微型无人机航空遥感系统及其影像几何纠正研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究针对现有遥感技术存在的影像资料实时获取能力差、获取成本高的问题而展开。在借鉴国内外无人机应用经验的基础上,提出了将无人机与数码相机结合构成微型无人机航空遥感系统,实现影像获取的解决方案。研究工作主要分为无人机遥感系统的集成、改进、飞行作业与无人机遥感影像的几何纠正两方面内容。
     在系统集成阶段,对数码相机在航空遥感中的应用作了分析,指出现有数码相机中的高档机型已能满足大多数遥感应用的要求。在对系统的技术改造中,测定了Ni-MH电池组放电曲线,对无人机机载电源做了改进,配合加装的微波视频传输系统和自行研制的降落阻尼拦阻网可以大大提高无人机航空遥感系统的安全性、适应性和作业能力。在介绍系统的日常飞行作业程序后,给出了广西武鸣县飞行任务实例,为系统的推广应用提供了借鉴的依据。系统的飞行试验证明无人机遥感系统具有机动灵活、反应迅速、适应性强、获取的影像分辨率高和使用成本低等诸多优势,是卫星遥感和航空摄影的有益补充。
     微型无人机遥感由于受到无人机平台体积小、重量轻、任务载荷有限等因素的制约,在飞行作业中传感器位置和姿态受气流影响大、稳定性差,而且目前是非专业摄影机成像,这些都大大增加了其影像几何纠正处理的复杂性。通过全面分析遥感影像几何变形的来源和现有几何纠正方法,提出了一条基于CCD相机误差综合标定和与正射影像配准的几何纠正技术路线。
     通过对现有CCD相机标定方法的综合分析,提出利用建筑物立面现成规则图形纹理结构的垂直摄影法来完成CCD相机综合误差的标定。该方法不使用特殊仪器,也无需人为布置大量控制点,只需做简单的标记和量测工作就能完成标定影像的拍摄。将获取的影像与数学模型结合即可快速、简单、有效地解决CCD相机综合标定问题。
     借鉴卫星影像的处理方法,将目标区现有的大比例尺地形图数字化后,利用多项式法完成了广西武鸣城区无人机遥感飞行试验影像的几何纠正,并取得了较好的效果。经检验,单点定位平均偏差为1m左右,最大偏差为2m左右,在X、Y方向上的长度变形均不大于1%,基本没有角度变形。作为基准影像,大比例尺地形图在自身成图精度和所含特征信息等方面有一定的局限性,如使用高分辨率卫星影像作为基准底图进行配准纠正,则成图精度会有进一步提高。
    
    徽型无人移以晓空遥感系统及其影像几何纠正研究
     本研究结果证呢,将普通数码湘机和无人机结合构成微型无人机航空遥感系统
    在技术上是可行的,其获取的高分辫率遥感影像经几何纤正处理后可与载人航空摄
    彩、国外高分辫率成像卫星岭影像资料相墉美,是一项低成本、快逮解决小区城可见
    光、红外等遥感信息源问题的可行技术.
Now, there are two problems in Remote Sensing (RS) techniques: images can not be obtained in real time and it is very expensive to obtain by plane or satellite. Aiming at these situations, a miniature airborne optical RS system which consists of a Digital Camera (DC), a miniature robot plane(Unmanned Aerial Vehicle, UAV) and its' ground-based subsystem was presented on the basis of analyses of the applied experiences of UAVs abroad and home. In this paper, two type problems about this miniature RS system would be discussed: one was system integration, amelioration and flight planning; another was geometrical correction of images from this system.
    In the stage of system integrating, the applications of DC in aerial RS was analyzed, the conclusion was that the advanced models in actual digital cameras had been satisfied to most RS application. In technique rebuilding of system, discharge curve of Ni-MH battery was measured, and power supplies in UAV were improved. The security, adaptability and efficiency of miniature aerial RS systems could be improved obviously by microwave video transmission system and self-regulating blocking net in landing. As a pattern, the flow of flight planning of WuMing county in GuangXi province was introduced, it was good to the planning of similar RS flight. The flight experiments had proved that the miniature aerial RS system based on UAV would be the useful supplement of satellite RS and aerial photography. The advantages of this system are as follows: obvious flexibility, broad adaptability, rapid response, low cost and the ability of acquiring high-resolution images.
    Because UAV is smaller and lighter than normal plane, the miniature aerial RS system is easily effected by wind, its' stabilities of position and stance are not good. Because the load of UAV is so finite, the large professional aerial photogrammetry camera can not be installed. Considered as size, weight and price, the Charge Coupled Device (CCD) DC is the best choice for the UAV RS system. The factors mentioned above would bring lots of complicated geometrical distortion to the images from the UAV RS system. On the basis of analyzing roundly origins of RS image geometrical distortion and existing methods of geometrical correction, the route of geometrical correction for the images from the
    
    
    miniature UAV RS system was brought forward. This technical route was based on integrated CCD camera calibration and image registration by orthograph.
    CCD camera calibration was accomplished by vertical photograph on the wall of buildings. This method was aimed at the texture of existing figures on the wall, so it did not need use special instruments and array lots of reference points, it only needed some simple marks and measuring work to accomplish the photograph of base image. The problems of CCD camera calibration could be solved effectively and simply by the obtained image and mathematic model.
    By means of images processing of satellite, geometrical correction of images from UAV RS system was accomplished by polynomial. In the processing of images of WuMing in GuangXi province, a set of scan large-scale relief maps were used. By testing the corrected image map, the mean error of point position was 1 meter, the maximal error was 2 meters, length distortions on X and Y axis orientation were not more than 1% and angle distortion was almost not existing. As the basic image, large-scale relief maps were not good, with some disadvantages of accuracy and surface features. If a high-resolution satellite image could be used to registration as a basic map, the accuracy of corrected image map would be improved obviously.
    This study has proved that it was feasible that common DC and UAV were combined to construct a miniature aerial RS system. After geometrical correcting, the high-resolution RS images from the UAV RS system were as good as the images of satellite or aerial photogrammetry. The miniature UAV RS system is a new technique that could be used to quickly acquire images of small region with low-costs.
引文
[1] Aber J.S. Aber S.W. Pavri F. Unmanned small-format aerial photography from kites for acquiring large-scale, high-resolution, multiview-angle imagery[A]. In: Pecora 15/land satellite information IV/ISPRS commission I/FIEOS 2002 conference. 2002.
    [2] Air & Space Europe: Civilian applications: the challenges facing the UAV industry[J]. Air & Space Europe. 1999,1 (5/6):67-70.
    [3] Air & Space Europe: Regulations and the role of EURO UVS[J]. Air & Space Europe. 1999, 1(5/6):63-66.
    [4] Aerosonde. URL: http://www.aerosonde.com
    [5] Bauer M., Bereft W., Coppin I., et al. Proceedings of the first north American symposium on small format aerial photography[M]. American Society of Photogrammetry and Remote Sensing. 1997.
    [6] Bayer H.A. Some aspects of geometric calibration of CCD camera[A]. In: Proc. International Society for Photogrammetry and Remote Sensing, 1987, 2-4.
    [7] Bigras C. Kite aerial photography of the Axel Heiberg island fossil forest[A]. In: American Society of Photogrammetry and Remote Sensing. 1997, 147-153.
    [8] Blyenburgh P.V. UAVs: an overview[J]. Air & space Europe. 1999,1(5/6):43-47.
    [9] Chen S Y, Tsai W.H. A systematic approach to analytic determination of camera parameters by line teatures[J]. Pattern recognition. 1990, 23(8):859-877.
    [10] Curry S., Baumrind S., Anderson J.M. Calibration of an array camera[J]. Photo Eng. and remote sensing. 1986, 52(5):627-636.
    [11] Dieter H., Werner Z., Gunter S. Monitoring of gas transmission pipelines-a customer driven civil UAV application[A]. In: Toulouse,France: 5th ONERA-DLR aerospace symposium, 2003.
    [12] Dugan J. and Piotrowski C. Developmental system for maritime rapid environmental assessment using UAVs[A]. In: Brighton, UK: Oceanology International 2000 Conference, 2000.
    [13] Fryer J., Mason S. Rapid lens calibration of a video camera[J]. Photo. Eng. and remote sensing. 1989, 55(4):437-442.
    [14] Gordon P. Robotic aerial platforms for remote sensing-UAVs are now being developed for use as "satellite substitutes"[J]. Geolnformatics. 2001,4(4): 12-17.
    
    
    [15] Gordon P. Airborne digital frame cameras -the technology is really improving![J]. Geoinformatics. 2003,(10/11): 18-27.
    [16] Graham R.W. Small format aerial surveys from light and microlight aircraft[J]. Photogrammetric record. 1988, 12(71):561-573.
    [17] Grothues H.-G, Lehmann F., Michaelis H., et al. A compact very high resolution camera(VHRC) for earth and planetary exploration using a large(7k × 8k) CCD[J]. Acta astronautica. 1999,45(4-9):577-584.
    [18] Guo Huadong, Yang Chongjun. Developing national earth observing system for "Digital Earth"[J]. Journal of remote sensing. 1999, 3(2):90-93.
    [19] Pallavicini M.B., Dovis F., Magli E., et al. Helinet project: the current status and the road ahead[A]. In: Nice France. Data system in Aerospace.2001.
    [20] Herwitz R.S. Remote Command-and-Control of Imaging Payloads Using Commercial Off-the-Shelf Technology[A]. In: Toronto, Canada: Int'l Geoscience & Remote Sensing Symp., 2002.
    [21] Herwitz R.S., Lee F.J., Arvesen J.C. Precision Agriculture as a Commercial Application for Solar-Powered Unmanned Aerial Vehicles[A]. In: Portsmouth, USA : 1st American Institute of Aeronautics and Astronautics UAV Conference. 2002.
    [22] Holland G.J., Mcgeer T., Youngren H. Autonomous aerosondes for economical atmospheric soundings anywhere on the globe[J]. Bulletin American Meteorological Society. 1992, 73(12): 1987-1998.
    [23] Joanne I.G. Commercial high-altitude unpiloted aerial remote sensing: some legal considerations[J]. Photogrammetric Engineering & Remote Sensing. 1996, 62 (3): 275-278.
    [24] Joseph N.P. Geosynchronous satellites at 14 miles altitude?[J]. Technology future. 1995, 2095:11-16.
    [25] Katrina H. Development of the unmanned aerial vehicle market: forecast and trends[J]. Air & space. 2000,2(2):25-27.
    [26] King D. Airborne Multispeetral Digital Camera and Video Sensors:A Critical Review of System Designs and Applications[J]. Canadian Journal of Remote Sensing, Special Issue on Aerial Optical Remote Sensing, 1995, 21 (3):245-273.
    [27] Kotska W., Paul B. Feasibility of a low-cost optical surveillance satellite[A]. In: William L.B. Earth observing system[C]. Washington: The International Society for Optical Engineering, 1999, 250-259.
    
    
    [28] Lenz R., Fritsch A. Accuracy of videometry with CCD camera[J]. Journal of International Society for Photogrammetry and Remote Sensing. 1990,(45):90-110.
    [29] Light D. An airborne direct digital imaging system[J]. Photogrammetric engineering & remote sensing. 2001,67(11): 1299-1305.
    [30] Lillesand T. M., Kiefer R. W. Remote sensing and image interpretation[M]. Fourth edition. : John Wiley & Sons Inc., 2000.
    [31] Marzan G. T., Karara H. M. A computer program for direct linear transformation solution of the colinearity condition, and some applications of it[A]. In: Proceedings of the Symposium on Close-Range Photogrammetric Systems[C]. Falls Church: American Society of Photogrammetry, 1975,420-476.
    [32] Mcgeer T., Vagners J. Historic crossing: an unmanned aircraft's Atlantic flight[J]. GPS world. 1999, 10(2): 24-30.
    [33] Mcgeer T., Holland G. Small autonomous aircraft for economical oceanographic observations on a wide scale[J]. Special issue: technology transfer, Oceanography. 1993,6(3): 129-135.
    [34] Mcgeer T., Vagners J. Wide-scale use of tong-range miniature aerosondes over the world's oceans[A]. In: Proc. AUVSI 26th annual symposium[C]. Baltimore: Association for unmanned vehicle systems international, 1999.
    [35] Nogami J., Phuon D.M., Kusanagi M. Field observation using flying platforms for remote sensing education[A]. In: Asian Conference on Remote Sensing,2002.
    [36] Penna M.A. Camera calibration a quick and easy way to determine the scale factor[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1991,(12): 1240-1245.
    [37] Phaseone. URL: http://www.phaseone.com
    [38] Quilter M.C., Anderson V.J. Low altitude/large scale aerial photographs: A tool for rang and resource managers[J]. Rangelands. 2000,22(2): 13-17.
    [39] Richards J.A. Remote sensing digital image analysis[M]. Berlin: Springer-Verlag, 1994.
    [40] Roberts A.C.B., Anderson J.M. Shallow water bathymetry using integrated airborne multi-spectral remote sensing[J]. INT. J. Remote Sensing. 1999,20(3):497-510.
    [41] Robert M.N. Unmanned air vehicles-coming of age at last[J]. Air & space Europe. 2000,2(1):23-25.
    [42] godrigo M.-V., Carlos H. Preliminary design of a low speed, long endurance remote piloted vehicles(RPV) for civil applications[J]. Aircraft design. 1999,(2): 167-182.
    
    
    [43] RSI. URL: http://www.idlworld.com/envi3.5.htm
    [44] Toth C.K., G-Brzezinska D., Merry C. Supporting traffic flow management with high-definition imagery[M]. ISPRS workshop on high resolution mapping from space 2003. Hannover, Germany:2003.
    [45] Tsai R.Y., A versatile camera calibration technique for high accuracy 3D machine vision metrology using off-the-shelf TV camera and lenses[J]. IEEE Journal of Robotics and Automation. 1987, 3(4):323-344.
    [46] Tsai R.Y. An deficient and accurate camera calibration technique for 3D vision[A]. In: Proc of IEEE conference of computer vision and pattern recognition[C]. 1986, 364-374.
    [47] Tsutsui M., Lizuka K., Kajiwara K., et al. Ground truth measurement system using RC helicopter[A]. In: Hongkong: 20th Asian conference on remote sensing, 1999.
    [48] Wei G Q., Ma S D. Implicit and explicit camera calibration: theory and experiment[J]. IEEE trans pattern recognition and machine intelligence, 1994, 16(5):469-480.
    [49] 北京青年报. URL: http://tech.sina.com.cn/o/2001-08-07/79168.shtml
    [50] 陈东平.基于航空影像更新地形图的栅格化方法[J].测绘技术装备.2000,2(2):11-13.
    [51] 陈洪滨,马舒庆,汪改等.基于微型自动驾驶飞机的航拍航摄遥感系统[J].遥感技术与应用.2001,16(3):144-147.
    [52] 陈琳.数字摄影[M].杭州:浙江摄影出版社,1998:38-40.
    [53] 陈述彭.把握“数字地球”战略,全面建设小康社会[J].地球信息科学.2003.5(4):1-9.
    [54] 程根伟.URL: http://www.cas.ac.cn/html/Dir/2002/11/15/2170.htm
    [55] 程效军,胡敏捷.数字相机的检验[J].铁路航测.2001,(4):12-14.
    [56] 富融科技有限公司.不断发展的ERDASlMAGINE(一)[J].遥感信息.1999,(1):36-41.
    [57] 富融科技有限公司.不断发展的ERDAS IMAGINE(二):遥感领域专业分析软件的排头兵[J].遥感信息.1999,(2):40-47.
    [58] 龚越新,杜国庆.依托科技创新共筑“数字江苏”[J].江苏测绘.2001,24(3):3-6.
    [59] 国家测绘局,国家测绘局测绘标准化研究所,中国标准出版社.测绘标准汇编-摄影测量与遥感卷[M].北京:中国标准出版社,2002.
    [60] 郭金运,朱明法,徐泮林.地图数据几何纠正时仿射变换与相似变换的对比分析[J].测绘通报.2001,(4):23-24,27.
    
    
    [61] 何欣年.航空数字相机的发展与应用[J].遥感技术与应用.2000,15(2):124-129.
    [62] 何欣年.航空遥感CCD数字图像应用潜力分析[J].遥感技术与应用.1995,10(3):66-70.
    [63] 侯明辉,魏庆朝.遥感图像处理软件ER Mapper在航片镶嵌中的应用[J].铁路航测.2001(1):24-26.
    [64] 胡军伟,李晓东.新一代的图像处理系统ER Mapper V6.0[J].办公自动化.1999,(3):42-45.
    [65] 贾浩正.非量测摄影机、摄像机应用于量测场合的研究[J].飞行试验.2000,16(4):37-42.
    [67] 姜大志,孙俊兰,郁倩,等.标准图形法求解相机镜头非线性畸变的研究[J].东南大学学报(自然科学版).2001,31(4):111-116.
    [68] 姜大志,孙闵,刘淼,等.数码相机标定方法研究[J].南京航空航天大学学报.2001,33(1):55-59.
    [69] 姜跃祖,刘勇,韩振华,等.国外小像幅航空遥感的发展及其现状[J].四川测绘.1992,15(3):106-110.
    [70] 蒋云志.低空小像幅航空摄影及其推广运用[J].测绘技术.1993,(1):21-24.
    [71] 李德仁.数字地球飞入寻常百姓家—展望21实际的信息技术[J].四川测绘.1999,22(3):99-100,113.
    [72] 李德仁.对地观测与地理信息系统[J].地球科学进展.2001,16(5):689-703.
    [73] 李德仁,李清泉.地球空间信息学与数字地球[J].电子科技导报.1999,(5):33-36.
    [74] 李德仁,刘良明,胡孝沁.1996-2000年中国摄影测量与遥感进展[J].测绘学报.2001,30(2):117-126.
    [75] 李德仁,袁修孝,巫兆聪,等.GPS辅助全自动空中三角测量[J].遥感学报.1997,1(4):306-310.
    [76] 李德仁.周月琴,金为铣.摄影测量与遥感概论[M].北京:测绘出版社,2001:12-40.
    [77] 李全海.非量测相机摄影测量的整体平差[J].测绘工程.1996,5(1):32-35.
    [78] 林宗坚.关于构建数字地球基础框架的思考[J].测绘软科学研究.1999,5(4):2-4.
    [79] 林宗坚.遥感影像无(稀少)地面控制点纠正技术[J].地理与地理信息科学.2003,19(4):64-65.
    [80] 林宗坚.用航空航天影像更新地形图地物要素的栅格化方法[J].中国工程科学.2000,2(4):43-47.
    [81] 刘浩,倪金生.“SKY TO MAP”:PCI软件提供的地球信息产业的全面解决方案[J].遥感信
    
    息.1998,(4):38-41.
    [82] 刘和平.建设“数字山西”空间信息基础设施促进我省国民经济和社会信息化发展[J].三晋测绘.2001,(1):8-14.
    [33] 刘青,余裕平.微型飞机航空遥感图象传感传输系统研究[J].南昌大学学报(工科版).1998,20(4):40-42.
    [84] 刘远航,刘文开.数码相机原理简论[J].照相机,2002,(7):26-28.
    [85] 马舒庆,汪改,潘毅.微型无人驾驶飞机探空初步试验研究[J].南京气象学院学报.1997,20(2):171-177.
    [86] 马舒庆,汪改,潘毅,等.微型无人驾驶飞机气象探空系统[J].南京气象学院学报.1998,21(4):715-721.
    [87] 马舒庆,汪改,潘毅,等.微型探空飞机解析测风方法[J].大气科学.1999,23(3):377-384.
    [88] 梅安新,彭望碌,秦其明,等.遥感导轮[M].北京:高等教育出版社,2001:103-112.
    [89] 聂正彦.URL: http://database.cpst.net.cn/popul/front/navig/artic/21107215117.html
    [90] 钱育华,吕振洲.遥控飞机在航空遥感实践中的应用及评价[J].影像材料.2001,(5):25-27.
    [91] 宋健.重视研究低成本小卫星和虚拟探测技术.中国基础科学[J],2003,(5):8-10.
    [92] 孙家柄,舒宁。关泽群.遥感原理、方法和应用[M].北京:测绘出版社,1997:187-216.
    [93] 佟圣奎.美国“快鸟”成像卫星翱翔太空[J].卫星侦察参考资料.2001,(4):11-12.
    [94] 王峰,林宗坚.航空影像与地图的配准纠正[J].中国图象图形学报.2001.6(4):383-386.
    [95] 王磊,李和军.低空遥感平台摄影测量技术的探索和应用[J].北京测绘.2003,(4):28-30.
    [96] 王钦敏.“数字地球”和“数字福建”[J].福州大学学报(哲学社会科学版).2001,15(3):5-9.
    [97] 王任享,尹明.对地观测微小卫星的发展现状及其应用[J].测绘通报.1999,(12):20-22,33.
    [98] 王永刚,卫保国.基于数码相机的图像采集系统[J].测控技术.2000,19(5):17-19.
    [99] 王志刚,郭德方,何灵敏.Phomshop软件在遥感图像处理中的应用[J].计算机时代.1998,(7):5-6.
    [100] 王雪晶,魏仲慧,孙文军,等.彩色遥感图像的几何纠正[J].系统工程与电子技术.2002,
    
    24(12):126-128.
    [101] 吴培中.快鸟-2卫星的技术性能与应用[J].国际太空.2002,(10):3-6.
    [102] 宣家斌,李相华,孙和利.小像幅航空摄影中若干技术要求的研究[J].武汉测绘科技大学学报.1994,19(2):113-117.
    [103] 宣文玲,林宗坚.从中心投影影像制作正射影像的多种方法研究[J].测绘科学.2003,28(2):9-11.
    [104] 严阅朝.数码相机的选购和使用[M].北京:人民交通出版社,航空工业出版社,2002:47-52.
    [105] 杨松林,王斌.MMS技术基本原理及其应用[J].铁路航测,2000,(2):12-14.
    [106] 遥感信息.国产地理信息系统和遥感软件产业化跃上新台阶[J].遥感信息.2003,(4):59-59.
    [107] 尹贡白,王家耀,田德森,等.地图概论[M].北京:测绘出版社,1999:13-57.
    [108] 袁勘省,陈正江,石选卫.“数字西大”建设初探[J].测绘技术装备.2001,3(3):3-8,17.
    [109] 张继贤,林宗坚,张永红,等.无DEM支持的遥感正射影像制作[J].遥感学报.2000,4(3):202-207.
    [110] 赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003:67-103.
    [111] 朱宜萱,李静迟.数码相机的知识与评定[J].影像技术,2001,(2):27-30.
    [112] 朱述龙,张占睦.遥感图像获取与分析[M].北京:科学出版社,2000:115-134.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700