simulator. Chinese Journal of Aeronautics.2004,17(1):39~46
    64D. Sun. Adaptive Coupling Control of Two Working Operations in CNCIntegrated Machines. ASME Journal of Dynamic Systems, Measurement, andControl.2003,125(4):662~665
    65D. Sun, J. Mills. Adaptive Synchronized Control for Coordination of MultirobotAssembly Tasks. IEEE Transactions on Robotics and Automation.2002,18(4):498~510
    66H. T. Liu, D. Sun. Uniform Synchronization in Multi-Axis Motion Control.Proceedings of American Control Conference, Portland, OR, USA,2005:4537~4542
    67M. Namvar, F. Aghili. Adaptive Force-Motion Control of Coordinated RobotsInteracting With Geometrically Unknown Environments. IEEE Transactions onRobotics.2005,21(4):678~694
    68W. H. Zhu. On Adaptive Synchronization Control of Coordinated MultirobotsWith Flexible/Rigid Constraints. IEEE Transactions on Robotics,2005,21(3):520~525
    69A. A. Rodriguez, H. Nijmeijer. Mutual Synchronization of Robots via EstimatedState Feedback: A Cooperative Approach. IEEE Transactions on Control SystemsTechnology.2004,12(4):542~554
    70A. A. Rodriguez, H. Nijmeijer. Synchronizing Tracking Control for Flexible JointRobots via Estimated State Feedback. ASME Journal of Dynamic Systems,Measurement, and Control.2004,126(1):163~172
    71J. Shan, H. T. Liu, S. Nowotny. Synchronised Trajectory-Tracking Control ofMultiple3-DOF Experimental Helicopters. IEE Proceedings Control Theory andApplications.2005,152(6):683~692
    72H. T. Liu, J. Shan. Adaptive Synchronized Attitude Angular Velocity TrackingControl of Multi-UAVs. Proceedings of American Control Conference, Portland,OR, USA,2005:128~133
    73冯钢,李贵生.摄影机同步控制系统的研究.光学精密工程.1995,3(4):54~61
    74胡旭晓,台宪青,杨克己.步进扫描光刻机同步控制及硅片变形误差补偿技术研究.中国机械工程.2004,15(3):192~195
    75李世华,蔡海兴. Chen氏混沌电路实现与同步控制实验研究.物理学报.2004,53(6):1687~1693
    76陈从颜,宋文忠.一类非线性反馈混沌系统分析和同步控制.控制与决策.2002,17(1):49~52
    77樊春霞,姜长生.统一混沌系统Backstepping同步控制.哈尔滨工业大学学报.2004,36(11):1571~1574
    78陈保颖,包芳勋.连续混沌系统的混沌同步控制.动力学与控制学报.2004,2(4):14~18
    79刘国刚,赵怡.参数不确定混沌系统的自适应同步控制.电路与系统学报.2005,10(1):24~27
    80孙克辉,陈志盛,张泰山.基于参数自适应方法的统一混沌系统的同步控制.2005,34(1):40~43
    81陈志盛,孙克辉,张泰山. Liu混沌系统的非线性反馈同步控制.物理学报.2005,54(6):2580~2583
    82高金峰,马西奎,罗先觉.实现连续时间标量混沌信号同步的自适应控制方法.物理学报.2000,49(7):1235~1240
    83高金峰,罗先觉,马西奎.实现连续时间标量(超)混沌信号同步控制的非线性反馈方法.物理学报.2000,49(5):838~843
    84Y. G. Tan, T. Egami, T. Murata. Method for Optimal Synchronous PositionControl and Its Application to a Linear X-Y Table. Transactions of the Society ofMechanical Engineers.1996,62(589):107~114
    85江上正,谭跃钢.位置差反馈最优同步控制系统的研究.控制与决策.1997,12(6):649~654
    86Y. Xiao, K. Zhu, H. C. Liaw. Generalized Synchronization Control of Multi-AxisMotion Systems. Control Engineering Practice.2005,13(7):809~819
    87D. Zhou, T. L. Shen, K. Tamura. Adaptive Optimal Synchronization Control ofTwo Linear Systems and Its Applications. Proceedings of the IASTEDInternational Conference on Modelling and Simulation, California, USA,2003:662~667
    88H. Sun, T. C. Chiu, Motion Synchronization for Dual Cylinder ElectrohydraulicLift Systems. IEEE/ASME Transactions on Mechatronics.2002,7(2):171~181
    89R. W. Fang, J. S. Chen. A Cross-Coupling Controller Using an H∞Scheme andIts Application to a Two-Axis Direct-Drive Robot. Journal of Robotic Systems.2002,19(10):483~497
    90D. Zhou. H∞Synchronization Control of Linear Systems and Its Application toWafer-Retical Stage. Chinese Journal of Mechanical Engineering.2005,18(2):174~178
    91王兴元,刘明.用滑模控制方法实现具有扇区非线性输入的主从混沌系统同步.物理学报.2005,54(6):2584~2589
    92高铁杠,陈增强,袁著祉.基于鲁棒有限时控制的混沌系统的同步.物理学报.2005,54(6):2574~2579
    93H. T. Yau, J. S. Lin, J. J. Yan. Synchronization Control for a Class of ChaoticSystems with Uncertainties. International Journal of Bifurcation and Chaos.2005,15(7):2235~2246
    94P. Moore, C. M. Chen. Fuzzy Logic Coupling and Synchronised Control ofMultiple Independent Servo-Drives. Control Engineering Practice.1995,3(12):1697~1708
    95H. C. Lee, G. J. Jeon. A Neuro-Controller for Synchronization of Two MotionAxes. International Journal of Intelligent System.1998,13(6):571~586
    96欧阳自远,李春来.深空探测的进展与我国深空探测的发展战略.中国航天,2002,(12):28~32
    97欧阳自远.中国探月行动.百科知识.2004,(11):13
    98林永胜,李珠基,康志宇.月球探测技术.上海航天.2003,(4):57~62
    99陈建祥.飞向月球飞行轨道的若干特性研究.空间科学学报.1997,17(1):90~96.
    100P. A. Regeon, R. J. Chapman, G. R. Bau. Clementine: The deep space programscience experiment. IAA-L-0501:1~15
    101曾颖超.航天器飞行力学.西北工业大学出版社,1993:5~12
    102郗晓宁,曾国强,任萱,赵汉元.月球探测器轨道设计.国防工业出版社,2001:143~165
    103T. H. Charles, E. F. Charles, D. W. Bobbie. Apollo experience report aboutplanning. NASA TN-D6847
    104V. B. Floyd. Apollo Experience Report Mission Planning for Lunar ModuleDescent and Ascent. NASA TN-D6846
    105R. K. Allan. Apollo Guidance Navigation and Control. Charles stark darperlaboratory report.1971
    106Floyd V Bennett. Apollo Lunar Descent and Ascent Trajectories. NASA TM X-58040,1970
    107Pauld D Spudies. The Moon and the Future of NASA.40th Aerospace SciencesMeeting and Exhibit,2002:14~17
    108E. Bahar, M. Haugland. Unified full wave solutions to interpret Apollo lunarsurface data. IEEE Transactions on Geoscience and Remote Sensing.1994,32(1):72~77
    109D. G. Tuckness. Future Lunar Landing Navigation Schemes with Emphasis onPrecision Landings. Journal of the Institute of Navigation.1994,41(2):215~228
    110T. Fill. A Guidance Algorithm for Lunar Powered Descent. C. S. DraperLaboratory Memo EGB-92-522, September14,1992
    111S. Meditch James. On the problem of optimal thrust programming for a lunar softlanding. IEEE Transaction on Automatic Control.1964,9(4):477~484
    112N. D. Christopher. An Optimal Guidance Law for Planetary Landing. AIAAGuidance, Navigation, and Control Conference, New Orleans, LA,1997:11~13
    113王劼,李俊峰,崔乃刚,刘暾.登月飞行器软着陆轨道的遗传算法优化.清华大学学报(自然科学版).2003,43(8):1056~1059
    114马克茂,陈立甲,王子才.实用飞行器软着陆控制律设计.导弹与航天运载技术.2001,(2):39~43
    115王大轶,李铁寿,严辉,马兴瑞.月球软着陆的一种燃耗次优制导方法.宇航学报.2000,21(4):55~62
    116王大轶,李铁寿,马兴瑞.月球最优软着陆两点边值问题的数值解法.航天控制.2000,(3):44~49
    117阮晓钢.登月舱软着陆的非线性神经元控制.宇航学报.1998,19(1):35~43
    118S. R. Hebertt. Soft landing on a planet: a trajectory planning approach for theliouvillian model. Proceedings of American Control Conference, San DiegoCalifornia,1999. American Automatic Control Council,1999:2936~2940
    119徐敏,李俊峰.月球探测器软着陆的最优控制.清华大学学报(自然科学版).2001,41(8):87~89
    120V. Cantoni, S. F. Finzi. Slowest descent on the moon. SIAM.1980,22(4):495~499
    121王劼,崔乃刚,刘暾.定常推力登月飞行器最优软着陆轨道研究.高技术通讯.2003,13(4):39~42
    122阮小刚,郭锁凤.神经元最优状态反馈控制及其在登月问题中的应用研究.南京航空航天大学学报.1994,26(6):721~729
    123A. Isidori. Nonlinear control systems.3rd ed. Springer-Verlag,1995:219~320
    124R. Marino, P. Tomei. Nonlinear control design. Prentice Hall,1995:75~132
    125M. Krstic, I. Kanellakopoulos, P. Kokotovic. Nonlinear and adaptive controldesign. John Wiley and Sons Inc.,1995:87~180
    126Xinglong Liu, Guangren Duan. Design of Optimal Orbit and Constant Force forSoft Landing of Lunar Lander. Proceedings of the25th Chinese Control Conf.,August, Harbin, Heilongjiang,2006:2248~2253
    127Heung Wing, Joseph Lee. Computational studies of optimal controls.1996,94~113
    128刘培玉,葛斌,王金城.最优控制系统设计.大连理工大学出版社,2000:48~69
    129L. S. Jennings, M. E. Fisher, K. L. Teo, C. J. Goh. MISER3Optimal ControlSoftware: Theory and User Manual, EMCOSS Pty Ltd,1990
    130L. S. Jennings, M. E. Fisher, K. L. Teo, C. J. Goh, MISER3: Solving OptimalControl Problems-An Update, Advance Engineering Software,1991:190~196
    131K. L. Teo, C. J. Goh, K. H. Wong. A Unified Computational Approach toOptimal Control Problems. John Wiley&Sons,1991:60~122

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700