航空发动机组件化建模及性能参数估计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是为飞/推综合控制系统仿真平台提供航空发动机组件化模型。旨在利用软件组件化的思想,将COM组件技术应用到航空发动机建模中,建立一个可重用、通用性强以及精度高的组件化模型,并在此模型基础之上,研究航空发动机性能参数估计的方法。
     首先将航空发动机按照结构划分为10个主要部件,分别建立各部件的数学模型并将其封装成COM组件。各组件之间以及与模型与仿真平台之间的数据传递通过接口实现。此外,还创建了航空发动机的一些功能组件,用于封装功能函数等。
     其次,进行航空发动机仿真平台的设计,包括界面设计和内部运行管理系统设计。仿真平台的界面是在MFC单文档框架的基础上创建的,利用树形控件和绘图技术等设计了组件栏和模型仿真区;在内部运行管理系统中,提供了牛顿-拉夫森法和Broyden秩1拟牛顿法解模型动态方程。
     本文还提出了将支持向量回归机与遗传算法相结合进行航空发动机参数估计的方法。针对简约最小二乘支持向量回归机的简约集确定问题,利用遗传算法具有很好的全局寻优能力来选择支持向量,构成简约集,以实现对航空发动机参数的准确估计。为了验证此估计方法的实用性,论文还设计了ALQR推力控制器,以推力估计器的推力估计值为反馈量,形成闭环控制系统。仿真结果表明,所设计的推力估计器能准确对推力进行估计,将其作为反馈用于直接推力控制系统,实现了发动机在飞行包线内的快速响应和平稳过渡。
This paper is designed to provide componentization model of aero-engine for integrated flight/propulsion control system simulation platform. In this paper, the software componentization ideology is adopted and the COM technology is applied to aero-engine modeling in order to establish a reusable, universal, and high accuracy aero-engine model. On the basis of this model, the aero-engine performance parameter estimation method is researched.
     Firstly, the aero-engine is divided into ten main components from the perspective of its structure. Mathematics model of every component is established and then every mathematics model is packaged as a COM component. Data transfer among all components, as well as between model and simulation platform, is realized by way of the interfaces. In addition, some components are built to package the important functions.
     Secondly, the design of the aero-engine simulation platform is carried out, which includes the design of interface and inner function. The interface of the simulation platform is established on the basis of MFC single-document framework. The tree control and drawing technique is adopted to design the component column and the model simulation area. In the inner working system, both Newton-Raphsion method and Broyden quasi-Newton method are introduced for the purpose of solving the dynamic balance equations of the model.
     In this paper, a method is proposed for aero-engine performance parameters estimation, based on the combination of support vector regression (SVR) and genetic algorithm (GA). As for confirming the reduced set of reduced least squares support vector regression (RLSSVR), genetic algorithm (GA) is used because of its global performance seeking capability to select support vector and compromise the reduced set in order to realize accurate parameters estimation of the aero-engine performance. To verify the practicality of this aero-engine performance parameters estimation method, the ALQR thrust controller is designed and the estimate thrust is used as feedback signal to form a close loop control system. The simulations demonstrate that the thrust estimator can estimate thrust accurately and that the estimate thrust as feedback is applied to the thrust control system, so that the engine can get rapid response and realize smooth transition in the fly envelope.
引文
[1]刘大响,金捷. 21世纪世界航空动力技术发展趋势与展望.中国工程科学,2004,v6(9):1-7.
    [2]周文祥.航空发动机及控制系统建模与面向对象的仿真研究. [博士学位论文].南京:南京航空航天大学2006年9月.
    [3] C. A. Skira, M. Agnello. Control system for the next century’s fighter engines. Transactions of the ASME Journal of Engineering for Gas Turbines and Power, 1992, 114(4): 749-754.
    [4] Koop W. The integrated high performance turbine engine technology program. ISABE 97-7175, 1997.
    [5] W. Troha, K. Kerner, G. Butler. Development status of the U.S. army small heavy fuel engine (SHFE) VAATE program. AHS International 63rd Annual Forum - Proceedings - Riding the Wave of New Vertical Flight Technology, United States: American Helicopter Society.
    [6]方昌德.航空发动机的发展前景.航空发动机, 2004, 30(1): 1-5.
    [7] John Lytle, Greg Follen, Cynthia Naiman, et al. NPSS: Numerical Propulsion System Simulation, 1999 Industry Review. NASA TM-2000-209795. October 6-7, 1999.
    [8] John Lytle, Greg Follen, Cynthia Naiman, et al. NPSS: Numerical Propulsion System Simulation Review. NASA CP-2001-210673. October 4-5, 2000.
    [9] John Lytle, Greg Follen, Cynthia Naiman, et al. 2001 Numerical Propulsion System Simulation Review. NASA TM-2002-211197. November 7-8, 2001.
    [10] Evans A L, Follen G, Naiman C, et al. Numerical Propulsion System Simulation's National Cycle Program. AIAA-98-3113.
    [11] Scott M. Jones. An Introduction to Thermodynamic Performance Analysis of Aircraft Gas Turbine Engine Cycles Using the Numerical Propulsion System Simulation Code. NASA/TM-2007-214690, March 2007.
    [12]刘大响.对加快发展我国航空动力的思考.航空动力学报,2001,16(1):1-7.
    [13]金捷.美国推进系统数值仿真(NPSS)计划综述.燃气涡轮试验与研究,2003,16(1),57-62.
    [14]曹源,金先龙,孟光.航空发动机系统级仿真研究的回顾与展望.航空动力学报,2004,4(19),562-571.
    [15] McKinney John S. Simulation of Turbofan Engine Part I: Description of Method and Balancing Technique. AFAPL-TR-67-125-pt.-1, Air Force Aero Propulsion Lab, 1967.
    [16] Koeig R W, Fisbbacb L H. GENENG-A Program for Calculating Design and Off-Design Performance for Turbojet and Turbofan Engines. NASA TN D-6552, Feb.1972.
    [17] Fisbbacb L H, Koenig R W. GENENG II-A Program for Calculating Design and Off-Design Performance of Two and Three-Spool Turbofans with as many as Three Nozzles. NASA TN D-6553, Feb. 1972.
    [18] Reed J.A. and Afjeh A A. Development of an Interactive Graphical Propulsion System Simulator. AIAA paper 94-3216, 30th AIAA/ASE/SAE/ASEE Joint Propulsion Conference, Indianapolis IN, June, 1994.
    [19] Reed J A and Afjeh A A. An Interactive Graphical Simulation Environment for the Study of Gas Turbine Operation. AIAA paper 96-0119, 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Lake Buena Vista, FL, July 1996.
    [20] Reed J A and Afjeh A A. Computational simulation of gas turbine: Part I-foundation of component-based models. ASME 99-GT-346, June 1999.
    [21] Reed J A and Afjeh A A. Computational simulation of gas turbine: Part II-Extensible domain framework. AMSE 99-GT-347, June 1999.
    [22] Reed J A , Follen G J and Afjeh A A. Improving the Aircraft Design Process using Web-based Modeling and simulation. ACM Transactions an Modeling and Computer Simulation, Vol. 10,No. 1, 2000:58~83.
    [23] N. D. Semkin, A. V. Piyakov, K. E. Voronov, et al. A linear accelerator for simulating micrometeorites. Instruments and Experimental Techniques, March-April 2007: 75-81.
    [24] Goryunov. Automation of design and production of aeronautical equipment: Calculation of moisture content influence on parameters of working bodies and processes in the DVIGwT system. Russian Aeronautics. 2006(v49): 83-88.
    [25] Kurzke J. GasTurb9: A Program to Calculate Design and Off-Design Performance of Gas Turbines. User’s Manual. Avaluable from Http://www.gasturb.de. 2001.
    [26] Peter Jeschke, Joachim Kurzke, Preliminary Gas Turbine Design Using the Multidisciplinary Design System Mopeds. Journal of Engineering for Gas Turbines and Power, 2002,124(3): 465~479.
    [27] Visser W P J and Broomhead M J. GSP: A generic object-oriented gas turbine simulation environment. NLR-TP-2000-267. July 2000.
    [28] Visser W P J, Broomhead M J and Vorst J V D. TERTS, a generic real-time gas turbine simulation environment. NLR-TP-2002-069.Feb.2002.
    [29] Antonio Alejandro. Modeling of a Gas Turbine with Modelica TM. [Master thesis]. Department of Automatic Control, Lund Institute of Technology, Sweden, May 2001.
    [30] Ailer P, Santa I, Szederkenyi G et al. Nonlinear Model-Building of a Low-Power Gas Turbine. Periodica Polytechnica Ser. Transp. Eng. 2001,v(29):117-135.
    [31]华清.某型涡扇发动机全包线实时仿真模型.航空发动机,2002,vol:47-52.
    [32]曹源,金先龙,孟光.航空发动机的非线性模块化建模与仿真.计算机辅助设计与图形学学报,Vol.17 No.3,Mar.2005:507~510.
    [33]徐鲁兵,潘宏亮,周鹏.基于面向对象技术的航空发动机性能仿真框架设计.测控技术,2007年第26卷第4期:83~86.
    [34]周文祥,黄金泉,窦建平等.面向对象的涡扇发动机及控制系统仿真平台.航空动力学报,Vol.22 No.1, Jan.2007:119~125.
    [35]刘永文.模块化建模与半物理仿真研究及其在舰船动力装置中的应用. [博士学位论文],上海:上海交通大学,2002.
    [36]李中群.系统仿真及其在航空发动机仿真平台设计中的应用研究. [硕士学位论文],西安:西北工业大学,2004.
    [37]曹志松,于龙江,朴英.可扩展的推进系统仿真平台:部分Ⅰ-工程模型构建.航空动力学报,Vol.22 No.2 Feb.2007:261~267.
    [38]曹志松,于龙江,朴英.可扩展的推进系统仿真平台:部分Ⅱ-可扩展的框架结构.航空动力学报,Vol.22 No.2 Feb.2007:268~273.
    [39]唐海龙,张津.数据通信模式及其在面向对象的航空发动机性能仿真系统中的应用.航空动力学报,Vol.15 No.3,July.2000:298~302.
    [40]谢志武,苏明,翁史烈.燃气轮机系统仿真集成概念及其分布对象实现.航空动力学报,Vol.15 No.3,July.2000:307~310.
    [41]谢志武,苏明,翁史烈.可扩展的燃气轮机仿真对象模型.航空动力学报,Vol.14 No.2,Apr.1999:143~147.
    [42]窦建平.面向对象的航空发动机建模与仿真. [硕士学位论文],南京:南京航空航天大学,2005年3月.
    [43]窦建平,黄金泉,周文祥.基于UML的航空发动机仿真建模研究.航空动力学报,Vol.20 No.4,Aug.2005:684~688.
    [44]姚祖明.基于构件的航空发动机建模技术研究. [硕士学位论文],南京:南京航空航天大学,2007.
    [45]孙龙飞.航空发动机组件化建模技术研究. [硕士学位论文],南京:南京航空航天大学,2009.
    [46]陶金伟.航空发动机组态建模仿真技术研究. [硕士学位论文],南京:南京航空航天大学,2010.
    [47] Gurbux S. Alag, Glenn B. Gilyard. A proposed Kalman filter algorithm for estimation of unmeasured output variables for an F100 turbofan engine. NASA TM/4234, 1990.
    [48] Santanu Chatterjee, Jonathan S. Litt. Online model parameter estimation of jet engine degradation for autonomous propulsion control. NASA/TM-2003-212608.
    [49] Jonathan S.Litt. An optimal orthogonal decomposition method for kalman filter-based turbofan engine thrust estimation. NASA/TM-2005-213864.
    [50] Takahisa Kobayashi, Donald L. Simon, Jonathan S. Litt. Application of a constant gainextended Kalman filter for in-flight estimation of aircraft engine performance parameters. NASA/TM-005-213865.
    [51] Manfredi Maggiore, Raul Ordonez, Kevin M. Passion, et al. Estimator design in jet engine applications. Engineering Applications of Artificial Intelligence, 16(2003):579–593.
    [52]姚彦龙,孙健国.基于神经网络逆控制的发动机直接推力控制.推进技术,2008, 29(2):249-252.
    [53] Vapnik V N. The Nature of Statistical Theory .New York: Springer-Verlag, 1995.
    [54] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers. Neural Process Letter, 1999, 9(3): 293-300.
    [55] Dale Rogerson著. COM技术内幕(杨秀章译).北京,清华大学出版社,1999.
    [56]潘爱明. COM原理与应用.北京,清华大学出版社,1999.
    [57]曹莹.组件化程序设计方法.福建电脑,2003年第3期:44-45.
    [58]杨晓红,朱庆生.组件化程序设计方法及组件标准.重庆大学学报(自然科学版) ,2001,11:120-122.
    [59]刘龙. COM组件化程序设计研究. [硕士学位论文],哈尔滨:哈尔滨工程大学,2006.
    [60]徐教,周定康.组件技术在软件开发中的应用.计算机与现代化,2002(2).
    [61]余英,梁刚著. VC系列之COM/COM+开发.北京,铁道出版社, 2001, 3:10-12.
    [62]袁鸯.发动机自适应建模及神经网络控制. [硕士学位论文],南京:南京航空航天大学,2005.
    [63] Yongping Zhao, Jianguo Sun. Recursive reduced least squares support vector regression. Pattern Recognition, 2009, 42(5): 837-842.
    [64] J. H. Holland. Adaptation in natural and artificial systems. Michigan: University of Michigan Press, 1975.
    [65]姚彦龙,航空发动机神经网络直接推力逆控制,[硕士学位论文],南京:南京航空航天大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700