快速机动小卫星总体设计及控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着航天实践的不断深入,对空间快速机动技术的需求日益增强,具备快速机动能力的小卫星成为未来航天器的重要发展方向之一。论文以“快速机动小卫星”为研究对象,采用多学科设计优化方法对其进行了总体优化设计,并针对快速机动小卫星的自主、快速等特点,对其关键分系统之一的控制分系统进行了初步设计与研究。
     首先,系统研究了CSSO、BLISS 2000和CO三种两级多学科设计优化过程。
     针对CO实现过程中存在的问题,提出了基于动态罚因子及正交试验设计的改进协同优化过程(DPCO),算例测试表明了改进的优越性。通过减速器和飞机两个实例的研究,分析了DPCO、CSSO及BLISS 2000三种优化过程的特点,并总结了各自的适用性。
     其次,进行了基于DPCO的快速机动小卫星总体设计研究。针对快速机动小卫星的任务特点,建立了快速机动小卫星的学科模型,以系统成本最小为目标构建总体参数优化模型。利用DPCO对快速机动小卫星MDO问题进行集成和求解。优化结果验证了DPCO的有效性,提高了设计水平。
     再次,在建立基于导引星的轨道相对运动动力学模型的基础上,研究了Lyapunov控制规律,并采用多方法协作优化算法(MCOA)对控制参数进行优化。在快速机动小卫星总体设计方案的基础上,对卫星的升轨机动及相位调整两类机动任务进行了数学仿真,并用STK软件演示了升轨机动过程,仿真研究表明了快速机动小卫星控制策略设计的可行性。
     最后,详细介绍了姿态控制系统设计方案,研究了用于飞轮控制系统的Lyapunov控制规律,并采用MCOA对控制参数进行优化,在快速机动小卫星总体设计方案的基础上,对卫星的姿态稳定控制及姿态机动控制进行了数学仿真,仿真结果验证了设计方案的可行性。
     总之,论文系统研究了MDO优化过程,提出了DPCO,并将其应用于快速机动小卫星总体优化设计,为探索MDO方法在卫星总体设计中的应用进行了有益的尝试,同时对快速机动小卫星的控制技术进行了初步研究,采用MCOA对控制器进行参数优化,达到了快速机动控制的目的。论文对我国开展空间快速机动飞行器的研究具有一定的参考价值。
With the development of space technology, requirements for spacecrafts with rapid maneuver ability become more and more intense. A small satellite with rapid maneuver missions is discussed in this thesis. Multidisciplinary Design Optimization (MDO) is adopted for its’system design. Combined with the specific characters of this type satellite described as“autonomy and rapid”, control sub-system as one of the key sub-systems is studied.
     Firstly, three types of MDO procedures are studied, including CSSO (Concurrent Subspace Optimization), BLISS 2000 (Bi-Level Integrated System Synthesis 2000) and CO (Collaborative Optimization). Aimed at solving some problems in carrying out CO procedure, an improved CO using dynamic penalty factor and orthogonal experimental design named DPCO is proposed, and its efficiency is tested by a typical optimization problem. The characters of these three MDO procedures are analyzed by two design optimization problems—Speed Reducer and Plane concept design. And the applicability of each procedure is concluded.
     Secondly, according to the characters of rapid maneuver small satellite, disciplinary models are analyzed; and a parameter optimization model is set up to minimize the cost of satellite. The MDO problem is integrated and solved by DPCO, and advantages of DPCO are verified.
     Thirdly, a Lyapunov-based orbital controller is studied on the basis of orbital dynamics of spacecraft expressed by two-body motion with guide satellite. The numerical simulations for maneuver missions are presented on the basis of foregoing satellite system design scheme. And the maneuver process is also demonstrated by the software STK (Satellite Tool Kit).The results show that the mission requirements are satisfied and the controller design is feasible. Finally, the attitude control system is introduced in details and a Lyapunov-based control law is discussed for flywheel system. MCOA (Multimethod Collaborative Optimization Algorithm) is adopted to optimize the control parameters of this controller with the object of minimizing control time. Then numerical simulations are presented on the basis of foregoing satellite system design scheme for attitude stabilization control and maneuver control. The results show that the scheme is feasible.
     To sum up, three types of MDO procedures are discussed. Based on it, DPCO is proposed to solve the system design problem of small satellite with rapid maneuver mission. All of these are beneficial tries for application of MDO in satellite system design. The control system is also discussed; MCOA is adopted to optimize the control parameters, and the rapid maneuver mission on orbit is fulfilled. This thesis is a good foundation for further research on space maneuver system.
引文
[1] AIAA Multidisciplinary Design Optimization Technical Committee. Current State of the Art on Multidisciplinary Design Optimization (MDO)[R]. An AIAA White Paper, ISBN 1-56347-021-7, 1991
    [2] 王振国,陈小前,罗文彩等. 飞行器多学科设计优化理论与应用研究[M]. 北京:国防工业出版社,2006
    [3] Marec. Optimal Space Trajectories[M]. New York: NY, Elsevier, 1979
    [4] 谌颖,黄文虎. 多冲量最优交会的动态规划方法[J]. 宇航学报,1994,14(3):1-7
    [5] 于绍华. 有分布质量绳系卫星的系统动力学[J]. 宇航学报,2001,22(3):52-61
    [6] Ulybyshev. Y Long-Term Formation Keeping of satellite Constellation Using Linear Quadratic Controller[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(1): 109-115
    [7] 荆武兴,吴瑶华. 基于交会概念的最省燃料异面有限推力轨道转移研究[J]. 哈尔滨工业大学学报,1998,30(2):124-128
    [8] 王华,唐国金,雷勇军. 有限推力轨迹优化问题的直接打靶法研究[J]. 中国空间科学技术,2003,23(5):51-56
    [9] 王华,唐国金. 用非线性规划求解有限推力最优交会[J]. 国防科技大学学报,2003,25(5):9-13
    [10] 谌颖,陈祖贵. 常推力作用下飞行器固定时间最优交会[J]. 中国空间科学技术,1998,18(2):1-7
    [11] 严辉,吴宏鑫. 小推力轨道优化研究[J]. 中国空间科学技术,1998,18(2):8-13
    [12] R.f. Hoelker R S. The bi-elliptic transfer between circular co-planar orbits[A]. In: Army Ballistic Missile Agency[C]. Alabama: 1959
    [13] Roth H L. Minimization of the velocity increment for a bi-elliptic transfer with planechange[J]. Astronautica Acts, 1967, 13(2): 119-130
    [14] Prussing J E. Optimal four-impulse fixed-time rendezvous in the vicinity of a circular orbit.[J]. AIAA Journal, 1969, 7(5): 928-935
    [15] Redding D C. Highly efficient, very low-thrust transfer to geosynchronous orbit: exact and approximate solutions[J]. Journal of Guidance, Control, and Dynamics, 1984, 7(2): 141-147
    [16] J.e. Prussing J H C. Optimal multiple-impulse time-fixed rendezvous between circular orbits[J]. Journal of Guidance, Control, and Dynamics, 1986, 9(1): 17-22
    [17] 王小军,吴德隆. 地球同步卫星远地点最省燃料小推力多次变轨[J]. 中国空间科学技术,1995,15(4):1-9
    [18] 朱仁璋,林彦,李颐黎. 论空间交会中的径向连续推力机动与N次推力机动[J]. 中国空间科学技术,2004,24(3):21-28
    [19] 谌颖. 邻近近圆轨道两个飞行器的最优交会[J]. 航天控制, 1995, 13(2): 35-40
    [20] 赵建民,高普云. 连续推力最优变轨的一种优化解法[J]. 湖北航天科技,2001(6):25-28
    [21] 荆武兴,黄文虎. 航天器姿态机动的拟欧拉角反馈控制[J]. 宇航学报,1994,15(2):41-47
    [22] 鲍巍,杨明,王子才. 基于模糊控制的拦截弹姿态控制器设计方法研究[J]. 航天控制,2005,23(1):51-57
    [23] 孙兆伟,曹喜滨. 主动磁控小卫星模糊控制算法研究[J]. 哈尔滨工业大学学报,2002,34(6):848-852
    [24] 李太玉,张育林. 基于切变流形函数和模糊控制的微小卫星姿态磁控制[J]. 上海航天,2006,23(2):1-5
    [25] 张云,王培垣. 一种用于挠性卫星姿态控制的改进模糊控制器[J]. 上海航天,2004,21(6):42-45
    [26] 王蜀泉,赵光恒. 基于模糊控制的卫星大角度姿态机动控制方法研究[J]. 中国科学院研究生院学报,2006,23(1):111-117
    [27] 张萃. 卫星姿态磁控制的鲁棒控制器设计方法[D]. 哈尔滨:哈尔滨工业大学,2002
    [28] 宋斌,马广富,李传江等. 基于H∞鲁棒控制的挠性卫星姿态控制[J]. 系统仿真学报,2005,17(4):968-970
    [29] 唐超颖,沈春林. 滑模变结构控制在航天器姿态控制系统中的应用[J]. 兵工自动化,2004,23(1):1-3
    [30] 姚琼荟,宋立忠,鄢圣茂. 离散变结构控制理论研究现状与展望[J]. 2004,16(6):23-36
    [31] 张昌凡. 滑模变结构控制研究综述[J]. 株洲工学院学报,2004,18(2):1-5
    [32] 周连文,周军. 挠性航天器大角度机动的变结构控制[J]. 航天控制,2003,21(3):48-52
    [33] 贺东雷,曹喜滨. 一种轮控卫星姿态机动变结构控制器[J]. 空间科学学报,2005,25(6):558-563
    [34] 赵艳彬,王萍萍,王本利. 刚体卫星姿态跟踪鲁棒变结构控制[J]. 航天制造技术,2005(4):24-26
    [35] sellar R S, batill S M, renaud J E. Response Surface Based, Concurrent Subspace Optimization for Multidisciplinary System Design[R]. AIAA 96-0714, 1996
    [36] 邢小楠. 飞机总体方案的多学科并行设计优化方法[D]. 北京:北京航空航天大学,2003
    [37] 余雄庆. 多学科设计优化算法及其在飞机设计中的应用研究[D]. 南京:南京航空航天大学,1999
    [38] 邓隆范. 基于MDO的远程吸气式超音速反辐射防空导弹总体技术研究[D]. 北京:航天科工集团第二研究院,2002
    [39] 曾声宇. 基于相应面近似的反舰导弹并行子空间优化设计技术[D]. 西安:西北工业大学,2004
    [40] Rodriguez J F, Perez V M, Renaud J E. Sequential Approximate Optimization Using Variable Fidelity Response Surface Approximation[R]. , 2000
    [41] Sobieszczanski-sobieski J, Agte J S, Sandusky R R. Bi-Level Integrated System Synthesis (BLISS)[R]. NASA/TM-1998-208715, 1998
    [42] Sobieszczanski-sobieski J, Agte J S, Sandusky R R. Bi-Level Integrated System Synthesis (BLISS)[R]. AIAA 98-4916, 1998
    [43] Sobieszczanski-sobieski J, Emiley M S, Agte J S, et al. Advancement of Bi-Level Integrated System Synthesis (BLISS)[R]. AIAA 2000-0421, 2000
    [44] Sobieszczanski-sobieski J, Altus T D, Phillips M, et al. Bi-Level Integrated System Synthesis (BLISS) for Concurrent and Distributed Processing[R]. AIAA 2002-5409, 2002
    [45] Brown N F, Dr. Olds J R. Evaluation of Multidisciplinary Optimization (MDO) Techniques Applied to a Reusable Launch Vehicle[R]. AIAA 2005-707, 2005
    [46] Kodiyalam S, Sobieszczanski-sobieski J. Bi-Level Integrated System Synthesis with Response Surfaces[R]. AIAA 99-1306-wip, 1999
    [47] Kroo I, Altus S, Braun R, et al. Multidisciplinary Optimization Methods for Aircraft Preliminary Design[R]. AIAA 94-4325-CP, 1994
    [48] Braun R D. Collaborative Optimization: An Architecture for Large-Scale Distributed Design[D]. Stanford University, 1996
    [49] R. Braun, I. Kroo A M. Use of the collaborative optimization architecture for launch vehicle design[R]. , 1996
    [50] M A N, M L R. Analytical and computational properties of distributed approaches to MDO[R]. AIAA-2000-4718, 2000
    [51] 胡峪. 飞机多学科设计优化及其应用研究[D]. 西安:西北工业大学,2001
    [52] 李响,李为吉. 基于序列响应面方法的协同优化算法[J]. 西北工业大学学报,2003,21(1):79-82
    [53] 李响,李为吉. 利用协同优化方法实现复杂系统分解并行设计优化[J]. 宇航学报,2004,25(3):300-304
    [54] 陶冶,黄洪钟,吴宝贵. 基于满意度原理的多学科协同优化[J]. 应用基础与工程科学学报,2006,14(1):106-114
    [55] Braun R D, Moore A A. Collaborative approach to launch vehicle design[J]. Journal of sapcecraft and rockets, 1997, 34(4): 478-486
    [56] 任露泉. 试验优化设计与分析[M]. 第二版. 北京:高等教育出版社,2003
    [57] Sellar R S, Batill S M, Renaud J E. Response Surface Based, Concurrent Subspace Optimization for Multidisciplinary System Design[R]. AIAA 96-0714, 1996
    [58] Lin W, Renaud J E. A Comparative Study of Trust Region Managed Approximate Optimization[R]. AIAA 2001-1499, 2001
    [59] 罗文彩. 飞行器总体多方法协作优化设计理论与应用研究[D]. 长沙:国防科技大学,2003
    [60] MDO TEST SUITE[EB/OL]. http://mdob.larc.nasa.gov/mdo.test/index.html,
    [61] MDO Test Suite Problem 2.4 Golinski's Speed Reducer[EB/OL]. http://mdob.larc.nasa.gov/mdo.test/class2prob4/equations/HOWTO.html, 1998-03-26/2002-11-01
    [62] 李为吉. 飞机总体设计[M]. 西安:西北工业大学出版社,2005
    [63] 方宝瑞. 飞机气动布局设计[M]. 北京:航空工业出版社,1997
    [64] 杨景佐,曹明. 飞机总体设计[M]. 北京:航空工业出版社,1991
    [65] 马兴瑞,张永维,白照广. 中国海洋一号卫星技术方案[J]. 航天器工程,2003,12(47):1-8
    [66] R W J, J L W. Space Mission Analysis and Design[M]. Third Edition ed. California: Microcosm Press and Kluwer Academic Publishers, 1999:
    [67] 李明. 遥感卫星总体参数分析与优化设计方法研究[D]. 中国空间技术研究院,1996
    [68] 陆春玲,覃正熙,沈中. 中国海洋一号卫星有效载荷总体设计与在轨性能评估[J]. 航天器工程,2003,12(47):39-46
    [69] 屠善澄. 卫星姿态动力学与控制[M]. 北京:宇航出版社,2001
    [70] Vaddi S, Vadali S R. Linear and Nonlinear Control Laws for Formation Flying[A]. In: Space Flight Mechanics Meeting[C]. Ponce: 2003: 103-109
    [71] Ilgen M R. Low Thrust OTV Guidance Using Lyapunov Optimal Feedback Control Techniques[J]. Advances in the Astronautical Sciences, 1993, 85(2): 1527-1545
    [72] Naasz B J. Classical Element Feedback Control for Spacecraft Orbital Maneuvers[D]. Virginia: 2002
    [73] 孟云鹤. 近地轨道航天器编队飞行控制与应用研究[D]. 长沙:国防科技大学,2006
    [74] 叶庆凯,王肇明. 优化与最优控制中的计算方法[M]. 科学出版社,1986
    [75] 林国华,杨宏坤. 求解飞行轨迹最优化问题的组合算法[J]. 飞行力学,1994,12(1):50-56
    [76] 南英,严辉,陈士橹. 航天器轨迹优化的通用数值方法[J]. 飞行力学,1996,14(3):20-26
    [77] 徐成贤,林卫东. 无约束连续最优控制问题的离散序列二次规划方法[J]. 高等学校计算数学学报,1995,17(2):100-107
    [78] 屈香菊. 直接多重打靶法在轨迹优化方面的应用[J]. 飞行力学,1992,10(1):13-21
    [79] 刘同仁. 用参数最优化方法计算最优飞行轨迹[J]. 航空学报,1994,15(11):1298-1305
    [80] 邢文训,谢金星. 现代优化计算方法[M]. 北京:清华大学出版社,1998
    [81] 王炳全,崔祜涛,杨涤. 仅用反作用轮进行小卫星姿态大角度机动[J]. 飞行力学,1999,17(1):86-90
    [82] 张美华,张丙文. 轮控小卫星姿态大角度机动递阶饱和控制器设计[J]. 上海航天,2005,22(3):15-18
    [83] Shuster M D. A Survey of Attitude Representations[J]. Journal of the Astronautical Sciences, 1993, 41(4): 439-517
    [84] schaub H, junkins J L. Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters[J]. Journal of the Astronautical Sciences, 1996, 44(1): 1-19
    [85] C. D. Hall, P. Tsiotras H S. Tracking Rigid Body Motion Using Thrusters and Momentum Wheels[J]. The Journal of the Astronautical Sciences, 2002, 50(3): 311–323
    [86] Wang P K C, Hadaegh. Coordination and control of Multiple Micro Spacecraft Moving in Formation[J]. The Journal of Astronautical Sciences, 1996, 44(3): 315-355
    [87] Crassidis J L, Markley F L. Sliding Mode Control Using Modified Rodrigues Parameters[J]. Journal of Guidance Control & Dynamics, 1996, 19(6): 1381-1383
    [88] Dwyer T A W, Ramirez H S. Variable-Structure Control of Spacecraft Attitude Maneuvers[J]. Journal of Guidance Control & Dynamics, 1988, 11(3): 262-269
    [89] Khalil H K. Nonlinear Systems[M]. New York: Macmillan, 1992:
    [90] Bilimoria. Time-Optimal Three-Axis Reorientation of a Rigid Spacecraft[J]. Journal of Guidance Control & Dynamics, 1993, 16(3): 446-452
    [91] Byers R M, Vadali S R. Quasi-Closed Form Solution to the Time-Optimal Rigid Spacecraft Reorientation Problem[J]. Journal of Guidance Control & Dynamics, 1993, 16(3): 453-461
    [92] 周黎妮. 交会对接目标飞行器姿态动力学与控制仿真研究[D]. 长沙:国防科技大学,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700