空地导弹制导与控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对电视指令制导空地导弹的制导和控制系统及其作战使用过程相关问题进行了深入的研究,主要内容如下:
     一、研究了电视指令制导空地导弹有关制导与控制的各个子系统的建模问题。分析了空地导弹捷联惯导系统误差;建立了电视导引头稳定跟踪模型,实现了对导弹姿态角的解耦控制;对人工捕控过程进行了建模;分析了各种光学干扰对电视导引头作用距离的影响。
     二、用两种不同的控制理论和方法,设计了电视指令制导空地导弹的鲁棒飞行控制系统:
     1.基于在线神经网络,设计了导弹的自适应动态逆飞行控制系统。采用在线神经网络消除因参数摄动引起的动态逆控制器的求逆误差,并针对导弹作动器的未建模动态对在线神经网络权值调整过程的不利影响,采用伪控制隔离思想改善了存在作动器未建模动态时系统的指令跟踪性能。
     2.基于回馈递推思想和滑模控制方法,设计了导弹的鲁棒飞行控制系统。针对一类具有未建模动态和外来扰动的多输入多输出不确定非线性系统,用一个RBF神经网络获得未建模动态和外来扰动的估计值,将回馈递推思想与滑模控制相结合,设计了鲁棒控制器;接着将它用于设计电视指令制导空地导弹的飞行控制系统,考虑到需要克服作动器位置饱和、速率饱和因素对系统性能的不利影响,改进了滑动面的符号函数,并采用模糊逻辑实时调整滑动面的斜率。最后,比较了它与神经网络动态逆控制器在导弹气动参数摄动、外来干扰和作动器纯延时条件下的性能。
     三、根据电视指令制导空地导弹作战飞行过程的特点,将其制导过程分为两个阶段——中制导与末制导,分别进行了研究:
     1.中制导——根据预先装定的航路点集信息生成实时的航迹角控制指令,再基于逆动力学生成姿态角指令,建立导弹跟随标称航迹的广义误差模型,在此基础上设计了导弹的综合中制导与控制系统。
     2.末制导——根据电视指令制导空地导弹的弹载设备特点和作战任务,设计了一种通过时变偏置项获得垂直命中目标能力的修正比例末制导律,研究了将它应用于电视指令制导空地导弹的软硬件需求和可行性,并将它与一种实际应用于某型电视指令制导空地导弹的比例积分末制导律进行了比较,验证了它的优良性能。
     四、基于有限状态机理论分析了电视指令制导空地导弹在电磁干扰条件下的攻击过程,编制了导弹全弹道可视化仿真系统,并选取典型战场与目标环境,采用蒙特卡洛方法进行大量全弹道仿真,研究了导弹的制导精度和作战效能。
     理论分析与仿真表明,本文设计的导弹鲁棒飞行控制、制导系统以及对于相关内容的研究是有效的。
The guidance and control systems of TV-Command-Homing Air-to-Ground Missile (TVCHAGM), as well as the interrelated problems in combats and deployments, are thoroughly researched in this paper. Mainly, thereinafter several research subjects are involved:
     1. The model of each subsystem related to the TVCHAGM’s guidance and control system is researched. The error rules of the strapdown INS are researched. Then the stable track model of the TV seeker is built, and a controller is designed to decouple the seeker’s output from the missile’s gesture angle. Afterwards, the man-in-loop model is built. At last, the effects of various optical factors on the operation distance of the TV seeker are researched.
     2. The robust autopilot of the TVCHAGM is designed by two kinds of control theory:
     (1) Based on online neural network, an adaptive dynamic inversion autopilot system of the TVCHAGM is designed. An online neural network is adopted to eliminate the inversion error, which originates from the perturbation of the model’s parameters. Afterwards, considering the disadvantageous effects on the update process of the neural network’s weights aroused by the unmodeled dynamics of the actuators, pseudo control hedging is introduced to improve the system’s command following performance when the actuators’unmodeled dynamics exists.
     (2) A robust missile autopilot system is designed based on backstepping and sliding mode. Firstly, for a class of multi-input-multi-output uncertain nonlinear system with unmodelled dynamics and external disturbances, a robust controller based on backstepping and sliding mode control was designed. The unknown dynamics and external disturbances were estimated by a RBF neural network. Secondly, the scheme is applied to design the autopilot system of TVCHAGM. Considering the needs to overcome the disadvantageous effect of the actuator’s position saturation and velocity saturation on the system’s performances, the sign function is modified and fuzzy logic is introduced to modulate the slope of the slide surface in real time. Finally, its performance is compared to the neural network dynamic inversion autopilot system on condition of pneumatic parameters perturbation, external disturbances and actuator’s delay.
     3. According to the characteristics of the flight process of TVCHAGM, the guidance process is divide into two phases——midcourse guidance phase and terminal guidance phase, which are both researched as follows:
     (1) Midcourse guidance phase——The flight path angle commands are created in real time according to the way points loaded before flight. Then the gesture angle commands are created based inverse dynamics. Thereafter, the generalized error model is built. Finally, an integrated midcourse guidance and control system of the TVCHAGM is designed.
     (2) Terminal guidance phase——According to the facility specialty and the combat task of the TVCHAGM, and by adding a time variant biasing item, a modified proportion terminal guidance law is designed. It can endow the missile the ability of vertically hitting the target. Then the software and hardware needs and the applicability to the missile are researched. Moreover, it is compared with a proportion plus integration terminal guidance law actually having been applied to a certain kind of TVCHAGM. The simulations show its excellent performance.
     4. Based on finite state machine theory, the TVCHAGM attack process under electromagnetic jamming condition is analyzed. And the whole trajectory simulation system of the missile is designed. Then choosing typical targets and battlefield environments and adopting Monte-Carlo method, a great deal of simulation is made. By this way, the missile’s guidance and control precision and combat effectiveness is researched.
     The effectiveness of robust autopilot system, guidance system and the related research work presented in this dissertation is verified by theoretical analyses and intensive simulations.
引文
[1] (德)鲁道夫·布罗克豪斯(Rudolf Brockhaus),飞行控制,北京:国防工业出版社,1999.9
    [2]曹建国,韩崇昭,方洋旺.非线性系统理论与应用,西安:西安交通大学出版社,2001
    [3] Group for aeronautical research and technology in Europe, Robust Control Techniques Tutorial Document, GARTEUR/TP-088-7, FM(AG08), 1997.
    [4] Steinberg M L, A Comparison of Intelligent, Adaptive, and Nonlinear Flight Control Laws, AIAA Guidance, Navigation, and Control Conference and Exhibit, Portland, OR, Aug. 9-11, 1999: 488-498.
    [5] White, D. P., Wozniak, J. G., and Lawrence, D. A., Missile autopilot design using a gain scheduling technique, IEEE, Piscataway, NJ, USA, Athens, OH, USA, 1994: 606-610.
    [6] Stilwell, D. J. and Rugh, W. J., Interpolation of observer state feedback controllers for gain scheduling, IEEE Transactions on Automatic Control (0018-9286), Vol. 44, No. 6, 1999: 1225-1229.
    [7] Wu, F., Packard, A., and Balas, G., Systematic gain-scheduling control design: A missile autopilot example, Asian Journal of Control, Vol. 4, No. 3, 2002: 341-347.
    [8]苏丙未.无人机先进飞行控制技术研究[D].南京:南京航空航天大学,2001.11
    [9]郭树军.直升机超机动飞行的神经网络控制研究[D].南京:南京航空航天大学,2000.6
    [10] Tsourdos Antonios and White Brian, Fuzzy gain-scheduling flight controller for a STT missile, AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA, Aug. 5-8, 2002: 1-6.
    [11] Tan, S., Hang, C. C., and Chai, J. S., Gain scheduling: from conventional to neuro-fuzzy, Automatica, Vol. 33, No. 3, 1997: 411-419.
    [12] Nichols R. A., Reichert R. T., and Rugh W. J., Gain scheduling for H-infinity controllers - A flight control example, IEEE Transactions on Control Systems Technology (1063-6536), Vol. 1, No. 2, 1993: 69-79.
    [13] Isidori A., Nonlinear Control Systems, Springer-Verlag, New York, 1995.
    [14] Schumacher C. J., Yeh H. H., and Banda S., Dynamic inversion and feedback linearization for missile autopilot design, International Conference on Nonlinear Problems in Aviation and Aerospace, Vol. 2, 1999: 665-672.
    [15] McFarland M. B. and Hoque S. M., Robustness of a nonlinear missile autopilot designed using dynamic inversion, AIAA Guidance, A00-37027, 2000: 10-17.
    [16] Mickle, M. C. and Zhu, J. J., Bank-to-turn roll-yaw-pitch autopilot design using dynamic nonlinear inversion and PD-eigenvalue assignment, Vol. 2, Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ, USA, Chicago, IL, USA, 2000: 1359-1364.
    [17] Devaud, E., Siguerdidjane, H., and Font, S., Some control strategies for a high-angle-of-attack missile autopilot, Control Engineering Practice, Vol. 8, No. 8, 2000: 885-892.
    [18] Song S. H., Lee, S. Y., Kim, J. K., Moon, G., Park, S. H., and Kim, S. Y., Design of a STT missile autopilot using functional inversion and LMI approach, Vol. 4, Institute of Electrical and Electronics Engineers Inc., Sydney, NSW, 2000: 3596-3597.
    [19]朱家强.基于神经网络和动态逆的超机动飞行控制技术研究[D].南京:南京航空航天大学,2003.9
    [20] McFarland M. B., Calise, A. J., Adaptive nonlinear control of agile anti-air missiles using neural networks, IEEE Transactions on Control Systems Technology, Vol. 8, No. 5, 2000: 749-756.
    [21] Dong C., Jing S., Wang Q., and Zhang M., Neural network control for air-to-air missiles with thrust vectoring, Journal of System Simulation, Vol. 13, No. 5, 2001: 585-587.
    [22] McFarland, M. B. and Calise, A. J., Nonlinear Adaptive Control of Agile Anti-Air Missiles Using Neural Networks, Performer: Georgia Inst.of Tech., 1996.
    [23] Schumacher C. and Khargonekar P. P., Missile autopilot designs using H-infinity control with gain scheduling and dynamic inversion, Journal of Guidance, Vol. 21, No. 2, 1998: 234-243.
    [24] Schumacher, C. and Khargonekar, P. P., A comparison of missile autopilot designs using H-infinity control with gain scheduling and nonlinear dynamic inversion, 1997 American Control Conference, Vol. 5 (A98-15638 02-63), 1997: 2759-2763.
    [25] Zames G. Feedback and optimal sensitivity model reference transformations, multiplicative seminorms, and approximation inverses. IEEE Transactions on Automatic Control, v AC-26, no. 2, Apr, 1981: 301-320.
    [26]冯纯伯,田玉平,忻欣.鲁棒控制系统设计,南京:东南大学出版社, 1995.12
    [27] Doyle J C., Lecture Notes in Advances in Multivariable Control, ONR/Honeywell Workshop, 1984.
    [28]申铁龙,田村捷利. H ?∞最优控制系统设计及应用.信息与控制, 1990(10): 33-43.
    [29] Chiang, R. Y., Safonov, M. G., Haiges, K., Madden, K., and Tekawy, J., Fixed H- infinity controller for a supermaneuverable fighter performing the Herbst maneuver, Automatica, Vol. 29, No. 1, 1993: 111-127.
    [30] Garg, S., Robust integrated flight/propulsion control design for a STOVL aircraft using H-infinity control design techniques, Automatica, Vol. 29, No. 1, 1993: 129-145.
    [31] Hyde, R. A. and Glover, K., Application of scheduled H- infinity controllers to a VSTOL aircraft, IEEE Transactions on Automatic Control, Vol. 38, No. 7, 1993: 1021-1039.
    [32] Rogers W L and Collins D J. X-29 H-infinity controller synthesis. Journal of Guidance, Control and Dynamics 15(4), 1992: 962-967.
    [33] Ochi Y., Itoh, K., and Kanai K., Application of H-infinity control to missile guidance and control, AIAA Guidance, 2000: -17.
    [34] Farret, D., Duc, G., and Harcaut, J. P., Multirate H-infinity loop-shaping control applied to missile autopilot design, AIAA Guidance, 2001: 1-9.
    [35] WISE, K. A., MEARS, B. C., and POOLLA, K. A. M. E., Missile autopilot design using H-infinity optimal control with mu-synthesis, 1990 American Control Conference, Vol. 3 (A91-30026 11-63). Piscataway, 1990: 2362-2367.
    [36] Wise, K. A. and Hamby, E. S., H-infinity missile autopilot design with and without imaginary axis zeros, 1994 American Control Conference, Vol. 2 (A95-31726 08-63), 1994: 1670-1674.
    [37] Yang, S. M. and Huang, N. H., Application of H-infinity control to pitch autopilot of missiles, IEEE Transactions on Aerospace and Electronic Systems (0018-9251), Vol. 32, No. 1, 1996: 426-433.
    [38]王炎生,陈宗基. H-∞方法在鲁棒飞控系统设计中的应用.航空学报vol. 17, No. 2,, 1996: 129-136.
    [39]崔平远.神经网络及其在飞行器建模与控制中的应用.飞行力学vol. 14, No. 4, 1996.12: 1-7.
    [40] Calise, A. J. and Rysdyk, R. T., Nonlinear adaptive flight control using neural networks, IEEE Control Systems Magazine, Vol. 18, No. 6, 1998: 14-25.
    [41] Nardi F. Neural Network Based Adaptive Algorithms for Nonlinear Control[D]. PhD Thesis, Georgia Institute of Technology, 2000
    [42] Kim, B. S. and Calise, A. J., Nonlinear flight control using neural networks, Journal ofGuidance, Control, and Dynamics, Vol. 20, No. 1, 1997: 26-33.
    [43] Eric N.Johnson, Anthony J.Calise, and Hesham A., Feedback Linearization with Neural Network Augmentation Applied to X-33 Attitude Control, AIAA 2000-4157, 2000: 14-17.
    [44] Anthony J.Calise, Seungjae Lee, and Manu Sharma., Development of a Reconfigurable Flight Control Law for the X-36 Tailless Fighter Aircraft, AIAA 2000-3940, 2000.
    [45] Anthony J.Calise, Hungu Lee, and Nakwan Kim., High Bandwidth Adaptive Flight Control, AIAA 2000-4551, 2000.
    [46] R. T. Rysdyk, A. J. Calise. Adaptive Model Inversion Flight Control for a Tailor-Rotor Aircraft. Journal of Guidance, Control and Dynamics 22, 402-407. 1999.
    [47]杨满忠.电视指令制导空地导弹作战运用研究[M].西安:空军工程大学. 2003.1
    [48]钱杏芳,林瑞雄,赵亚男.导弹飞行力学.北京:北京理工大学出版社, 2000.
    [49]张明廉.飞行控制系统.北京:国防工业出版社, 1984.
    [50]肖顺达.飞行自动控制系统.北京:国防工业出版社, 1982.
    [51]文仲辉.导弹系统分析与设计.北京:北京理工大学出版社, 1989.
    [52]张仲麟.惯性导航与组合导航.北京:航空工业出版社, 2000.
    [53]邓正隆.惯性导航原理.哈尔滨:哈尔滨工业大学出版社, 1994.
    [54]张树侠,孙静.捷联式惯性导航系统.北京:国防工业出版社, 1992.
    [55]鲍虎,刘隆和.对人在回路末制导导弹的干扰研究.航天电子对抗, 2002(2): 30-33 .
    [56]张伟,王江云,王行仁.人在回路仿真系统物理效应可信度研究.系统仿真学报vol. 14, No.6, 2002: 815-20.
    [57]王行仁.飞行实时仿真系统及技术.北京:北京航空航天大学出版社, 1994.
    [58]李新国.制导飞行含人工跟踪的飞行力学分析.飞行力学vol. 15, No. 2, 1997.6: 86-90.
    [59]胡兆丰.人机系统和飞行品质.北京:北京航空航天大学出版社, 1989.
    [60]张万清.飞航导弹电视导引头.北京:宇航出版社, 1994.
    [61]杨臣华.激光与红外技术手册.北京:国防工业出版社, 1990.
    [62] Francis B.A, Doyle J.C., Linear Control Theory with an H-infinity Optimal Criterion. SIAM Control Opt 25, 1987: 815-844
    [63] Doyle, J., Glover, K., Khargonekar, P., and Francis, B., State-space solutions to standard H2 and H-infinity control problems, Vol. 88 part 1-3, Published by American Automatic Control Council, Green Valley, AZ, USA, Atlanta, GA, USA, 1988: 1691-1696.
    [64] Glover K, Doyle J.C., State Space Formulate for all Stabilizing Controllers that Satisfy and H-infinity norm Bound and Relations to Risk Sensitivity. Systems and Control Letters 11,1988: 167-172
    [65] Rogers W L, Collins D J., X-29 H-infinity controllers synthesis. Journal of Guidance, Control, and Dynamics , vol. 15, no. 4, July-Aug. 1992: 962-967.
    [66] Balas G.J., Lind R, Packard A, Optimally scaled H-infinity full information control synthesis with real uncertainty. Journal of Guidance, Control, and Dynamics (0731-5090), vol. 19, no. 4, July-Aug. 1996: 854-862
    [67] Farret D., Duc G., Harcaut J.P. (2001), Multirate H-infinity loop-shaping control applied to missile autopilot design. AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, Aug. 6-9, 2001
    [68] Friang J.P., Bonnet J.P., Duc G.. Control of a Supersonic Air to Ground Missile with Very Lightly Damped Bending Modes. Aerospatiale Missiles, Subsystem Integration for Tactical Missiles (SITM) and Design and Operation of Unmanned Air Vehicles (SEE N97- 20563 01-01).
    [69] Friang J.P., Duc G., Bonnet J.P. Robust autopilot for an air to ground missile - Loop shaping H-infinity design, gap-metric and real u-analysis. AIAA, Guidance, Navigation and Control Conference, San Diego, CA, July 29-31, 1996
    [70] Friang, J. P., Duc, G., and Bonnet, J. P., Robust autopilot for a flexible missile: Loop-shaping H-infinity- design and real u-analysis, International Journal of Robust and Nonlinear Control, Vol. 8, No. 2, 1998: 129-153.
    [71] Hiret A., Duc G., Farrer D., Friang J.P. Linear-parameter- varying/loop-shaping H-infinity synthesis for a missile autopilot. Journal of Guidance, Control, and Dynamics (0731-5090), vol. 24, no. 5, Sep.-Oct. 2001: 879-886
    [72]郑建华,杨涤.鲁棒控制理论在倾斜转弯导弹中的应用.北京:国防工业出版社, 2001
    [73]李春文,冯元琨.多变量非线性系统的逆系统方法.北京:清华大学出版社, 1991.
    [74]蔡维黎.超机动飞行的非线性动态逆控制[D].南京:南京航空航天大学. 1993.9
    [75]王健.先进短矩垂直着陆飞机的非线性动态逆控制[D].南京:南京航空航天大学. 2000.3
    [76] Lane S.H. and Stengel R.F., Flight Control Design Using Nonlinear Inversion Dynamics, Automatica, Vol. 24, 1988: 471-483.
    [77] Tahk, M., Briggs M., and Menon P.K.A., Application of Plant Inversion via State Feedback to Missile Autopilot Design, Proceeding of the 27th Conference on Decision and Control, Austin, TX, 1986.
    [78] McDowell, D. M., Irwin, G. W., and McConnell, G., Online Neural Control Applied to a Bank-to-Turn Missile Autopilot, Proceedings of the AIAA Guidance, Navigation, and Control Conference, Baltimore, MD, 1995: 1286~1294.
    [79] R.T.Rysdyk and A.J.Calise. Adaptive Model Inversion Flight Control for Tilt-Rotor Aircraft. Journal of Guidance, Control and Dynamics, 1999: 402-407.
    [80]朱恩.大迎角超机动飞行控制技术研究[D].南京:南京航空航天大学. 1995
    [81] Funahasi K., On the approximate realization of continuous mappings by neural networks, Neural Networks. 1989,2(3): 183~192.
    [82] Andrew R.Teel, A Nonlinear Small Gain Theorem for the Analysis of Control System with Saturation, IEEE Trans.On Automatic Control, Vol. 41, 1996: 1256-1270.
    [83] Wensheng Liu, Yacine Chitour and Eduardo Sontag, On Finite-Gain Stabilizability of Linear Systems Subject to Input Saturation, SIAM J.Control and Optimization, Vol. 34, 1996: 1190-1219.
    [84] R.Hanus, M.Kinnaert , and J.L.Henrotie, Conditioning Technique, a General Anti-windup and Bumpless Transfer Method, Automatica, Vol. 23, 1987: 851-858.
    [85] Wang Hui and Sun Jing, Modified Model Reference Adaptive Control with Saturated Inputs, Proceedings of the 31st Conference on Decision and Control, IEEE, 1992: 3255-3256.
    [86] Maria M., Seron Stefan F.Graebe , and Graham C.Goodwin, All Stabilization Controllers, Feedback Linearization and Anti-windup: A Unified Review., Proceeding of the American Control Conference, Baltimore, Maryland, 1994: 1685-1689.
    [87] R.A.Hess and S.A.Snell., Flight Control Design with Actuator Saturation: SISO Systems with Unstable Plants, 33rd Aerospace Sciences Meetings and Exhibit, Reno, NV, Vol. AIAA-95-336, 1995.
    [88]褚健,俞立,苏宏业.鲁棒控制理论及应用[M].杭州:浙江大学出版社, 2000.
    [89] P Kokotovic, M Arcak. Constructive nonlinear control: A historical perspective [J]. Automatica, 2001, 37(5): 637-662.
    [90]杨俊华,吴捷,胡跃明.反步方法原理及在非线性鲁棒控制中的应用.控制与决策, Vol. 17 Suppl., Nov. 2002.pp.641~653
    [91] Kanellakopoulos, I., Kokotovic, P. V., and Morse, A. S., Systematic design of adaptive controllers for feedback linearizable systems, IEEE Transactions on Automatic Control, Vol. 36, No. 11, 1991: 1241-1253.
    [93] J. Kalkkuhl, T. A. Johansen and J. Ludemann, Improved transient performance of nonlinearadaptive backstepping using estimator resetting based on multiple models. IEEE Transactions on Automatic Control, 2002: 136-140.
    [94] A. Zaher, M. Zohdy, F. Areed and K. Soliman, Robust model-reference control for a class of non-linear and piecewise linear systems. 2001 American Control Conference (A01-45916), 2001: 4514-4519.
    [95] I. Haskara and U. Ozguner, An estimation based robust tracking controller design for uncertain nonlinear systems. IEEE Conference on Decision and Control(A00-48781), 1999: , 4816-4821.
    [96] Teel, A. R. and Praly, L., On assigning the derivative of a disturbance attenuation clf, Proceedings of the IEEE Conference on Decision and Control, Vol. 3, 1998: 2497-2502.
    [97] Lee, T. and Kim, Y., Nonlinear adaptive flight control using backstepping and neural networks controller, Journal of Guidance, Control, and Dynamics, Vol. 24, No. 4, 2001: 675-682.
    [98] Zhang, Y. and Peng, P. Y., Stable neural controller design for unknown nonlinear systems using backstepping, Vol. 2, Institute of Electrical and Electronics Engineers Inc., Piscataway, NJ, USA, San Diego, CA, USA, 1999: 1067-1071.
    [99] S. Jagannathan, Robust backstepping control of nonlinear systems in discrete-time using multilayer neural networks. IEEE Conference on Decision and Control (A98-46276), 1997: 480-485.
    [100] Stotsky, A., Hedrick, J. K., and Yip, P. P., Use of sliding modes to simplify the backstepping control method, Vol. 3, IEEE, Piscataway, NJ, USA, Albuquerque, NM, USA, 1997: 1703-1708.
    [101] R. Eaton, T. Hesketh and D. J. Clements, Dynamical sliding mode control of perturbed nonlinear systems in strict feedback form. IEEE Conference on Decision and Control(A00-48781 14-63), 1999: 5146-5151.
    [102] A. Ferrara and L. Giacomini, Application of a multi-input backstepping design with second order sliding modes to control mechanical systems with flexibility. IEEE Conference on Decision and Control (A99-48220), 1998: 2409-2414.
    [103] Y. A. Hu, P. Y. Cui, Y. A. Zhang and Z. Q. Song, Backstepping-based variable structure control for a class. Flight Dynamics, 2001: 83-86.
    [104] R. T. Bupp, D. S. Bernstein and V. T. Coppola, Vibration suppression of multi-modal translational motion using a rotational actuator. IEEE Conference on Decision and Control(A96-25920), 1994: 4030-4034.
    [105] A. B. Page and M. L. Steinberg, Effects of control allocation algorithms on a nonlinear adaptive design. AIAA Guidance (A99-36576), 1999: 1664-1674.
    [106] Lin, F. J., Shen, P. H., and Hsu, S. P., Adaptive backstepping sliding mode control for linear induction motor drive, IEE Proceedings: Electric Power Applications, Vol. 149, No. 3, 2002: 184-194.
    [107] M. S. de Queiroz, D. M. Dawson and A. Suri, Nonlinear control of a large gap 2-DOF magnetic bearing system based on a coupled force model. 1997 American Control Conference 3 (A98-15470), 1997: 2165-2169.
    [108] J. Hu, D. M. Dawson, T. Burg and P. Vedagarbha, An adaptive tracking controller for a brushless dc motor with reduced overparameterization effects. IEEE Conference on Decision and Control , 1994: 1850-1855.
    [109] D. Nganga-Kouya, M. Saad and L. Lamarche, Backstepping adaptive hybrid force/position control for robotic manipulators. 2002 American Control Conference (ACC), 2002: 4595-4606 .
    [110] M. L. Steinberg and A. B. Page, Nonlinear adaptive flight control with a backstepping design approach. AIAA Guidance , 1998: 728-738.
    [111] R. A. Hull and Z. Qu, Dynamic robust recursive control design and its application to a nonlinear missile autopilot. 1997 American Control Conference, 1997: 833-837.
    [112] B. Su, X. Chen, Y. Cao and Y. Yang, Adaptive backstepping flight control with actuator saturation. Transactions of Nanjing University of Aeronautics and Astronautics 2001: 81-85.
    [113] Hess R A and Snell S A, Flight control design with actuator saturation: SISO systems with unstable plants. AIAA 33rd Aerospace Sciences Meetings and Exhibit, Reno NV 9-12 (1995).
    [114] Teel A R, A nonlinear small gain theorem for the analysis of control system with saturation. IEEE Trans on Automatic Control 41, 1256-1270 (1996).
    [115] Bodson M and Pohlchuck W A, Command Limiting in reconfigurable flight control. AIAA Guidance, Navigation and Control Conference, New Orleans, LA 1997: 11-13.
    [116]闵昌万,袁建平.军用飞行器航迹规划综述.飞行力学,Vol.16, No. 4, Dec. 1998: 14~19.
    [117] Pappas G J, Lygeros J and Godbole D N, Stabilization and tracking of feedback linearizablesystems under input constraints. Proceedings of 34th Conference on Decision and Control, 1995: 596-601.
    [118] Miller R B and Pachter M., Maneuvering flight control with actuator constraints. Journal of Guidance, Control and Dynamics ,1997: 729-734.
    [119]曹云峰,苏丙未.无人机4D制导系统研究.南京航空航天大学学报, Vol. 34 No. 5, Oct. 2002: 470~473.
    [120]刘国刚,沈春林,陆宇平,李丽荣.飞行航迹动态逆跟踪控制的神经网络方法.南京航空航天大学学报, Vol. 34, No. 2, April 2002: 186~189
    [121] P. J. Yuan and S. C. Hsu, Solutions of generalized proportional navigation with maneuvering and nonmaneuvering targets. IEEE Transactions on Aerospace and Electronic Systems 31, 1995: 469-474.
    [122] M. Kim and K. V. Grider, Terminal guidance for impact attitude angle constrained flight trajectories. IEEE Transactions on Aerospace and Electronic Systems, AES-9, 1973: 852-859.
    [123] R. J. York and H. L. Pastrick, Optimal terminal guidance with constraints at final time. Journal of Spacecraft and Rockets 14, 1997: 381-382.
    [124] Glizer, V. Y. Optimal planar interception with fixed end conditions: closed-form solution. Journal of Optimization Theory and Applications, 1996: 503~539.
    [125] Idan, M., Golan, O. M., and Guelman, M., Optimal planar interception with terminal constraints, Journal of Guidance, Control, and Dynamics, Vol. 18, No. 6, 1995: 1273-1279.
    [126]宋建梅,张天桥。带末端落角约束的变结构导引律。弹道学报,Vol. 13, No. 1, 2001.3. pp. 17~19
    [127] Byung S.K., Jang G.L. and Hyung S.H., Biased PNG Law for Impact with Angular Constraint. IEEE Transactions on Aerospace and Electronic Systems, 1998: 277-288.
    [128] I. J. H. J. S. Ha, M. S. Ko and T. L. Song, Performance analysis of PNG laws for randomly maneuvering targets. IEEE Transactions on Aerospace and Electronics Systems, 1990: 713-721 .
    [129]王恒霖,曹建国.仿真系统的设计与应用.北京:科学出版社, 2003.1
    [130] Harel and David, Statecharts: A Visual Formalism for Complex Systems. Science of Computer Programming, 1987: 231-274.
    [131] D. J. Hatley and Imtiaz A.Pirbhai, Strategies for Real-Time System Specification, DorsetHouse Publishing Co., Inc., NY 1988.
    [132] S K Bitla. Software Modeling for Reconfigurable Machine Tool Controllers[D].. The University of Michigan, 1997.
    [133]张尧学,乔松.一种n个通信有限状态机的交互式生成法.计算机学报,1994,17(4): 264-269
    [134]蔡持峰,陈伟清,毋国庆。一种检查层次式有限状态机一致性的方法。小型微型计算机系统,Vol.21, No.12, 2000
    [135] Mats P.E.Heimdahl and Nancy G.Leveson, Completeness and Consistency in Hierarchical State-based Requirements. IEEE Trans On software Eng , 1996: 363-377.
    [136] Bjarne Stroustrup, The C++ Programming Language, Addison-Wesley, New Jersey 1997.
    [137]李建明,徐航.穿甲弹对主战坦克的计算分析方法.弹道学报,Vol. 10, No. 1, March 1998: 85~93
    [138] Leeuw M W and Zuidgees L M, Battle tank vulnerability modeling. AD-A1618827 1992: 1-8.
    [139]任思聪.实用惯导系统原理.北京:宇航出版社,1988
    [140] LIN, F.J., and CHIU, S.L. Adaptive fuzzy sliding-mode control for PM synchronous motor servo drives. IEE Proc. Control Theory Appl. 1998, 145(1): 63~72
    [141] Steinberg, M. L. and Page, A. B., Nonlinear adaptive flight control with genetic algorithm design optimization, International Journal of Robust and Nonlinear Control, Vol. 9, No. 14, 1999: 1097-1115.
    [142] P. Garnell, revised by Qi Zaikang and Xia Qunli, Guided Weapon Control Systems, Beijing Institute of Technology, 2003.
    [143]聂永芳,周卿吉,张涛.制导规律研究现状及展望.飞行力学, Vol. 19, No. 3, Sep. 2001: 7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700