城市综合交通枢纽内消防准安全区判定条件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着交通事业的不断发展,城市交通方式不断改善。为实现各种交通方式之间的衔接,满足旅客中转换乘的需要,综合交通枢纽已在各大城市相继出现。由于使用功能的需要,综合交通枢纽中的交通换乘大厅常设计为大空间结构。在实际工程中,该类大空间建筑区域超出了现行防火规范关于防火分区面积和疏散距离的要求,一般作为人员疏散的“准安全区”来设计。目前“准安全区”的设计与评估主要依靠消防性能化方法对具体的工程案例进行论证,尚未形成统一的设计准则。
     本文以建筑面积为10000m~2的换乘大厅规则立方体模型为研究对象,分别针对顶部开口和高侧窗开口两种自然排烟方式下的换乘大厅作为“准安全区”设计的准则进行研究,给出普遍适用的换乘大厅“准安全区”判定条件。
     对于采用顶部开口的综合交通枢纽换乘大厅,研究了换乘大厅的净空高度、顶部开口面积占地板面积的比例、相邻顶部开口之间的距离等因素对换乘大厅自然排烟效果的影响。分别设置模型净空高度为5m、6m、8m、9m、10m,顶部开口面积占地板面积的比例为2%、4%、6%、8%、10%、12%、14%、16%、18%、20%,相邻顶部开口中心之间的距离为10m、20m、30m、40m、50m、60m、70m几种工况,运用FDS软件对必要场景建立火灾模型并进行烟气模拟后,对30min内临界安全计算场景的影响参数进行分析,在结合三维曲面拟合的基础上得到采用顶部开口的综合交通枢纽换乘大厅作为人员疏散的“准安全区”设计的判定计算式。
     对于采用高侧窗开口的综合交通枢纽换乘大厅,研究了换乘大厅的净空高度、高侧窗的开口形式、开口有效面积占地板面积的比例以及高侧窗的开口高度对自然排烟效果的影响。在固定单个高侧窗开口面积为1m~2的基础上,分别选取净空高度为5m、6m、8m、9m、10m,高侧窗开口形式为两面对称开口、面积比例为2%,四面对称开口、面积比例为2%以及四面对称开口、面积比例为4%三种情况进行对比研究。此外,针对不同的净空高度设定对应的一系列高侧窗开口高度值,用以研究高侧窗开口高度对排烟效果的影响。结果表明,建筑的净空高度和高侧窗开口的面积比例对排烟效果影响较大;位于墙壁上边缘的开口相对于其它高度的开口具有明显的排烟优势;当高侧窗开口不沿墙壁上边缘布置时,最优开口高度约在净空高度的50%处,且该最优开口高度仅与净空高度有关,与开口形式和开口面积比例无关。采用高侧窗开口的换乘大厅用作人员疏散的“准安全区”设计需满足的条件为:当净空高度低于8m时,高侧窗开口面积占地板面积的比例不低于4%;净空高度大于8m时,高侧窗开口面积占地板面积的比例不低于2%,且当净空高度小于10m时,高侧窗应沿墙壁上缘连续布置。
With the development of transport, urban transportation improves continuously. The integrated transport hub has emerged in the major cities one after another to meet the needs of convergence between the various transportation and transferring passengers. In the needs of utility, the transfer hall in integrated transport hub is often designed to large space structures. In the actual project, such large space structure position is usually designed as Quasi-Security Zone, because it beyond the requirements about areas of fire district and distance of fire safety evacuation provided in the existing norms. At present, the fire safety of Quasi-Security Zone is mainly demonstrated through performance-based fire prevention method but no more uniform design criteria.
     In this paper, cube model of transfer hall which area was 10,000 square meters was taken as the research object. Two ways of natural ventilations—top opening and high-side window opening was discussed respectively, generally applicable decision conditions of Quasi-Security Zone are presented.
     With regard to transfer hall using top opening in integrated transport hub, different headroom, different ratios accounted for floor area and different adjacent distances of natural ventilations was considered compositely to observe the effects of smoke exhaust. By choosing headroom as 5m, 6m, 8m, 9m, 10m, top opening ratio accounted for floor area as 2%,4%,6%,8%,10%,12%,14%,16%,18%,20%, and adjacent central distances of natural ventilations as 10m,20m,30m,40m,50m,60m and 70m, the necessary fire scene model was established and simulated by use of software FDS. Then within thirty minutes the parameters of critical security scene close to insecurity ones were analyzed. By taking advantage of three-dimensional surface fitting method, the determine equation designing transfer hall of integrated transport hub with top opening as Quasi-Security Zone was proposed.
     Towards transfer hall using high-side window opening in integrated transport hub, different headroom, different ratios accounted for floor area and different height of high-side window was considered. based on setting the area of a single high-side window to be one square meters, five headroom—5m, 6m, 8m, 9m, 10m, and three opening forms and area ratios of high-side window—opening area ratio of 2% on one group of opposite sides, opening area ratio of 2% on two groups of opposite sides and opening area ratio of 4% on two groups of opposite sides were selected to study comparatively. In addition, how opening height of high-side window affects the effects of smoke exhaust was researched through setting series of opening heights of high-side windows corresponding to different headroom. The results show that headroom of buildings and ratio accounted for floor area are the main effects on the smoke exhaust, high-side windows at the edge of the wall have obvious advantage on smoke exhaust compared to other opening height, when the high-side windows are not at the edge of the wall, the best opening height of high-side windows is at about 50% of headroom, and the best opening height is only related with headroom but the opening form and ratio accounted for floor area. If the transfer hall with high-side window openings is designed as Quasi-Security Zone, the high-side window opening area ratio accounted for floor area is not less than 4 percent when the headroom is lower than eight meters and 2 percent when higher than eight meters, and the high-side window should be continuous arranged at the edge of the wall when the headroom is lower than ten meters.
引文
[1]黄志刚,荣朝和.北京城市客运交通枢纽存在的问题及分析[J].综合运输,2008(6):34–39.
    [2]王雪标.城市综合交通枢纽的分类与布局[J].综合运输,2008(5):24–26.
    [3]孙雁.城市公交枢纽布局方法研究[J].城市交通,2004(4):32–35.
    [4]李兴钢,苗茁.北京西直门交通枢纽设计研究[J].新北京交通建筑,2008(7):51–60.
    [5]纪立虎.在探索中和谐有序发展—上海虹桥综合交通枢纽规划解析[J].规划师,2007,11(23):35–38.
    [6]深圳新闻网,福田综合交通换乘枢纽正式投入运营, http://www.sznews.com/news/content/2008-01/26/content_1812056.htm,2008-01-26.
    [7]石晓东,陈珺.北京城市地下空间开发利用综合构想[J].地下空间,2004,24(1):119–125.
    [8]孔军.城市广场地下空间的开发利用模式[J].城市问题,2003(4):37–39.
    [9]王铭珍.巴库地铁火灾的教训[J].浙江消防.
    [10] GB50016-2006,建筑设计防火规范[S].北京:中国计划出版社,2003.
    [11] GB50157-2003,地铁设计规范[S].北京:中国计划出版社,2003.
    [12]吴凤,邓军,沈奕辉.浅谈大型地下商场安全岛的设置[J].中国安全科学学报,2004,14(8):71–74.
    [13] R. Saxon, Atrium Buildings, Development and Design[J], The Architectural Press, London ,1983.
    [14] T. Yamana and T. Tanaka. Smoke Control in Large Spaces: Part 2—Smoke Control Experiments in a Large-Scale Space[J]. Fire Science and Technology, 1985,5(1) :41–54.
    [15] Zukoski and T. Kubota. Two-Layer Modeling of Smoke Movement in Building Fires[J]. F. and Matls, 1980,4(1): 17.
    [16] E.E. Zukoski, T. Kubota, B. Cetegen. Entrainment in Fire Plumes[J], F. Safety J.,1980,3: 107–121.
    [17] G.O. Hansell and H.P. Morgan. Smoke Control in Atrium Buildings Using Depressurization. PD 66/88, Fire Research Station, Borehamwood, UK (1988).
    [18] NFPA. NFPA 92B, Guide for Smoke Management Systems in Malls, atria and Large Areas. Mass: National Fire Protection Association,1995 Edition.
    [19]张靖岩,刘文利,包盼其,等.大空间建筑排烟效果的实验研究[J].消防科学与技术,2008,27(9):652–654.
    [20]秦挺鑫,郭印诚,林文漪.大型室内体育场馆火灾烟气充填及排烟措施研究[J].工程热物理学报,2005,26(6):1061–1064.
    [21]薛素铎,梁劲,李雄彦.排烟方式对大空间建筑火灾空气升温的影响[J].防灾减灾工程学报,2010,30(5):528–543.
    [22] Milke J A. Evaluating the Early Development of Smoke Hazard from Fires in Large Space[J]. ASHRAE Transactions,2000,106(1):627–636.
    [23] Klote J H. An Engineering Approach to Tenability Systems for Atrium Smoke Management[J]. ASHRAE Transactions,1999,105(1):716–729.
    [24] Klote J H. New Developments in Atrium Smoke Management[J]. ASHRAE Transactions,2000,106(1):620–626.
    [25]李国强,黄珏倩.双区域模拟大空间火灾烟气下降和升温规律的分析[J].消防科学与技术,2005,24(5):527–531.
    [26]杜兰萍.基于性能化的大尺度公共建筑防火策略研究[D]:[博士].天津:天津大学,2007.
    [27]朱政.大空间建筑防排烟设计方法浅析[J].消防技术与产品信息,2006(10):30–33.
    [28]周子荐,沈震.某大型场馆不同排烟方案的比较与分析[J].消防科学与技术,2009,28(11):820–823.
    [29] G. Shavit, S. E. Egesdal. Fire and Smoke Control Systems During the Past 100 Year[J]. ASHRAE Transaction. 1995,101(1):991–994.
    [30] W. A. Webb. Development of Smoke Management Systems[J]. ASHRAE Transaction. 1995,101(1):995–999.
    [31]赵国凌.防排烟工程[M].天津:天津科技翻译出版公司,1991.
    [32]李晓丽,李帅,赵楠.体育馆类大空间建筑火灾自然排烟影响因素分析[J].暖通空调,2010,40(6):137–141.
    [33] Philip J D. The SFPE Handbook of Fire Protection Engineering[M].3rd ed. Society of Fire Protection Engineers,2002.
    [34]胡浩.大空间展览建筑热障效应对自然排烟的影响模拟[J].消防科学与技术,2010,29(9):760–764.
    [35]李元洲,霍然,袁理明,等.中庭火灾中烟气充填特点的研究[J].中国科学技术大学学报,1999,29(5):590–594.
    [36]袁理明,范维澄.大空间建筑火灾中热烟气层发展规律的理论分析[J].自然灾害学报,1998,7(1):21–26.
    [37]谢添.大空间建筑烟气控制与分析[D]:[硕士].重庆:重庆大学,2006.
    [38]施梁,韩新.浅析城市大型交通枢纽工程的消防性能化设计[J].消防技术与产品信息,2005(6) :3–6.
    [39]姜明理,路世昌.天津站交通枢纽性能化防火设计及消防应急预案[J].消防科学与技术,2008,27(10):735–738.
    [40]甘廷霞,胡忠日.大空间建筑人员疏散问题的性能化设计[J].消防科学与技术,2005,24(6):695–697.
    [41]孙占辉,杨锐,陈涛,等.大空间中庭及周边房间烟气运动和消防设计[J].清华大学学报,2006,46(9):1572–1576.
    [42]夏令操,朱江,刘文利.大型民用机场航站楼建筑消防设计理念与实践[J].建筑科学,2010,26(11):95–99.
    [43]王蔚,张和平,徐亮,等.大中庭建筑的性能化防火设计初探[J].建筑学报.2006(7):48–49.
    [44]安庆新.以济南奥体中心体育场为例谈超大型平面的建筑消防设计[J].华中建筑,2007,25(9):124–163.
    [45] G.D. Raithby, E.H. Chui. A Finite-Volume Method for Predicting Radiant Heat Transfer in Enclosures with Participating Media[J]. Journal of Heat Transfer, 1990,112(2):415–423.
    [46] C. Huggett. Estimation of the Rate of Heat Release by Means of Oxygen Consumption[J]. Fire and Materials, 1980,12: 61–65.
    [47] Sinclair R. CFD Simulation in Atrium Smoke Management System Design[J]. ASHARE Transactions,2001,107:1–8.
    [48] Chow W K. Experimental Studies on Natural Smoke Filling in Atria[J]. Journal of Fire Science,2000,18(2):85–103.
    [49]肖泽南,谢大勇,孙旋.CFD技术在大空间烟气运动模拟中的应用[J].消防科学与技术,2005,24(2):175–178.
    [50]霍然,李元洲,金旭辉,等.大空间内火灾烟气充填研究[J].燃烧科学与技术,2001,7(3):219–222.
    [51]李元洲,霍然,袁理明,等.中庭火灾中烟气充填特点的研究[J].中国科学技术大学学报,1999,29(5):590–594.
    [52]霍然,袁宏永.性能化建筑防火分析与设计[M].合肥:安徽科学技术出版社,2003.
    [53] Purser DA. Toxicity assessment of combustion products[M]. SFPE Handbook of Fire Protection Engineering, National Fire Protection Association, Quincy, Massachusetts, 3rd ed, 2002,Chapter 2–6.
    [54] The SFPE Handbook of Fire Protection Engineering[M]. Society of Fire Protection Engineers and National Fire Protection, 2008.
    [55] Fire Engineering Guidelines[S]. Australia :Fire Code Reform Center , 1998.
    [56]袁宏永,苏国锋,李英.高大空间火灾探测及灭火新技术[J].消防技术与产品信息,2003(10):71–72.
    [57]毛刚,槐雅丽.日光与设计(二)[J].室内设计,1994:10~13.
    [58]上海虹桥枢纽铁路客站消防性能化设计报告[R].上海:公安部上海消防研究所所属上海泰孚建筑安全咨询有限公司,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700