空间锥体目标微动特性与识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从上世纪50年代开始,空间锥体真假目标识别一直就是雷达自动目标识别领域研究的热点和重点。其识别能力在很大程度上反映了防御系统探测能力的总体水平。随着雷达工艺水平的提高和信号处理技术的进步,微动及微多普勒近年来成为研究的热点,并在目标检测、分辨与识别领域展现出巨大的潜力。空间锥体目标在外太空飞行过程中存在自旋、进动、摆动、章动等不同形式的微动,被认为是反映目标属性的固有特征。因此,深入研究空间锥体目标的微动特性以及基于微动特性的识别方法,对于发展我国新体制雷达技术以及增强我国国土防御能力具有十分重大的军事意义和理论价值。
     本论文主要围绕国防预研等相关项目,结合空间锥体目标识别的工程应用背景,从信号预处理、特征分析与特征提取、窄带成像三个主要方面展开相关理论和技术的研究。论文的主要工作概括如下:
     1、介绍了微动及微多普勒的原理。首先分析了空间锥体目标的典型微动,随后建立了等效散射点模型以及固定散射点模型。最后分析了遮挡效应对空间锥体目标微多普勒的影响。
     2、研究了回波信号的预处理。首先分析了目标的高速运动以及加速度对回波信号包络、相位和微多普勒频率的影响。随后指出在保持目标微多普勒特性不变的基础上,应用包络对齐方法或Keystone算法均可以实现距离徙动的校正。在此基础上,进一步分析了加速度对回波信号微多普勒频谱的影响,并提出加速度估计与补偿的新方法。该方法通过在一定范围内对加速度进行搜索,利用频域熵最小准则,有效实现了加速度的估计。为后续微多普勒特征的提取奠定了基础。
     3、提出了基于目标微动特征的群目标分辨算法。首先分析了传统群目标分辨算法的实质与局限性。在多普勒域、距离域以及方位域均无法分辨目标的情况下,指出目标微动特性是实现群目标分辨的新途径。随后提出了实现群目标分辨的新方法。该方法将Viterbi算法与B分布相结合抽取群目标的微多普勒特征,并应用谱分析抽取目标的微动参数,实现群目标分辨。
     4、提出了基于目标微动特性差异的空间锥体目标识别方法。空间锥体目标在大气层外飞行过程中存在不同的微动。进动是目标的特有属性,而诱饵的特有属性为摆动或自旋等。基于这一现象,首先详细分析了进动、摆动以及自旋目标调制信号的多普勒特性。分析指出进动、摆动与自旋目标的微多普勒频谱虽然均可以近似为线谱,但是频谱分布存在明显的差异。在此基础上,提出从微多普勒域或特征谱提取识别特征的分类方法。
     在微多普勒域,提取多普勒谱波形熵和标准差作为识别特征。依据回波信号的频谱为线谱的特点,提出了应用谐波和的形式描述回波信号并采用特征值分解提取特征谱作为识别特征的识别方法。并讨论了脉冲重复频率、积累时间对识别性能的影响。
     5、研究了进动目标窄带成像以及微动参数的估计方法。首先依据目标回波信号的微多普勒特性,提出了应用匹配滤波的方法实现目标窄带成像的快速算法。随后提出了进动目标微动参数估计的新算法。该方法分为粗估计与精估计两步。第一步通过计算信号瞬时频率的方法抽取目标的微多普勒频率,然后应用傅立叶变换对目标的进动参数进行粗估计;第二步基于窄带信号,通过相干积累的方法对目标的二维时频谱密度函数进行重构得到目标的高分辨率三维分布,利用聚焦熵的概念在特定范围内对微动参数进行搜索,获得较高的估计精度。
Since the1950s, the space cone target recognition has been a hot topic of theradar automatic target recognition (RATR) study. And the recognition abilityrepresents the detection performance of the defense system to a great extent. With thedevelopment of the radar technology and advanced signal processing technology, themicro-motion and micro-Doppler are the focuses in current researches and haveshown enormous potential in the domain of target detection, resolution andrecognition. During a flight in the exoatmosphere, the space cone targets havedifferent micro-motion, such as a spin, a precession, a wobble and a nutation.Making research on micro-motion characteristic and micro-motion-based recognitionof space cone targets is of great significance for the development of the new-typeradar and for the promotion of the defense capability.
     By considering the engineering background of space cone targets recognition,this dissertation gives our researches on theories and techniques of RATR, mainlyfocusing on the following three aspects, i.e., signal preprocessing, feature analysisand extraction and narrow band imaging, which are supported by Advanced DefenseResearch Programs of China. The main work of this dissertation is as follows:
     1.The principles of the micro-motion and micro-Doppler are introduced. Firstly,the typical micro-motion induced by space cone targets is analyzed. Then theequivalent scattering point model and the fixed scattering point model are established.At last, the influence of occlusion effect on micro-Doppler is studied.
     2.The signal preprocessing is researched. Firstly, the influence of the highspeed and acceleration on the echo envelope, phase and micro-Doppler is analyzed.Secondly, it is pointed out that keystone algorithm or range alignment method can beused to correct distance migration without changing the micro-Doppler characteristic.Thirdly, a new method is proposed to estimate and compensate acceleration. Basedon the minimum entropy criterion, the estimation accuracy of acceleration isoptimized by picking up the acceleration in a certain range.
     3.A novel method is proposed to implement the multi-targets resolution basedon the micro-motion characteristic. The essence and the limitation of traditionalmulti-targets resolution algorithms are analyzed. Then the analysis shows that themicro-motion offers a new way to resolve targets with the same velocity and the same range. The proposed method combines the B-Distribution(BD) and the Viterbialgorithm to extract the micro-Doppler of the multi-targets, and then the DFT isapplied to extract the micro-motion parameters.
     4.Two different methods based on the difference of micro-motion are proposedto recognize the space cone targets. When a cone-shaped target is flying inexoatmosphere, the micro-motion of the target belongs to a precession and that of thedecoy belongs to a spin or a wobble. Based on the difference of the target and thedecoy in the micro-motion, the micro-Doppler signature of the target and the decoy isanalyzed in detail. The analysis shows that the micro-Doppler Spectra of precessiontargets,wobble targets and spin targets is approximated as a line-Spectrum, but thereare significant differences. Based on the difference, the recognition feature isextracted from the micro-Doppler Spectrum and the eigenvalue spectrum.
     In micro-Doppler domain, the entropy and standard deviation are extracted asthe recognition feature. Based on the harmonic model, eigenvalue decomposition isapplied to compute the eigenvalue as the recognition feature. At last, the influence ofthe pulse repetition frequency (PRF) and the accumulating time on recognition rate isanalyzed.
     5.Narrow band imaging and micro-motion parameters estimation of space coneprecession targets are studied. Firstly, according to the micro-Doppler characteristicof a precession target, a method of matching filter is applied. And the result showsthat it is a simple and efficient algorithm in general applications. Secondly, a newmethod is proposed to estimate micro-motion parameters of space precession targets.The proposed method is as follows: firstly, based on the micro-Doppler characteristicof a precession target, the Fourier transformation is applied to estimate precessionparameters coarsely; secondly, based on the time-frequency spectrum characteristicof the echo signal, coherent accumulation is applied to obtain a3-D high resolutiondistribution of the target. The estimation accuracy of the parameters is refined bycalculating the whole image entropy.
引文
[1] SKOLNIK M. Introduction to Radar Systems [M]. Second Edition ed. New York:McGraw-Hill,1980.
    [2] LEWIS G N, POSTOL T A. Future challenges to ballistic missile defense[J]. IEEESpectrum,1997,34(9):60-68.
    [3] RIHACZEK A W, HERSHKOWITZ S J. Theory and practice of radar targetidentification [M]. Boston: Artech House,2000.
    [4]李盾,周一宇,吕彤光等.空间预警系统对弹道导弹的监视与跟踪[J].系统工程与电子技术,2002,24(2):52-56.
    [5]史别.识别真假目标是的最大技术难题[J].863先进防御技术通讯(A类),2001,2001(8):30-32.
    [6]薛雷达译.美国国家导弹防御系统地基雷达测量与识别能力[J].863先进防御技术通讯(A类),2000(6):1-17.
    [7] DAVID R. Nation Missile Defense:policy issues and technological capabilities [M].Washington: SvecConway Inc,2000.
    [8] CAMP W W, MAYHAN J T, O'DONNELL R M. Wideband radar for ballisticmissile defense and range-doppler imaging of satellites[J]. The Lincoln LaboratoryJournal,2000,12(2):267-280.
    [9] ROBERT Y L, TIMOTHY S. Neural Networks for Distributed Sensor DataFusion the Firefly Experiment[C]. Sensor Fusion IV: Control Paradigms andData Structures, Boston, USA,1991,1611:52-64.
    [10]邹青,徐伟.根据机动雷达信息检测弹道导弹投掷重量的可能性[J].863先进防御技术通讯(A类),2003,2003(4):1-18.
    [11]刘永祥.导弹防御系统中的雷达目标综合识别研究[D].[博士论文],长沙;国防科学技术大学,2004.
    [12]FOSTER T.Application of Pattern Recognition Techniques for Early WarningRadar(EWR) Discriminarion [R]. ADA299735,1995.
    [13]RASMUSSEN J L, HAUPT R L, WALKER M J. RCS feature extraction fromsimple targets using time-frequency analysis[C]. Radar Processing, Technologyand Applications, Denver: USA,1996,2845:66-74.
    [14]INGWERSEN P A, LEMNIOS W Z. Radar for Ballistic Missile DefenseResearch[J]. The Lincoln Laboratory Journal,2000,12(2):245-265.
    [15]JAMES J S, JR. J R H, JAMES L A, et al. Measuring the linear depolarization ratiosimultaneously with the other polarimetric variables[C]. ERAD2006,2006.
    [16]马骏声.目标识别与GBR地基成像雷达[J].航天电子对抗,1996,12(4):32-35.
    [17]马骏声. NMD-GBR雷达的测量能力及其性能参数[J].航天电子对抗,2002,18(5):1-8.
    [18]FETTER S, SESSLER A M, CORNWALL J M, et al. Countermeasures: ATechnical Evaluation of the Operational Effectiveness of the Planned US NationalMissile Defense System [N].2000-.
    [19]WILLIAM R C.Augmentation of high altidude maneuver performance of a tailcontrolled missile using lateral thrust [R]. ADA328973, Dahlgren,USA,1997.
    [20]STONE M L, BANNER G P. Radar for the Detection and Tracking of BallisticMissile,Satellites,and Planets[J]. The Lincoln Laboratory Journal,2000,12(2):217-244.
    [21]CUOMO K M, PIOU J E, MAYHAN J T. Ultra-Wideband Coherent Processing[J].The Lincoln Laboratory Journal,1997,10(2):203-222.
    [22]BURROWS M L. Two-Dimensional ESPRIT With Tracking for Radar Imaging andFeature Extraction[J]. IEEE Transactions on Antennas and Propagation,2004,52(2):524-532.
    [23]MAYHAN J T, BURROWS M L, CUOMO K M, et al. High resolution3D"snapshot" ISAR imaging and feature extraction[J]. IEEE Transactions onAerospace and Electronic Systems,2001,37(2):630-641.
    [24]CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: phenomenon, model,and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems,2006,42(1):2-21.
    [25]SCHULTZ K, DAVIDSON S, STEIN A, et al. Range Doppler Laser Radar forMidcourse Discrimination: The Firefly Experiments [R]. AIAA-93-2653,1993.
    [26]BAKER B D, KENDALL W B.TMR processing procedures for GSRS spin andattitude measurements [R]. ADA074974, CA,USA,1979.
    [27]NUNN E C. The US Army white sands missile range development of target motionresolution[C]. Processings of IEEE Electronics and Aerospace SystemsConventions, USA:Arlington,1980:346-352.
    [28]NUNN E C. Target motion resolution and its impact on the US Army White Sandsmissile range[C]. Conference Record of the Thirteenth Asilomar Conference onCircuits, Systems&Computers, NY, USA,1979:589-593.
    [29]RIHACZEK A W, HERSHKOWITZ T. Theory and practice of radar targetidentification [M]. Boston: Artech House,2000.
    [30]RIHACZEK A W, HERSHKOWITZ S J. Radar Resolution and Complex-ImageAnalysis [M]. Boston: Artech House,1996.
    [31]JOHN K. S-band radar micro-Doppler signatures for BMD discrimination [M].http://wwwacqosdmil/osbp/sbir/solicitations/sbir044.2003-10-16.
    [32]CHEN F, LIU H, DU L, et al. Target classification with low-resolution radar basedon dispersion situations of eigenvalue spectra[J]. Science China(InformationSciences),2010,53(7):1446-1460.
    [33]LEUNG H, WU J. Bayesian and Dempster-Shafer Target Identification for RadarSurveillance[J]. IEEE Transactions on Aerospace and Electronic Systems,2000,36(2):432-447.
    [34]POULIGUEN P, LUCAS L, MULLER F, et al. Calculation and analysis ofelectromagnetic scattering by helicopter rotating blades[J]. IEEE Transactions onAntennas and Propagation,2002,50(10):1193-1408.
    [35]BELL M R, GRUBBS R A. JEM modeling and measurement for radar targetidentification[J]. IEEE Transactions on Aerospace and Electronic Systems,1993,29(1):73~87
    [36]PIAZZA E. Radar Signals Analysis and modellization presence of JEM applicationin the to civilian ATC Radars[J]. IEEE AES Systems Magazine,1999,14(1):35-40.
    [37]MARTIN J, MULGREW B. Analysis of the theoretical radar return signal formaircraft propeller blades[C]. The record of the IEEE International ConferenceRadar-90, NY,USA,1990:569~572.
    [38]SHEN C N, WAEBER B, GIRATA L, et al. Project Radiant Outlaw[C]. AirborneReconnaissance XVIII CA,USA,1994(2272):63-74.
    [39]KULPA K. Continuous wave radars-monostatic, multistatic and network[C].International Radar Symposium, Berlin, Germany,2005.
    [40]STOVE A G, SYKES S R. A Doppler-based automatic target classifier for abattlefield surveillance radar[C]. IEEE International Conference on Radar,Edinburgh,UK,2002:419-423.
    [41]LEI J, LU C. Target classification based on micro-Doppler signatures[C]. IEEEInternational Radar Conference Record, VA, USA,2005:179-183.
    [42]CAI C, LIU W, S.FU J, et al. Empirical Mode Decomposition of Micro-DopplerSignature[C]. IEEE International Radar Conference Record, VA, USA,2005:895-899.
    [43]THAYAPARAN T, STANKOVIC L, DJUROVIC I. Micro-Doppler-based targetdetection and feature extraction in indoor and outdoor environments[J]. Journal ofthe Franklin Institute,2008,345(6):700-722.
    [44]THAYAPARAN T, ABROL S, RISEBOROUGH E. Micro-Doppler RadarSignatures for Intelligent Target Recognition [M]//CANADA D R D. Ottawa.2004.
    [45]ZHANG Z, POULIQUEN P O, WAXMAN A, et al. Acoustic micro-Doppler radarfor human gait imaging[J]. Journal of the Acoustical Society of America,2007,121(3):110-113.
    [46]罗宏.动态雷达目标的建模与识别研究[D].[博士论文],北京;航天科工集团,2000.
    [47]王国雄.弹头技术[M].北京:宇航出版社,1993.
    [48]LI J, LING. H. Application of adaptive chirplet representation for ISAR featureextraction from targets with rotating parts[J]. IEE Proceedings-Radar, Sonar andNavigation,2003,150(4):284-291.
    [49]CHEN V C, MICELI W J. Effect of roll, pitch, and yaw motions on ISAR imaging
    [C]. Radar Processing, Technology, and Applications IV, CO, USA,1999,3810(149):149-158.
    [50]RIHACZEK A W, HERSHKOWITZ S J. Choosing imaging intervals for smallships[C]. Radar Processing, Technology, and Applications IV, CO, USA,1999:139-148.
    [51]KNOTT E F. Simulation of reentry vehicle motion during laboratory measurementsof radar cross section[J]. IEEE Transactions on Antennas and Propagation,1969,17(3):242-244.
    [52]刘永祥.导弹防御系统中的雷达目标综合识别研究[D].[博士学位论文],长沙;国防科学技术大学,2004.
    [53]刘永祥,黎湘,庄钊文.空间目标进动特性及在雷达识别中的应用[J].自然科学进展,200414(11):1329-1332.
    [54]金文彬,刘永祥,任双桥等.锥体目标空间进动特性分析及其参数提取[J].宇航学报,2004,25(4):408-410.
    [55]冯德军.弹道中段目标识别与评估系统[D].[博士论文],长沙;国防科技大学,2006.
    [56]陈行勇,黎湘,郭桂荣.微进动弹道导弹目标雷达特征提取[J].电子与信息学报,2006,28(4):643-646.
    [57]陈建文,倪晋麟.弹道导弹的雷达目标识别技术[C].第八届全国雷达学术年会论文集,2002:185-188.
    [58]魏玺章,姚辉伟,丁小峰等.变区间分组检验相乘积累进动周期估计[J].电子学报,2010,38(1):135-140.
    [59]BANKMAN I. Model of laser radar signatures of ballistic missile warheads[C].Targets and Backgrounds: Characterization and Representation V, USA:FL,1999:133-137
    [60]ZEDIKER M S, RICE R R, HOLLISTER J H. Method for extending range andsensitivity of a fiber optic micro-Doppler ladar system and apparatus therefor: USA,5847817[P/OL].1998-.
    [61]CHEN V C, LI F, HO S S, et al. Analysis of micro-Doppler signatures[J]. IEEProceedings-Radar, Sonar and Navigation,2003,150(4):271-276.
    [62]CHEN V C. Micro-doppler effect of micro-motion dynamics: A review[C].Independent Component Analyses, Wavelets, And Neural Networks, Orlando, USA,2003,5102:240-249.
    [63]CHEN V C. Analysis of radar micro-Doppler signature with time-frequencytransform[J]. IEEE Signal Processing Workshop on Statistical Signal and ArrayProcessing,2000,463-466.
    [64]H J.Discrimination via Phased Derived Range [R]. MDA-02-003: Missile DefenseAgency Small Business Innovation Research Program,2002.
    [65]高红卫,文树梁.基于微多普勒特征的弹道导弹真假目标雷达识别研究[J].中国电子科学研究院学报,2007,3(1):34-39.
    [66]高红卫,谢良贵,文树梁.基于微多普勒特征的真假目标雷达识别研究[J].电波科学学报,2008,23(4):16-20.
    [67]高红卫,谢良贵,文树梁等.加速度对微多普勒的影响及其补偿研究[J].宇航学报,2009,30(2):705-711.
    [68]孙慧霞,刘峥,薛宁.自旋进动目标的微多普勒特性分析[J].系统工程与电子技术,2009,31(2):67-70.
    [69]李康乐,姜卫东,湘黎.弹道目标微动特征分析与提取方法[J].系统工程与电子技术,2010,32(1):115-118.
    [70]王璐,刘宏伟.基于时频图的微动目标运动参数提取和特征识别的方法[J].电子与信息学报,2010,32(8):1812-1817.
    [71]王璐.微动目标的运动参数估计和识别方法研究[D].[硕士论文],西安;西安电子科技大学,2010.
    [72]富艳琴.复杂运动群目标分辨及成像识别研究[D].[硕士论文],西安;西安电子科技大学,2010.
    [73]马超,许小剑.空间进动目标的宽带雷达特征信号研究[J].电子学报,2011,39(3):636-642.
    [74]贺思三,周健雄,付强.利用一维距离像序列估计弹道中段目标进动参数[J].信号处理,2009,25(6):925-929.
    [75]HE S, ZHOU J-X, ZHAO H-Z, et al. Analysis and extraction of stepped frequencyradar signature for micro-motion structure[J]. IET Radar, Sonar and Navigation,2009,3(5):484-492.
    [76]孙照强,鲁耀兵,李宝柱等.宽带信号及其特征的微多普勒提取技术研究[J].系统工程与电子技术,2008,30(11):2040-2044.
    [77]金光虎.中段弹道目标ISAR成像及物理特性反演技术研究[D].[博士论文],长沙;国防科技大,2009.
    [1] CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: phenomenon, model,and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems,2006,42(1):2-21.
    [2]高红卫,谢良贵,文树梁.基于微多普勒特征的真假目标雷达识别研究[J].电波科学学报,2008,23(4):16-20.
    [3]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社,2005.
    [4] MAYHAN J T.RCS Scatterer Extraction Using Apriori Target Information [R].ESC-TR-2003-078, Lexington,Massachusetts: Lincoln Laboratory,2004.
    [1] CARRARA W G, GOODMAN R S, MAJEWSKI R M. Spotlight synthetic apertureradar signal processing algorighms [M]. Boston: Artech House,1995.
    [2] CHEN V C, ANDREWS H C. Target-Motion-Induced Radar Imaging[J]. IEEETransactions on Aerospace and Electronic Systems,1980,16(1):2-14.
    [3]邢孟道,保铮.一种逆合成孔径雷达成像包络对齐的新方法[J].西安电子科技大学学报,2001,27(1):1-6.
    [4] WANG G Y, BAO Z. The Minimum Entropy Criterion of Range Alignment in ISARMotion Compensation[C]. Processings Conference Radar97, Edinburgh UK,1997,10:14-16.
    [5]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005.
    [6] PERRY P R, DIPIETRO R C, FANTE R L. SAR Imaging of Moving Targets[J].IEEE Transactions on Aerospace and Electronic Systems,1999,35(1):188-200.
    [7] ZHANG L, LI Y, LIU Y, et al. Time-frequency characteristics based motionestimation and imaging for high speed spinning targets via narrowbandwaveforms[J]. Science in China Series F (Information Science),2010,53(8):1628-1640.
    [8]高红卫,谢良贵,文树梁等.加速度对微多普勒的影响及其补偿研究[J].宇航学报,2009,30(2):705-711.
    [1]邢孟道,保铮.低分辨雷达的一维横向成像及提高分辨率的方法[J].西安电子科技大学学报,2000,27(6):700-704.
    [2]姜正林,保铮,邢孟道.低分辨雷达编队目标分辨新方法[J].西安电子科技大学学报,2001,28(4):482-486.
    [3]苏晋,陈付彬,张军, et al.基于Relax谱估计的波束内多运动目标分辨[J].系统工程与电子技术,2003,25(11):1313-1317.
    [4]孙晓兵,保铮,罗琳.时频信号分析与雷达的多目标分辨[J].系统工程与电子技术,1997,19(11):12-16.
    [5]姬红兵,高新波,谢维信.一种编队目标架次检测方法[J].系统工程与电子技术,2000,22(6):62-65.
    [6]赵学云,刘铮.基于Radon-WVD变换的编队目标架次识别[J].电子与信息学报,2007,29(3):544-548.
    [7] LIU Y, CHEN H, LI X, et al. Radar Micro-motion Target Resolution[C].2006CIEInternational Conference on Radar, China:ShangHai,2006,2:1411-1414
    [8] FORNEY G D, JR. The viterbi algorithm[J]. Proceedings of the IEEE,1973,61(3):268-278.
    [9] STANKOVIE L, DJUROVIC I, OHSUMI A. Instantaneous frequency estimation byusing wigner distribution and virerbi algorithm[C]. IEEE International Conferenceon Acoustics, Speech and Signal Processing, Hong Kong,2003,6:121-124.
    [10]THAYAPARAN T, STANKOVIC L, DJUROVIC I. Micro-Doppler-based targetdetection and feature extraction in indoor and outdoor environments[J]. Journal ofthe Franklin Institute,2008,345(6):700-722.
    [11] CHEN V C. Analysis of radar micro-Doppler signature with time-frequencytransform[J]. IEEE Signal Processing Workshop on Statistical Signal and ArrayProcessing, SSAP,2000, Compendex):463-466.
    [12]CHEN V C. Analysis of radar micro-Doppler with time-frequency transform [C].Tenth IEEE Workshop on Statistical Signal and Array Processing,2000, NJ, USA.
    [13]CHEN V C. Micro-Doppler effect of micro-motion dynamics: a review[C].Independent Component Analyses, Wavelets, and Neural Networks,2003, USA.
    [14]CHEN V C. Micro-doppler effect of micro-motion dynamics: A review[C].Independent Component Analyses, Wavelets, And Neural Networks,2003, Orlando,USA.
    [15]CHEN V C. Micro-Doppler phenomenon and radar signature[C].2003IEEE RadarConference,2003, NJ, USA.
    [16]CHEN V C. Spatial and Temporal Independent Component Analysis OfMicro-Doppler Features[C].USA,2005.
    [17]CHEN V C. Spatial and temporal independent component analysis ofmicro-Doppler features[C].2005IEEE International Radar Conference Record,2005, NJ, USA.
    [18]CHEN V C. Detection and analysis of human motion by radar[C]. IEEE RadarConference,2008, Rome, Italy.
    [19]CHEN V C. Joint time-frequency analysis for radar signal and imaging[C].2007IEEE International Geoscience and Remote Sensing Symposium,2007, Barcelona,Spain.
    [20]CHEN V C. Joint time-frequency analysis for radar signal and imaging[C].2007IEEE International Geoscience and Remote Sensing Symposium,2007, NJ, USA.
    [21]CHEN V C. Detection and analysis of human motion by radar [C].2008IEEERadar Conference,2008, NJ, USA.
    [22]CHEN V C. Doppler signatures of radar backscattering from objects withmicro-motions[J]. IET Signal Processing,2008,2:291-300.
    [23]CHEN V C. Doppler signatures of radar backscattering from objects withmicro-motions[J]. IET Signal Processing,2008,2:291-300.
    [24]CHEN V C, DES ROSIERS A, LIPPS R. BI-static ISAR range-doppler imagingand resolution analysis[C].2009IEEE Radar Conference,2009, CA, USA.
    [25]CHEN V C, DES ROSIERS A, LIPPS R. Bi-static ISAR range-doppler imagingand resolution analysis [C].2009IEEE Radar Conference,2009, NJ, USA.
    [26]CHEN V C, DES ROSIERS A P. Micro-Doppler phenomenon and radarsignature[C]. IEEE Radar Conference,2003, Huntsville, AL, USA.
    [27]CHEN V C, LI F, HO S S, et al. Analysis of micro-Doppler signatures[J]. IEEProceedings-Radar, Sonar and Navigation,2003,150:271-276.
    [28]CHEN V C, LI F, HO S S, et al. Analysis of micro-Doppler signatures[C], F,2003.Institution of Engineering and Technology.
    [29]CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: phenomenon, model,and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems,2006,42(1):2-21.
    [30]CHEN V C, LI F, HO S-S, et al. Micro-doppler effect in radar: Phenomenon, model,and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems,2006,42(2-21.
    [31]CHEN V C, LIPPS R. Time-frequency signatures of micro-Doppler phenomenonfor feature extraction[C].The Wavelet Applications VII,2000, USA.
    [32]CHEN V C, LIPPS R. Time-frequency signatures of micro-Doppler phenomenonfor feature extraction[C]. The Wavelet Applications VII,2000, Orlando, USA.
    [33]CHEN V C, LIPPS R. Advanced Synthetic Aperture Radar Imaging and FeatureAnalysis[C]. F, USA,2003.
    [34]CHEN V C, LIPPS R, BOTTOMS M. Advanced synthetic aperture radar imagingand feature analysis; proceedings of the2003Proceedings of the InternationalConference on Radar,3-5Sept2003, Piscataway, NJ, USA, F,2003[C]. IEEE.
    [35]CHEN V C, MICELI W J, HIMED B. Micro-Doppler analysis in ISAR-Reviewand perspectives[C]. The2009International Radar Conference "Surveillance for aSafer World",2009, Bordeaux, France.
    [36]CHEN V C, MICELI W J, HIMED B. Micro-Doppler analysis in ISAR-reviewand perspectives[C]. The2009International Radar Conference Radar "Surveillancefor a Safer World"(RADAR2009),2009, NJ, USA.
    [37]THAYAPARAN T, ABROL S, RISEBOROUGH E. Micro-Doppler RadarSignatures for Intelligent Target Recognition [M]//CANADA, Ottawa,2004.
    [38]BARKAT B, BOASHASH B. A high-resolution quadratic time-frequencydistribution for multicomponent signals analysis[J]. IEEE Transactions on SignalProcessing,2001,49(10):2232-2239.
    [39]BOASHASH B. Estimating and interpreting the instantaneous frequency of asignal—Part1: fundamental[J]. Proc of IEEE,1992,80(4):519-538.
    [40]A.V.奥本海姆, R.W.谢弗著,刘树棠, et al.离散时间信号处理[M].西安:西安交通大学出版社,2001.
    [41]罗宏.动态雷达目标的建模与识别研究[D].[博士论文],北京;航天科工集团,2000.
    [42]张贤达.现代信号处理[M].北京:清华大学出版社,2002.
    [1] FOSTER T.Application of Pattern Recognition Techniques for Early WarningRadar(EWR) Discriminarion [R]. ADA299735,1995.
    [2] SCHULTZ K, DAVIDSON S, STEIN A, et al.Range Doppler Laser Radar forMidcourse Discrimination: The Firefly Experiments [R]. AIAA-93-2653,1993.
    [3] THAYAPARAN T, STANKOVIC L, DJUROVIC I. Micro-Doppler-based targetdetection and feature extraction in indoor and outdoor environments[J]. Journal ofthe Franklin Institute,2008,345(6):700-722.
    [4] CAMP W W, MAYHAN J T, O'DONNELL R M. Wideband radar for ballisticmissile defense and range-doppler imaging of satellites[J]. The Lincoln LaboratoryJournal,2000,12(2):267-280.
    [5] CUOMO K M, PIOU J E, MAYHAN J T. Ultra-Wideband Coherent Processing[J].The Lincoln Laboratory Journal,1997,10(2):203-222.
    [6] INGWERSEN P A, LEMNIOS W Z. Radar for Ballistic Missile DefenseResearch[J]. The Lincoln Laboratory Journal,2000,12(2):245-265.
    [7] LEMNIOS W Z, GROMETSTEIN A A. Overview of the Lioncoln LaboratoryBallistic Missile Defense Program[J]. The Lincoln Laboratory Journal,2002,13(1):9-32.
    [8] STONE M L, BANNER G P. Radar for the Detection and Tracking of BallisticMissile,Satellites,and Planets[J]. The Lincoln Laboratory Journal,2000,12(2):217-244.
    [9] CHEN V C. Analysis of radar micro-Doppler signature with time-frequencytransform[J]. IEEE Signal Processing Workshop on Statistical Signal and ArrayProcessing, SSAP,2000, Compendex):463-466.
    [10]CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: phenomenon, model,and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems,2006,42(1):2-21.
    [11] NUNN E C. The US Army white sands missile range development of target motionresolution[C]. Processings of IEEE Electronics and Aerospace SystemsConventions, USA:Arlington,1980:346-352.
    [12]BAKER B D, KENDALL W B.TMR processing procedures for GSRS spin andattitude measurements [R]. ADA074974, CA,USA,1979.
    [13]NUNN E C. Target motion resolution and its impact on the US Army White Sandsmissile range[C]. Conference Record of the Thirteenth Asilomar Conference onCircuits, Systems&Computers, NY, USA,1979:589-593.
    [14]RIHACZEK A W, HERSHKOWITZ T. Theory and practice of radar targetidentification [M]. Boston: Artech House,2000.
    [15]RIHACZEK A W, HERSHKOWITZ S J. Radar Resolution and Complex-ImageAnalysis [M]. Boston: Artech House,1996.
    [16]H J.Discrimination via Phased Derived Range [R]. MDA-02-003: Missile DefenseAgency Small Business Innovation Research Program,2002.
    [17]刘永祥.导弹防御系统中的雷达目标综合识别研究[D].[博士学位论文],长沙;国防科学技术大学,2004.
    [18]刘永祥,黎湘,庄钊文.空间目标进动特性及在雷达识别中的应用[J].自然科学进展,200414(11):1329-1332.
    [19]金文彬,刘永祥,任双桥, et al.锥体目标空间进动特性分析及其参数提取[J].宇航学报,2004,25(4):408-410.
    [20]罗宏.动态雷达目标的建模与识别研究[D].[博士论文],北京;航天科工集团,2000.
    [21]冯德军.弹道中段目标识别与评估系统[D].[博士论文],长沙;国防科技大学,2006.
    [22]陈行勇,黎湘,郭桂荣.微进动弹道导弹目标雷达特征提取[J].电子与信息学报,2006,28(4):643-646.
    [23]陈建文,倪晋麟.弹道导弹的雷达目标识别技术[C].第八届全国雷达学术年会论文集,2002:185-188.
    [24]魏玺章,姚辉伟,丁小峰, et al.变区间分组检验相乘积累进动周期估计[J].电子学报,2010,38(1):135-140.
    [25]李康乐,姜卫东,湘黎.弹道目标微动特征分析与提取方法[J].系统工程与电子技术,2010,32(1):115-118.
    [26]王璐,刘宏伟.基于时频图的微动目标运动参数提取和特征识别的方法[J].电子与信息学报,2010,32(8):1812-1817.
    [27]王璐.微动目标的运动参数估计和识别方法研究[D].[硕士论文],西安;西安电子科技大学,2010.
    [28]CHEN F, LIU H, DU L, et al. Target classification with low-resolution radar basedon dispersion situations of eigenvalue spectra[J]. Science China(InformationSciences),2010,53(7):1446-1460.
    [29]THEODORIDIS S, KOUTROUMBAS K. Pattern Recognition [M].2006.
    [1] STONE M L, BANNER G P. Radar for the Detection and Tracking of BallisticMissile,Satellites,and Planets[J]. The Lincoln Laboratory Journal,2000,12(2):217-244.
    [2] LEMNIOS W Z, GROMETSTEIN A A. Overview of the Lioncoln LaboratoryBallistic Missile Defense Program[J]. The Lincoln Laboratory Journal,2002,13(1):9-32.
    [3]刘永祥,黎湘,庄钊文.导弹防御系统中的雷达目标识别研究[J].国防科技大学学报,2004,26(4):6-9.
    [4] BROWN W M. Synthetic aperture radar[J]. IEEE Transactions on Aerospace andElectronic Systems,1967,3(2):217-229.
    [5] BROWN W M, FREDERICKS R J. Range-Doppler Imaging with Motion ThroughResolution Cells[J]. IEEE Transactions on Aerospace and Electronic Systems,1984,20(4):98-102.
    [6] ANN M A, ROBERT A G. Machine intelligence applied to radar imageunderstanding[C]. ICASSP, Glasgow,UK1989,3:1791-1794.
    [7] GUPTA I J. High-resolution radar imaging using2-D linear prediction[J]. IEEETransactions on Antennas and Propagation,1994,42(1):31-37.
    [8] CUOMO K M, PIOU J E, MAYHAN J T. Ultra-Wideband Coherent Processing[J].The Lincoln Laboratory Journal,1997,10(2):203-222.
    [9] BORISON S L, BOWLING S B, CUOMO K M. Super-resolution methods forwideband radar[J]. Lincoln Laboratory Journal,1992,5(3):441-446.
    [10]LI H J, FARHAT N H, SHEN Y S. A new iterative algorithm for extrapolation ofdata available in multiple restricted regions with applications to radar imaging[J].IEEE Transactions on Antennas and Propagation,1987,35(5):581-588.
    [11] DEGRAAF S R. Parametric estimation of complex2D sinusoids[C].4th IEEEASSP Soc Annu Workshop on Spectrum Estimation and Modeling, Minneapolis,Minneapolis, MN,1988:391-396.
    [12]TU M W, GUPTA I J, WALTON E K. Application of maximum likelihoodestimation to radar imaging[J]. IEEE Transactions on Antennas and Propagation,1997,45(1):20-27.
    [13]LI J, STOICA P. Efficient mixed-spectrum estimation with applications to targetfeature extraction[J]. IEEE Transactions on Antennas and Propagation,1996,44(2):281-295.
    [14]BI Z, LI J, LIU Z. Super resoltion SAR imaging via parametric spectral estimationmethods[J]. IEEE Transactions on Antennas and Propagation,1999,35(1):267-281.
    [15]R. WU, LI J, STOICA P. SAR image formation via semiparametric spectralestimation[J]. IEEE Transactions on Aerospace and Electronic Systems,1999,35(4):1318-1333.
    [16]DEGRAAF S R. SAR imaging via modern2-D spectral estimation method[J].IEEE Transactions on Image Process,1998,7(5):729-761.
    [17]ODENDAAL J W, BERNARD E, PISTORIUS C W I. Two dimensionalsupperresolution radar imaging using the MUSIC algorithms[J]. IEEE Transactionson Antennas and Propagation,1994,42(10):1386-1391.
    [18]LI J, STOICA P. An adaptive filtering approach to spectral estimation and SARimaging[J]. IEEE Transactions on Signal Processing,1996,44(6):1469-1484.
    [19]PALSETIA M R, LI J. Using APES for interferometric SAR imaging[J]. IEEETransactions on Image Process,1998,7(9):1340-1353.
    [20]CHEN V C, QIAN S. Joint Time-Frequency Transform for Radar Range-DopplerImaging[J]. IEEE Transactions on Aerospace and Electronic Systems,1998,34(2):486-499.
    [21]LI J, LING. H. Application of adaptive chirplet representation for ISAR featureextraction from targets with rotating parts[J]. IEE Proceedings-Radar, Sonar andNavigation,2003,150(4):284-291.
    [22]CHEN V C, LI F, HO S S, et al. Micro-Doppler effect in radar: phenomenon, model,and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems,2006,42(1):2-21.
    [23]SATO T. Shape Estimation of space Debris Using Single-Range DopplerInterferometry[J]. IEEE Transactions on Geoscience and Remote Sensing,1999,37(2):1000-1005.
    [24]QUAN Y, ZHANG L, XING M, et al. Coherent single range Dopplerinterferometry algorithm for high-speed spinning targets2D imaging[C].20092ndAsian-Pacific Conference on Synthetic Aperture Radar, Xian,China,2009:93-97.
    [25]陈行勇,黎湘,郭桂荣.微进动弹道导弹目标雷达特征提取[J].电子与信息学报,2006,28(4):643-646.
    [26]李康乐,姜卫东,湘黎.弹道目标微动特征分析与提取方法[J].系统工程与电子技术,2010,32(1):115-118.
    [27]金文彬,刘永祥,任双桥等.锥体目标空间进动特性分析及其参数提取[J].宇航学报,2004,25(4):408-410.
    [28]刘永祥,黎湘,庄钊文.空间目标进动特性及在雷达识别中的应用[J].自然科学进展,200414(11):1329-1332.
    [29]HE S, ZHAO H, ZHOU J, et al. The optimal window length of STFT for sinemodulated signal[C]. IET International Radar Conference2009, Guilin,China,2009.
    [30]CHEN V C, LI F, HO S-S, et al. Micro-doppler effect in radar: Phenomenon, model,and simulation study[J]. IEEE Transactions on Aerospace and Electronic Systems,2006,42(2-21.
    [31]BRIAN C, LOVELL, ROBERT C, et al. The relationship between instantaneousfrequency and time-frequency Representations[J]. IEEE Transactions on SignalProcessing,1993,41(3):1458-1461.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700