MIMO雷达成像的电磁分析与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MIMO(multiple input multiple output)雷达系统是国际上新兴的研究方向,在雷达成像领域得到了广泛的关注。相对于传统的单天线雷达,MIMO雷达在数据获取上具有明显的优势,但与MIMO技术在通信信号处理方面的应用相比,MIMO雷达的优越性及局限性还没有清晰的结论,而且很多传统的雷达成像算法并不适合MIMO雷达。本论文应用电磁数值方法建立MIMO雷达系统成像的数学模型,利用逆散射领域的最新理论研究MIMO雷达的成像算法,主要工作包括:MIMO雷达信号模型及成像基础、MIMO雷达数据的数值模拟、基于逆散射理论的MIMO雷达成像算法、MIMO雷达成像算法在井地雷达中的应用。
     MIMO雷达成像算法研究的前提条件是获取雷达的数据。实际的MIMO雷达系统仍处于试验阶段,因而雷达探测数据需要通过数值模拟来获得。本论文首先建立了MIMO雷达信号的数学模型,然后推导了对于特殊目标散射场的级数解析解。在二维和三维的情况,解析解分别依赖于贝赛尔函数和球面贝赛尔函数。在研究三维散射问题的级数解时,推导了Mie级数新的迭代公式并利用此公式获取了精确的散射解。利用以上结果,可以获得较为准确的MIMO雷达数据。对于一般情况,利用麦克斯韦方程建立MIMO雷达模型,应用典型的电磁数值计算方法—有限元法处理目标的散射场,获取雷达成像所需的频域数据。
     理论上,MIMO雷达可以根据其探测的海量数据提高成像分辨率。但传统的雷达成像算法一般基于单天线雷达。多重信号分类(MUSIC)算法可以处理MIMO雷达数据,但一般情况下只能处理目标是点状散射体的情况,对较大目标的成像效果并不是很好。本论文利用逆散射领域中的定性方法—线性采样法和对偶差异法进行MIMO雷达成像的研究。此类方法基于完整的非线性模型,算法实现简单,运算速度快,可以处理多个雷达天线的多点场值,因而非常适合MIMO雷达系统成像的研究,而且基本上不需要目标的先验信息。线性采样法的理论已经发展的比较成熟,可应用于MIMO雷达近远场成像,处理目标可以具有一定的大小和形状。对偶差异法是逆散射领域近几年发展的最新方法,它可以看做是线性采样法的近场延拓。论文利用MIMO雷达散射问题的解析解与模拟数据,研究了对偶差异法在MIMO雷达应用中的基本性质,包括稳定性、成像极限、对雷达波长的依赖等。与传统的雷达成像方法相比,对偶差异法具有如下的优点:可以准确地获得目标的确切形状、可以获取目标的物理信息、运算速度非常快。在MIMO雷达近场成像中,利用对偶差异法进行目标重构,可以获得较为理想的效果。
     探地雷达在地雷探测、非破坏性结构探测,确定地下管线等方面都有重要应用。本论文将对偶差异法应用到研究探地雷达中的井地雷达成像。井地雷达具有多个接收和发射天线,属于MIMO雷达范畴。论文应用数值方法模拟井地雷达数据并利用对偶差异法对地下物体进行成像。针对井地雷达的背景通常较复杂的特点,论文提出了修正的对偶差异法,可以处理介质折射率随机扰动的情况,并减小了运算量。通过计算机仿真可以看到在井地雷达的目标成像中,利用修正的对偶差异法会取得较为理想的重构效果。
     本论文包含了对MIMO雷达模拟与成像的深入研究,是关于MIMO雷达成像理论的早期工作,也是首次把逆散射中的最新结果应用在MIMO雷达研究中。
Multiple input and multiple output (MIMO) radar system is a cutting edge researchdirection which received a lot of international attention recently from the radar imagingcommunity. It is clear that more data is obtained using MIMO radar. However, comparingwith applications of MIMO system in communication singal processing, the fundamentaladvantages and limits of MIMO radar system are not clear yet. Furthermore, traditional radarimaging techneques cannot be applied to MIMO radar directly. In this thesis, we focus on themathematical theory and imaging algorithms for MIMO radar based on the recentdevelopments in the inverse scattering theory. In particular, we study the scattering model ofthe MIMO radar system, apply numerical methods to simulate MIMO radar data, developradar imaging methods for MIMO radar, and apply the result to surfact to borehole radar(GPR) imaging.
     It is necessary to obtain radar data before we apply any imaging algorithms for objectdetection. Since the actual MIMO radar system is still in the experiment phase, we rely on thenumerical simulation to get MIMO radar data. We first start by deriving the analyticalsolutions of MIMO radar scattering problems in both two and three dimensions using Bessel’sfunctions and spherical Bessel’s fuctions respectively. In three dimension, we derive newrecursive formula for the Mie series. Using these results, we are able to obtain the exact noisefree radar data which can be used to study the fundamental features of the MIMO radarsystem. In general cases, the MIMO radar model, which is based on the Maxwell's equations,is simulated using a typical numerical method, i.e., the finite element method. Then thecomputed scattered field is used for radar imaging.
     Since MIMO radar provides a much denser data set, it is expected that high resolutionimages could be obtained. Most traditional radar imaging methods deal with single inputsingle output (SISO) radar. MUSIC method can be used to process MIMO radar data.However, only point like objects can be effectively detected. We apply the recently developedqualitative methods in inverse scattering theory to MIMO radar. These methods are based onnon-linear models and are fast and easy to implement. In particular, they are well-suited toprocess MIMO radar data. Among them, the reciprocity gap method, as an extension of thelinear sampling method, is a newly developed imaging method in inverse scattering. Since themethod needs radar data at multiple locations, it fits the context of MIMO radar systemextremely well. Comparing to traditional radar imaging techniques, the reciprocity gap method has several advantages: little a prior information of the target is needed; exact shapeof the target can be reconstructed; addtional properties, such as the index of refraction, can beobtained; and the method is very fast in general and has the potential to be applied in real time.Using exact data and simulation data, we study the fundamental problems related to thereciprocity gap method including the ill-posed properties, the reconstruction limit, and thedependence on the wave length.
     Ground penetrating radar (GPR) is a geophysical method that uses radar pulses to imagethe subsurface. It has many applictions such as detecting land mines, nondestructive testing ofstructures, locating buried utility lines, etc. In this thesis, we will study a spectial type of GPR,surface to borehole radar. Comparing to traditional single input single output GPR, surfact toborehole radar falls in the category of MIMO radar since it has multiple radar receivers andtransmitters. We use the developed numerical method to obtain radar data and apply thereciprocity gap method to image the buried objects. In the case of random inhomogeneousbackground, we propose a modified reciprocity gap method and obtain satisfactory imagingresults.
     This thesis contains the advanced study of simulation and algorithms for MIMO radarsystem. To the author’s knowledge, it is among the earliest studies of MIMO radar imagingand is the first to apply the qualitative methods in inverse scattering theory to MIMO radarsystem.
引文
[1] Ricnards M A著,邢孟道等译.雷达信号处理基础[M].北京:电子工业出版社,2008.
    [2] Sullivan R J著,微波成像技术国家重点实验室译.成像与先进雷达技术基础[M].北京:电子工业出版社,2009.
    [3] Mahafza B R, Elsherbeni A Z.Matlab Simulations for Radar Systems Design[M].CHAPMAN&HALL/CRC,2003.
    [4]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [5] Park Y, Kim K, Cho S, et al. Buried small objects detected by UWB GPR[J]. Aerospaceand Electronic Systems Magazine, IEEE,2004,19(10):3-6.
    [6] Kao C, Li J, Wang Y, Xing H,Liu C R. Measurement of Layer Thickness andPermittivity Using a New Multilayer Model From GPR Data[J]. Geoscience and RemoteSensing, IEEE Transactions on,2007,45(8):2463-2470.
    [7] Oden C P, Powers M H, Wright D L, Olhoeft G R. Improving GPR Image Resolution inLossy Ground Using Dispersive Migration[J]. Geoscience and Remote Sensing, IEEETransactions on,2007,45(8):2492-2500.
    [8] Ho K C, Carin L, Gader P D, Wilson J N. An Investigation of Using the SpectralCharacteristics From Ground Penetrating Radar for Landmine/Clutter Discrimination[J].Geoscience and Remote Sensing, IEEE Transactions on,2008,46(4):1177-1191.
    [9] Grasmueck M, Viggiano D A. Integration of Ground-Penetrating Radar and LaserPosition Sensors for Real-Time3-D Data Fusion[J]. Geoscience and Remote Sensing, IEEETransactions on,2007,45(1):130-137.
    [10]王怀军. MIMO雷达成像算法研究[D].国防科学技术大学博士论文.2010:1-2.
    [11] Bliss D W, Forsythe K W. Multiple-input multiple-output(MIMO) radar and imaging:degrees of freedom and resolution. The37th Asilomar Conference on Signals, Systems andComputers, Pacific Grove, CA,2003:54-59.
    [12] Fletcher A S, Robey F C. Performance bounds for adaptive coherence of sparse arrayradar.The12th Annual Workshop on Adaptive Sensor Array Processing, Lexington,MA,2003:1-6.
    [13] Rabideau D J, Parker P. Ubiquitous MIMO multifunction digital array radar. The37thAsilomar Conference on Signals, Systems and Computers, Pacific Grove, CA,2003:1057-1064.
    [14] Fishler E, Haimovich A M, Blum R S, Chizhik D,Cimini L,Valenzuela R. MIMO radar:an idea whose time has come. IEEE Radar Conference, Philadelphia, PA,2004:71-78.
    [15] Luce A S, Molina H, Muller D, et al. Experimental results on SIAR digitalbeamforming radar. IEEE International Radar Conference, London,1992:505-510.
    [16]保铮,张庆文.一种新型的米波雷达—综合脉冲与孔径雷达[J].现代雷达,1995,17(1):1-13.
    [17]何子述,韩春林,刘波.MIMO雷达概念及其技术特点分析[J].电子学报,2005,33(12A):2441-2445.
    [18] Dorey J, Garnier G, Auvray G. RIAS, synthetic impulse and antenna radar. IEEEInternational Radar Conference, Paris,1989:556-562.
    [19]周延.稀布阵综合脉冲孔径雷达实验系统仿真信号源的研制[D].西安电子科技大学硕士论文.2001.
    [20] Chen D F, Chen B X, Zhang S H. Multiple-input multiple-output radar and sparse arraysynthetic impulse and aperture radar. CIE International Conference on Radar, Shanghai,2006:1-4.
    [21] Skolnik M. Improvements to air-surveillance radar. IEEE Radar Conference Waltham,MA,1999:18-21.
    [22] Alter J J, White R M, Kretschmer F F, et al. Ubiquitous radar: an implementationconcept. IEEE Radar Conference, Philadelphia, PA,2004:65-70.
    [23]黄韬,袁超伟等著.MIMO相关技术与应用[M].北京:机械工业出版社,2007.
    [24] Godrich H, Haimovich A M, Blum R S. A comparative study of target localization inMIMO radar systems. International Waveform Diversity and Design Conference, Kissimmee,FL,2009:124-128.
    [25] Chen C Y,Vaidyanathan P P. Minimum redundancy MIMO radars. IEEE InternationalSymposium on Circuits and Systems, Seattle, WA,2008:45-48.
    [26] Frazer G J, Abramovich Y I, Johnson B A. HF skywave MIMO radar: the HILOWexperimental program. The42nd Asilomar Conference on Signals, Systems and Computers,Pacific Grove, CA,2008:639-643.
    [27] Li J, Zheng X Y, Stoica P. MIMO SAR imaging: signal synthesis and receiver design.The2nd IEEE International Workshop on Computational Advances in Multi-Sensor AdaptiveProcessing, US Virgin Islands,2007:89-92.
    [28] Wang W Q. Applications of MIMO technique for aerospace remote sensing. IEEEAerospace Conference, Big Sky, MT,2007:1-10.
    [29]夏威.MIMO雷达模型与信号处理研究[D].西安电子科技大学博士论文.2007:3-22.
    [30] Fishler E, Haimovich A M, Blum R S, Chizhik D,Cimini L,Valenzuela R. Spatialdiversity in radars-models and detection performance[J]. IEEE Trans on Signal Process,2006,54(3):823-838,.
    [31] Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar and imaging:degrees of freedom and resolution.Signals, Systems and Computers. Record of theThirty-Seventh Asilomar Conference,2003:54-59.
    [32] Haimovich A M, Blum R S, Cimini L J. MIMO Radar with Widely SeparatedAntennas [J]. Signal Processing Magazine,IEEE,2008,25(1):116-129.
    [33] Li J,Stoica P. MIMO Radar with Colocated Antennas[J]. Signal Processing MagazineIEEE,2007,24(5):106-114.
    [34] Bekkerman I,Tabrikian J. Target Detection and Localization Using MIIMO Radar andSonars[J]. IEEE Transaction on signal processing.2006,54(10):3873-3883.
    [35] Xu L, Li J, Petre S, Keith W F and Daniel W B. Waveform optimization for MIMOradar: a cramer-bao bound based study[J]. IEEE ICASSP.2007: II917-II920.
    [36] Li J and Stoica P. MIMO radar with collocated antennas: Review of some recentwork[J].IEEE Signal Process. Mag.2007,24(5):106–114.
    [37] Li J, Stoica P and Xie Y. On probing signal design for MIMO radar. Signals, Systemsand Computers. ACSSC06,Fortieth Asilomar Conference on, Pacific Grove CA.2006,31-35.
    [38] Li J, Stoica P, Xu L, and Roberts W. On parameter identifiability of MIMO radar[J].IEEE Signal Process. Lett.2007,14(12):968–971.
    [39] Li J, Xu L,Stoica P, Forsythe K W and Bliss D W.Range compression and waveformoptimization for MIMO radar: A Crame’r-Rao bound based study[J]. IEEE Trans. SignalProcess.2008,56(1):218–232.
    [40] Geyi W. Multi-antenna information theory[J]. Progress in Electromagnetics Research,PIER.75.2007:11-50.
    [41] Howard S D, Calderbank A R and Moran W.A simple signal processing architecturefor instantaneous radar polarimetry[J]. IEEE Trans. on Information Theory.2007,53:1282-1289.
    [42] Ma X, Wang D, Su Y. High-resolution imaging using a narrowband MIMO radarsystem. Signal Processing, ICSP2008,9th International Conference on.2008:2263-2266.
    [43] Wang D,Duan N, Ma X, Su Y. High-resolution imaging using a wideband MIMO radarsystem. Information and Automation. ICIA09. International Conference on.2009:1150-1155.
    [44] Kmec M, Sachs J, Peyerl P, Rauschenbach P, Thoma R, Zetik R. A novel ultra wideba-nd real-time MIMO channel sounder architiecture. URSI, New Delhi, India.2005.
    [45] Vito F M, Jeffrey L K, Frank C R. Beamspace slow-time mimo radar for multipathclutter mitigation. Acoustics, Speech and Signal Processing. ICASSP2008. IEEEInternational Conference on.2008:2313-2316.
    [46] Fuhrmann D R and Antonio G S. Transmit beamforming for MIMO radar systemsusing partial signal correlations. Proc.38th Asilomar Conf. Signals, Systems and Computers,Pacific Grove CA.2004,1:295-299.
    [47] Lehmann, Fishler N H, Haimovich E, Blum A M, Chizhik R S, Cimini D andValenzuela L J. Evaluation of transmit diversity in MIMO-radar direction finding[J]. IEEETrans.Signal Process.2007,55(5):2215-2225.
    [48] Stoica P, Li J and Xie Y. On probing signal design for MIMO radar[J]. IEEE Trans.Signal Process.2007,55(8):4151-4161.
    [49] Fishler E, Haimovich A,Blum R,Cimini L,Chizhik D and Valenzuela R. Performanceof MIMO radar systems: Advantages of angular diversity. Proc.38th Asilomar Conf. Signals,Systems and Computers, Pacific Grove CA.2004,1:305-309.
    [50]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [51] Teinberg B D, Subbaram H M. Microwave imaging techniques[M]. New York: JohnWiley&Sons,1991.
    [52] Weib M,Ender J H G.A3D imaging radar for small unmanned airplanes-ARTINO.European Radar Conference, Paris,2005:229-232.
    [53] Klare J, Weib M, Peters O, et al. ARTINO: a new high resolution3D imaging radarsystem on an autonomous airborne platform. IEEE International Geoscience and RemoteSensing Symposium, Denver, CO,2006:5315-5318.
    [54] Weib M, Peters O, Ender J H G. A three dimensional SAR system on an UAV. IEEEInternational Geoscience and Remote Sensing Symposium, Barcelona,2007:5315-5318.
    [55] Xu L Z, Li J, Stoica P. Radar imaging via adaptive MIMO techniques. The14thEuropean Signal Processing Conference, Florence,2006:1-5.
    [56] Roberts W, Li J, Stoica P, et al. MIMO radar angle-range-Doppler imaging. IEEERadar Conference, Pasadena, CA,2009:1-6.
    [57] Howard S D, Calderbank A R and Moran W.A simple signal processing architecturefor instantaneous radar polarimetry[J]. IEEE Trans. on Information Theory.2007,53:1282-1289.
    [58]韩兴斌.基于空间谱域分析的MIMO雷达成像技术研究[D].国防科学技术大学博士论文.2006.
    [59]韩兴斌,胡卫东,郁文贤等.分布式多通道雷达成像技术[J].电子与信息学报,2007,29(10):2354-2358.
    [60] Ma X Y, Wang D W, Su Y. High-resolution imaging using a narrowband MIMO radarsystem. The9th Internation Conference on Signal Processing, Beijing,2008:2263-2267.
    [61] Wang H J, Su Y. Narrowband MIMO radar imaging with two orthogonal linear T/Rarrays. The9th Internation Conference on Signal Processing, Beijing,2008:2513-2516.
    [62]井伟,武其松,邢孟道等.多子带并发的MIMO-SAR高分辨大测绘带成像[J].系统仿真学报,2008,20(16):4373-4378.
    [63]武其松,井伟,邢孟道等.MIMO-SAR大测绘带成像[J].电子与信息学报,2009,31(4):772-775.
    [64]王力宝,许稼,皇甫堪等.MIMO-SAR等效相位中心误差分析与补偿[J].电子学报,2009,37(12):2688-2693
    [65] Weib M, Peters O, Ender J H G. A three dimensional SAR system on an UAV. IEEEInternational Geoscience and Remote Sensing Symposium, Barcelona,2007:5315-5318.
    [66] Xu L Z, Li J, Stoica P. Radar imaging via adaptive MIMO techniques. The14thEuropean Signal Processing Conference, Florence,2006:1-5.
    [67] Klare J, Cerutti-Maori D, Bernner A, et al. Image quality analysis of the vibratingsparse MIMO antenna array of the airborne3D imaging radar ARTINO. IEEE InternationalGeoscience and Remote Sensing Symposium, Barcelona,2007:5310-5314.
    [68]张利军.雷达成像的电磁仿真研究[D].西安电子科技大学,硕士论文,2008:1-2.
    [69] Dolph C, Soon C. On the relationship between the singularity expansion method andthe mathematical theory of scattering[J]. Antennas and Propagation, IEEE Transactions on,1980,28(6):888-897.
    [70] Taflove A, Hagness S C. Computational Electrodynamics: The Finite Difference TimeDomain Method[M].Boston London: Artech House,2000.
    [71] Taflove A. Advances in Computational Electrodynamics (The Finite Difference TimeDomain Method)[M]. Boston London:Artech House,1998.
    [72]高本庆.时域有限差分法[M].北京:国防工业出版社,1995.
    [73]张云华.电磁辐射与散射问题的传输线矩阵(TLM)方法数值模拟研究[D].浙江大学博士论文.1995.
    [74] Harrington R F著,王尔杰译.计算电磁场的矩量法[M].北京:国防工业出版社,1981.
    [75] Tsuboi H, Tanaka M. External conditions for the vector potential in the boundaryelement method[J]. Magnetics, IEEE Transactions on,1989,25(5):4138-4140.
    [76]阮颖铮等.雷达截面与隐身技术[M].北京:国防工业出版社,2001.
    [77] Yee K. Numerical solution of initial boundary value problems involving Maxwell’sequations in isotropic media[J]. IEEE Transactions on Antennas and Propagation,1966,14(3):302-307.
    [78] Parfitt A J,Bird T S. Application of a near-field transform algorithm to antennacoupling using the FDTD method[J].IEEE Transactions on Antennas and Propagation,1998,1(8):500-503.
    [79] Jin J M. The finite element method in electromagnetics. New York:Wiley,1993.
    [80] Silvester R P and Ferrari R L. Finite element methods for electrical engineers.3rd Ed.Cambridge:Cambridge University Press,1996.
    [81] Monk P. Finite Element Methods for Maxwell’s Equations. Oxford:Oxford UniversityPress,2003.
    [82] Gazdag J. Wave equation migration with the phase shift method[J]. Geophysics.1978,43:1342-1351.
    [83] Lee S, Mcmechan G A, Aiken C L V. Phase shift imaging: The electromagneticequivalent of seismic migration[J]. Geophysics.1987,52:678-693.
    [84] Baum C. Detection and identification of visually obscured targets. London:Taylor andFrancis,1999.
    [85] Fioralba C David C, Peter M. The Linear Sampling Method in Inverse ElectromagneticScattering. Philadelphia:SIAM Philadelphia,2011.
    [86] Colton D,Kirsch A. A simple method for solving inverse scattering problems in theresonance region. Inverse Problems.1996,12(4):383-393.
    [87] Colton D,Haddar H. An application of the reciprocity gap functional to inversescattering theory. Inverse Problems.2005,21(1):383-398.
    [88]曾昭发,刘四新,王者江,薛建等.探地雷达方法与应用[M].北京:科学出版社,2006.
    [89]黄韬等.MIMO相关技术与应用[M].北京:机械工业出版社,2007.
    [90]黄玲.多输入多输出探地雷达方法研究[D].吉林大学博士论文.2010:39-46
    [91]张铁乾.近场二维、三维逆合成孔径雷达成像及RCS测量技术.中国航天科工集团207研究所硕士论文.2002:6-7.
    [92] Wehner D R. High resolution radar(2nd edition)[M]. Boston, MA: Artech House,1995.
    [93]赵华,郭平文,李传岗,张万宝.一种基于近场的雷达天线参数检测计算方法[J].舰船电子工程.2009,29(6):124-126.
    [94]许红波,粟毅,黄春琳,王怀军.MIMO雷达的近场模型DOA估计[J].信号处理.2009,27(11):1710-1714.
    [95]朱胜楠.雷达目标RCS近远场变换[D].电子科技大学硕士论文.2010.
    [96]顾翔.雷达成像的电磁场仿真与超分辨成像算法研究[D].中国科学院博士论文.2009:1-3.
    [97] KONG J A著,吴季等译.电磁波理论[M].北京:电子工业出版社,2003.
    [98]吕英华.计算电磁学的数值方法[M].北京:清华大学出版社,2006.
    [99]王长清.现代计算电磁学基础[M].北京::北京大学出版社,2005.
    [100] Larsson E G, Li J, Stoica P.High-resolution nonparametric spectral analysis: theoryand applications.In High-Resolution Signal Processing, New York,2003. NY: Marcel-Dekker.
    [101] Gazdag J. Wave equation migration with the phase shift method[J]. Geophysics.1978,43:1342-1351.
    [102] Lee S, Mcmechan G A, Aiken C L V. Phase shift imaging: The electromagneticequivalent of seismic migration[J]. Geophysics.1987,52:678-693.
    [103] Colton D and Kress P. Inverse Acoustic and Electromagnetic Scattering Theory,2ndEdition. Berlin: Springer-Verlag,1998.
    [104] Mie G. Beitrge zur Optik trber Medien[J]. Annalen der Physik.1908,330(3):377-445.
    [105] Van de Hulst H C. Light scattering by small particles. New York: Dover Publications,1981.
    [106] Dave J V.Coefficients of the Legendre and Fourier Series for the Scattering Functionsof Spherical Particles[J]. Applied Optics.1970,9(8):1888-1896.
    [107] Du H. Mie-scattering calculation[J]. Applied Optics.2004,43(9):1951-1956.
    [108] Wiscombe W J.Improved Mie scattering algorithms[J].Applied Optics.1980,19(9):1505-1509.
    [109] Arias-Gonzalez J R and Nieto-Vesperinas M. Near-field distributions of resonantmodes in small dielectric objects on flat surfaces[J]. Optics Letters.2000,25(11):782-785.
    [110] Wang Z B, Lukyanchuk B S, Hong M H, LinY and Chong T C. Energy flow around asmall particle investigated by classical Mie theory[J]. Physical Review B.2004:035418.
    [111] Bohren C F. How can a particle absorb more than the light incident on it[J]. Am. J.Phys.1983:323.
    [112] Bohren C F. Recurrence relations for the Mie scattering coefficients[J]. J. Opt. Soc.Am. A.1987,4(3):612-613.
    [113] Abramowitz M, Stegun I A.Handbook of Mathematical Functions. New York: Dover,1965.
    [114]吕英华.计算电磁学的数值方法[M].北京:清华大学出版社,2006.
    [115]陈传森.科学计算概论[M].北京:科学出版社,2007.
    [116]李荣华.边值问题的Galerkin有限元法[M].北京:科学出版社,2005.[117]张双文.时域有限元法及其截断边界条件的研究[D].西南交通大学博士论文.2008:12-20.
    [118]平学伟.电磁场中的快速有限元分析[D].南京理工大学博士论文.2007:6-12.
    [119] Joannopoulos J D, Johnson S G, Winn J N and Meade R D. Photonic Crystals:Molding the Flow of Light[M], second edition. Princeton: Princeton University Press,2008.
    [120] Kuchment P. The mathematics of photonic crystals, Chapter7in:Mathematicalmodeling in optical science[J]. Frontiers in applied mathematics. SIAM, Philadelphia,2001,22.
    [121] Sakoda K. Optical Properties of Photonic Crystals[M]. Berlin: Springer-Verlag,2001.
    [122] Bastard G.Wave mechanics applied to semiconductor heterostructures[M]. Les UlisCed-ex:les éditions de physique,1988.
    [123] Wacker A. Semiconductor Superlattices: A model system for nonlineartransport[J].Phys. Rep.2002,357:1-111.
    [124] Axmann W and Kuchment P. An efficient finite element method for computingspectra of photonic and acoustic band-gap materials. I. Scalar case[J]. J.Comput.Physics.1999,150(2):468-481.
    [125] Dobson D. An efficient method for band structure calculations in2D photoniccrystals[J]. J.Comput. Phys.1999,149(2),:363–376.
    [126] Ehrhardt M, Sun J and Zheng C. Evaluation of scattering operations for semi-infiniteperiodic arrays[J]. Commun. Math. Sci.2009,7(2):347-364.
    [127] Bowden C M, Dowling J P and Everitt H O. Development and applications ofmaterials exhibiting photonic band gaps[J]. J. Opt. Soc. Amer. B.1993,10(2):280.
    [128] Elson J M and Tran P. Coupled-mode calculation with the R-matrix propagator for thedispersion of surface waves on a truncated photonic crystal[J]. Phys. Rev. B.1996,54(3):1711.
    [129] Figotin A and Godin Y A.The computation of spectra of some2D photonic crystals[J].J. Comput. Phys.1997,136(2):585.
    [130] Vouvakis M N, Kezhong Z and Lee J F. Finite-element analysis of infinite periodicstructures with nonmatching triangulations[J].IEEE Trans. Magnetics.2006,42(4):691-694.
    [131] Kim H J and Swan C C.Algorithms for automated meshing and unit cell analysis ofperiodic composites with hierarchical tri-quadratic tetrahedral elements[J]. Int. J. Numer.Meth. Eng.2003,58(11):1683-1711.
    [132] Eibert T F, Volakis J L, Wilton D R and Jackson D R.Hybrid FE/BI modeling of3-Ddoubly periodic structures utilizing triangular prismatic elements and an MPIE formulationaccelerated by the Ewald transformation[J].IEEE Trans.Antennas Propag.1999,47(5):843-850.
    [133] Jackson J D. Classical Electrodynamics[M]. New York:Wiley,1975.
    [134] Clarlet P G. The Finite Element Method for Elliptic Problems[M]. Classics in AppliedMathematics40. Philadelphia:SIAM,2002.
    [135] Margaret C.The linear sampling method and the music algorithm[J].Inverse Problems2001,17(4):591-595.
    [136] Davaney A J. Super-resolution process of multi-static data using time reversal andMUSIC[J]. Journal of the Acoustical Society of America.2000.
    [137] Kirsch A.Characterization of the shape of a scattering obstacle using the spectral dataof the far field operator[J].Inverse Problems,1998,14(6):1489-1512.
    [138] Hou S,Knut S and Zhao H. A direct imaging algorithm for extended targets[J]. InverseProlems2006,22(4):1151-1178.
    [139] Amel B A,Fabrice D,Houssem H A.On the use of the Reciprocity-Gap Functional ininverse scattering from planar cracks.Mathematical Models and Methods in Applied Sciences(M3AS).2005,15(10):1553-1574.
    [140] Cristo M D and Sun J. An inverse scattering problem for a partially coated buriedobstacle.Inverse Problems.2006,22(6):2331-2350.
    [141] Cristo M D and Sun J. The determination of the support and surface conductivity ofa partially coated buried object. Inverse Problems.2007,23(3):1161–1179.
    [142] Alves C, Martins N and Roberty N. Full identification of acoustic sources withmultiple frequencies and boundary measurements. Inverse Problem and Imaging.2009,3(2):275294.
    [143] Delbary F, Brignone M,Bozza G, Aramini R and Piana M. A visualization method forbreast cancer detection using microwaves.SIAM J. Appl. Math.2010,70(7):25092533.
    [144] Athanasiadis C E, Natroshvili D, Sevroglou V and Stratis I G.An application of thereciprocity gap functional to inverse mixed impedance problems in elasticity. InverseProblems.2010,26(8):085011.
    [145] Sun J.Estimation of transmission eigenvalues and the index of refraction from Cauchydata.Inverse Problems,2011,27:015009.
    [146] Cakoni F, Colton D. Qualitative Methods in Inverse Scattering Theory[M]. Berlin:Springer-Verlag,2006.
    [147] Andrieux S,Abda A B. Identification of planar cracks by complete over-determineddata: inversion formulae[J]. Inverse Problems.1996,12(5):553-563.
    [148] Colton D, Coyle J, Monk P. Recent developments in inverse acoustic scatteringtheory[J], SIAM Rev.2000,42(3):369-414.
    [149] Colton D, Kirsch A. A simple method for solving inverse scattering problems in theresonance region.Inverse Problems1996,12(4):383-393.
    [150] Duraiswami R,Prabhukumar S,Chahine G L.Bubble counting using an inverseacoustic scattering method[J]. Journal of the Acoustical Society of America.1998,104(5):2699-2717.
    [151] Colton D.Partial Differential Equations,An Introduction[M].Dover:Dover Publication-s, INC,1988.
    [152] Athanasiadisa C E, Pelekanosa G, Sevrogloua V and Stratisa I G. On the scattering oftwo-dimensional elastic point sources and related near-field inverse problems for smalldiscs[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics.2009,139(4):719-741.
    [153] Engl H W, Hanke M,Neubauer A.Regularization of Inverse Problems[M]. Norwell:Kluwer Academic Publishers,2000.
    [154] Kirsch A. Factorization of the far-field operator for the inhomogeneous medium caseand an application in inverse scattering theory[J]. Inverse Problems.1999,15(2):413-429.
    [155] Collino F, Fares M and Haddar H. Numerical and analytical studies of the linearsampling method in electromagnetic inverse scattering problem[J].Inverse Problems.2003,19(6):1279-1298.
    [156] Monk P and Sun J. Inverse scattering using finite elements and gap reciprocity[J].Inverse Problems and Imaging.2007,1(4):643-660.
    [157] Cakoni F, Colton D and Monk P. The Linear Sampling Method in InverseElectromagnetic Scattering[M].Philadelphia:CBMS-NSF Regional Conference Series inApplied Mathematics80, SIAM.
    [158] Aramini R, Caviglia G, Massa A and Piana M. The linear sampling method andenergy conservation[J]. Inverse Problems.2010,26(5):055004.
    [159] Griesmaier R. Reciprocity gap MUSIC imaging for an inverse scattering problem intwo-layered media[J]. Inverse Probl. Imaging.2009,3(3):389403.
    [160] Harigaa N T, Abda A B, Bouhlilac R and Dreuzy J. Definition and interests ofreciprocity and reciprocity gap principles for groundwater flow problems[J]. Advances inWater Resources.2010,33(8):899-904.
    [161] Ozdemir O and Haddar H. Preprocessing the Reciprocity Gap Sampling Method inBuried-Object Imaging Experiments[J]. IEEE Geoscience and Remote Sensing Letters.2010,7(4):756-760.
    [162] Catapano I, Crocco L and Isernia T. An improved linear sampling method for locationand shape reconstruction of3D buried targets. IGARSS2007,IEEE International,Barcelona,23-28July2007:4810-4813.
    [163] Egger H, Hanke M, Schneider C, Schoberl J and Zaglmayr S, Adjoint-based samplingmethods for electromagnetic scattering, Inverse Problems26(2010), No.7,074006.
    [164] Brignone M, Bozza G, Randazzo A, Piana M and Pastorino M. A Hybrid Approach to3D Microwave Imaging by Using Linear Sampling and ACO[J].IEEE Transactions onAntennas and Propagation.2008,56(10):3224-3232.
    [165] Kirsch A. The denseness of the far field patterns for the transmission problem[J].IMAJ. Appl. Math.1986,37(3):213-225.
    [166] Rynne B and Sleeman B. The interior transmission problem and inverse scatteringform inhomogeneous media[J].SIAM J. Math. Anal.1991,22(6):1755-1762.
    [167] Cakoni F, Colton D and Monk P. The direct and inverse scattering problems forpartially coated obstacles[J]. Inverse Problems.2001,17(6):1997-2015.
    [168] Cakoni F and Haddar H. A variational approach for the solution of the electromagneti-c interior transmission problem for anisotropic media[J]. Inverse Problem and Imaging,2007,1(3):443-456.
    [169] Colton D, Paivarinta L and Sylvester J. The interior transmission problem[J]. InverseProblem and Imaging.2007,1(1):13-28.
    [170] Colton D, Monk P and Sun J. Analytical and Computational Methods for Transmissio-n Eigenvalues[J]. Inverse Problems.2010,26(4):045011.
    [171] Cakoni F, Colton D, Monk P and Sun J. The inverse electromagnetic scattering proble-m for anisotropic media[J]. Inverse Problems.2010,26(7):074004.
    [172] P iv rinta L. and Sylvester J. Transmission eigenvalues[J]. SIAM J. Math. Anal.2008,40(2):738-753.
    [173] Kirsch A. On the existence of transmission eigenvalues[J].Inverse Problems andImaging.2009,3(2):155-172.
    [174] Cakoni F and Haddar H. On the existence of transmission eigenvalues in an inhomoge-nous medium[J]. Applicable Analysis.2009,88(4):475-493.
    [175] Cakoni F, Gintides D and Haddar H. The existence of an infnite discrete set oftransmission eigenvalues[J]. SIAM J. Math. Analysis,2010,42(1):237-255.
    [176] Pratt R G, McGaughey W J and Chapman C. H. Anisotropic velocity tomography: Acase study in a near-surface rock mass[J]. Geophysics.1993,58(12):1748-1763.
    [177] Wong J. Crosshole seismic imaging for sulfide orebody delineation near Sudbury,Ontario, Canada[J]. Geophysics.2000,65(6):1900-1907.
    [178] Valle S and Zanzi L. Traveltime radar tomography for NDT on masonry and concretestructures[J]. Europ. Journ. of Environmental and Eng. Geophysics.1998,63:229-246.
    [179] Valle S, Zanzi L,Rocca F. Radar tomography for NDT:comparison of techniques[J].Journ.of Applied Geophysics1999,41(23):259-269.
    [180] Zhao J and Sato M. Radar Polarimetry Analysis Applied to Single-Hole FullyPolarimetric Borehole Radar[J].IEEE Transactions on Geoscience and RemoteSensing.2006,44(12),3547-3554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700