高超声速滑翔式再入飞行器轨迹优化与制导方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高超声速滑翔式再入飞行器具有较大的机动能力,是实现远程快速精确打击或力量投送的新型再入飞行器。本文以解决高超声速滑翔式再入飞行器轨迹优化与制导关键技术为目标,系统研究了再入弹道特性和最优飞行攻角方案、再入轨迹优化、轨迹在线生成和制导以及弹道突防能力分析问题,主要研究成果如下:
     基于平面再入运动模型,研究了高超声速滑翔式再入飞行器的基本再入弹道形式与最优攻角方案。1)分析了再入点参数和最大升阻比对弹道的影响;2)应用物理规划方法求解了多目标最优再入轨迹,分析了沿最优轨迹飞行的物理原因;3)进一步提出了参数化最优攻角方案。
     提出了基于Gauss伪谱法的高超声速滑翔式再入飞行器快速轨迹优化方法。针对传统轨迹优化方法在初值选取、计算效率上的不足,提出了基于Gauss伪谱法的含初值生成器的分段串行优化策略。应用该优化策略计算了到达目标点的最优再入轨迹、到达目标区域的最优再入轨迹和再入飞行的可达区。通过与数值积分解比较,验证了方法的有效性。在一般高性能微机上,计算约一万公里航程的最优再入轨迹与再入飞行近似可达区的时间均为3分钟左右,体现了方法的快速性。
     改进了远程多约束三自由度再入轨迹在线生成方法。1)建立了给定飞行攻角方案和约束条件下的再入走廊数学模型;2)提出并利用改进的拟平衡滑翔条件,将弹道约束转换为控制变量约束,并将控制变量参数化,再利用速度与航程的近似关系,求解满足终端约束的控制变量参数和纵向参考轨迹;3)利用线性二次调节器跟踪纵向参考轨迹,引入航向角误差走廊控制横向轨迹,完成三自由度轨迹在线生成;4)仿真验证了该方法在一般高性能微机上耗时2-3s即可生成航程约一万公里的满足多约束的再入轨迹。
     提出了设定航路点的预测-校正与跟踪控制的混合制导策略。将航迹分为预测-校正段和接近目标的重新瞄准段,前一段在设定的航路点间制导,后一段在线重生成参考轨迹并跟踪制导。1)提出了航路点确定方法;2)预测-校正段将控制变量参数化,基于大脑情感回路智能控制器建立了航路点间的预测-校正制导算法;3)重新瞄准段在线重生成轨迹,并利用线性二次调节器实现轨迹跟踪;4)仿真验证了标准条件、考虑再入点参数、大气密度、飞行器质量、升力系数和阻力系数偏差条件和目标机动条件下混合制导方法是有效的,且与一般预测-校正制导方法比较,混合制导策略在制导精度、在线预测时间等方面具有优势。
     研究了雷达对常规再入弹道和滑翔式再入弹道的跟踪效果。基于Unscented卡尔曼滤波和考虑气动模型的目标跟踪模型,加入雷达测量噪声,计算目标跟踪误差,比较不同形式弹道的跟踪效果。仿真结果表明,滑翔式再入弹道由于其机动特性,相对弹道式再入在突破雷达跟踪上具有优势。
     论文拓展了飞行器轨迹优化数值方法的研究范畴,探索了再入制导方法的新思路,引入了智能控制领域的新方法,具有一定理论意义;同时,研究充分结合高超声速滑翔式再入飞行器的应用背景,基于理论研究成果分析其再入弹道特点与性能,对发展未来新型高超声速滑翔式再入飞行器具有重要借鉴意义。
The hypersonic glide-reentry vehicle is a new maneuverable vehicle for the long-range precise strike mission or military delivering. For the purpose of developing reentry trajectory optimization and guidance technology of the hypersonic glide-reentry vehicle, this dissertation studies the properties of the reentry trajectory, the schematic of reentry angle-of-attack, trajectory optimization, on-board trajectory generation, reentry guidance and the penetration capability of glide-reentry. The main results achieved in this dissertation are summarized as follows:
     Based on the planar reentry dynamic model, the rudimental properties of the glide-reentry trajectory and the angle-of-attack scheme are studied. 1) The influence of the initial trajectory parameters and the maximum lift-to-drag ratio on the trajectory shape is analyzed; 2) The physical programming method is employed to solve multi-objective reentry trajectory optimization problem, and the physic characteristic of the optimal trajectory shape is analyzed; 3) Then the optimal parameterized angle-of-attack scheme of reentry is proposed.
     A rapid trajectory optimization approach using Gauss Pseudospectral Method (GPM) for hypersonic glide-reentry vehicle is developed. Aimming at deficiencies of traditional trajectory optimization method in initial value determination and computation efficiency, a pipelining and segmenting trajectory optimization approach base on GPM, containing an initial guess generator, is proposed. Then this appoach is applied to compute the optimal trajectories of reaching a point target, an area target and the attainable region of reentry flight. The feasibility of this approach is validated by comparing the GPM results with that of the numerical integration. An optimal trajectory with a range of ten thousand kilometer and the attainable region of reentry flight both can be generated in about 3 minuets on a desktop computer. It indicates the rapidity of the presented approach.
     An improved on-board three-degree-of-freedom (3DOF) constrained entry trajectory generation method is proposed. 1) With the defined angle-of-attack profile and path constraints, the mathematical model of reentry corridors are biult; 2) An improved qusi-equilibrium glide condition is presented and utilized to convert all path constraints to the constraints of control variables, and the control variables are parameterized. Employing the approximate relationship between the velocity and the range, the parameters of control variable and the longitudinal reference trajectory satisfying terminate constraints can be solved; 3) Then the 3DOF trajectory generation method is completed by the heading error corridor control strategy in lateral motion and longitudinal trajectory tracking control based on the linear quadratic regulator (LQR); 4) The numerical simulation indicates that the algorithm is able to generate a reentry trajectory with a range of ten thousand kilometer satisfying all path constraints in about 2-3 seconds on a desktop computer.
     A mixed reentry guidance of predictor-corrector with defined way-points and trajectory tracking is proposed. In the solution process, the reentry trajectory is divided into the predictor-corrector part and the retargeting and tracking part which is near to the target. In the first part, the predictor-corrector method is applied to solve the guidance problem between the defined way-points. In the second part, reference trajectory is regenerated on-board and tracked. 1) The method of way-points determination is presented. 2) In the predictor-corrector part,the control variables are parameterized and the predictor-corrector algorithm is developed using the brain emotional learning based intelligence controller. 3) In the retargeting part, the trajectory is regenerated on-board and the LQR theory is employed for trajectory tracking. 4) The effectivity of the mixed guidance strategy is validated by simulations in conditions of the nominal case, the dispersed case, which consider deviations of reentry point parameters, air density, vehicle mass, lift coefficients and drag coefficients, and the target moving case. Comparing with the general predictor-corrector guidance method, the mixed guidance strategy has advantages in guidance precision and the time cost of trajectory prediction
     The radar tracking performance for conventional reentry trajectory and the glide-reentry trajectory is studied respectively. Based on the Unscented Kalman Filter and target dynamics model, the tracking error considering the measure yawp of radar is calculated and the tracking performance is compared. The simulation results indicate that the glide-reentry trajectory excels the conventional trajectory in breaking the radar tracking.
     This dissertation has some theoretical significance in extending the research domain of current numerical trajectory optimization method, exploring a new idea of reentry guidance, and importing a new controller of intelligence control. The obtained properties and performance of glide-reentry trajectory based on theoretical researches are a good reference to the development of the new type of hypersonic glide-reentry vehicle in the future.
引文
[1] George Richie. The Common Aero Vehicle - Space delivery system of the future [A]. In.AIAA Space Technology Conference & Exposition [C]. Albuquerque, NM, 1999. 1-11
    [2]雍恩米,陈磊,唐国金.助推-滑翔弹道的发展及新型制导武器方案设想[J].飞航导弹, 2006, (3): 18-22
    [3] Bomi [EB/OL]. http://www.astronautix.com/craft/bomi.htm,2004
    [4] History of Dyna-Soar [EB/OL]. http://www.aero.org/publications/crosslink/ winter2004/01.html, 2004
    [5]关世义,朱家移,潘幸华.飞航导弹发展趋势浅析[J].飞航导弹, 2003, (6): 38-43
    [6]关世义.飞航导弹体系的几个问题[J].战术导弹技术, 2004, (3): 1-10
    [7]关世义.向多极化发展的飞航导弹[J].导弹与航天运载技术, 2002, (6): 20-27
    [8]关世义.一种新概念反舰导弹及其飞行控制方案设想[J].海军航空工程学院学报, 2000, 15(4): 409-411
    [9]关世义.基于钱学森弹道的新概念飞航导弹[J].飞航导弹, 2003, (1): 1-4
    [10] Youssef Hussein, Chowdhry Rajiv. Hypersonic Global Reach Trajectory Optimization[A]. In. [C]. Providence, RI; USA, 2004. 1-9
    [11]刘克俭等.美国未来作战系统[M].北京:解放军出版社, 2006
    [12]胡建学.可重复使用跨大气层飞行器再入制导研究[D].长沙:国防科学技术大学, 2007
    [13] Wingrove Rodney C. Survey of Atmosphere Re-entry Guidance and Control Methods[J]. AIAA Journal, 1963, 1(9): 2019-2029
    [14] Huntington Geoffrey Todd. Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control Problems[D]. Cambridge,MA: Massachusetts Institute of Technology, 2007
    [15]程国采.航天飞行器最优控制理论与方法[M].长沙:国防工业出版社, 1999
    [16] Enright P. J., Conway B.A. Optimal Finite-Thrust Spacecraft Trajectories Using Collation and Nonlinear Programming[J]. Journal of Guidance ,Control and Dynamics, 1991, 14(5):981-985
    [17] Lu Ping. Inverse Dynamics Approach to Trajectory Optimization for an Aerospace Plane[J]. Journal of Guidance ,Control and Dynamics, 1993, 16(4): 726-732
    [18] Kuwata Yoshiaki, Schouwenaars Tom, Richards Arthur, et al. Robust Constrained Receding Horizon Control for Trajectory Planning[A]. In.AIAA Guidance, Navigation, and Control Conference and Exhibit[C]. San Francisco, CA; USA, 2005
    [19] Betts John T. Trajectory Optimization in the Presence of Uncertainty[J]. The Journal of the Astronautical Sciences, 2006, 54(2): 227-243
    [20] Cheng P., Shen Z.,Lavalle S. M. RRT-Based Trajectory Design for Autonomous Automobiles and Spacecraft[J]. Archives of Control Sciences, 2001, 11(3-4): 51-78
    [21]阮春荣.大气中飞行的最优轨迹[M].北京:宇航出版社, 1987
    [22] Istratie Vasile. Optimal profound entry into atmosphere with minimum heat and constraints [A]. In.AIAA Atmospheric Flight Mechanics Conference and Exhibit[C]. Montreal, Canada, 2001
    [23] Istratie Vasile. Optimal skip entry with terminal maximum velocity and heat constraint[A]. In.AIAA Atmospheric Flight Mechanics Conference and Exhibit[C]. Albuquerque, NM, 1998
    [24] Vinh Nguyen X., Ma D. M. Optimal Multiple-Pass Aeroassisted Plane Change[J]. Acta Astronautica, 1990, 21(11): 749-758
    [25] Yinh Nguyen X., Lu Ping. Necessary conditions for maximax problems with application to aeroglide of hypervelocity vehicles[J]. Acta Astronautica, 1987, 13(6/7): 413-420
    [26]吴德隆,王小军.航天器气动力辅助变轨动力学与最优控制[M].北京:中国宇航出版社, 2006
    [27]袁方.最优过程理论在飞行轨迹优化计算中的应用[J].飞行力学, 2000, 18(1): 50-53
    [28]周浩,周韬,陈万春等.高超声速滑翔飞行器引入段弹道优化[J].宇航学报, 2006, 27(5): 970-973
    [29]王大轶,李铁寿,马兴瑞.月球最优软着陆两点边值问题的数值解法[J].航天控制, 2000, (3): 44-49
    [30]赵汉元.飞行器再入动力学和制导[M].长沙:国防科技大学出版社, 1997
    [31] Shi Y. Y., Nelson R. L., Young D. H. The application of nonlinear programming and collocation to optimal aeroassisted orbital transfers[A]. In.AIAA, Aerospace Sciences Meeting and Exhibit[C]. Reno, NV, 1992.
    [32]涂良辉,袁建平,岳晓奎.基于直接配点法的再入轨迹优化设计[J].西北工业大学学报, 2006, 24(5): 653-657
    [33]罗亚中.系列化运载火箭总体优化技术研究[D].长沙:国防科学技术大学, 2003
    [34]李小龙,陈士橹.航天飞机的最优再入轨迹与制导[J].宇航学报, 1993, (1): 7-13
    [35]彭伟斌,吴德隆.升力式航天器再入最优轨迹研究[J].弹道学报, 2003, 15(4): 1-6
    [36] Zimmermann Frank, alise Anthony J. Aeroassisted orbital transfer trajectory optimization using direct methods[A]. In.AIAA Atmospheric Flight Mechanics Conference[C]. Baltimore, MD, 1995.
    [37] Bellman R. E. Dynamic Programming[M]. Princeton,USA: Princeton University Press, 1957
    [38]张之胚,李建德.动态规划及其应用[M].北京:国防工业出版社, 1994
    [39] Betts John T. Survey of numerical methods for trajectory optimization[J]. Journal of Guidance ,Control and Dynamics, 1998, 21(2): 193-206
    [40] Luus R. Iterative dynamic programming: from curiosity to a practical optimization procedure [J]. Control and Intelligent Systems, 1998, 26: 1-8
    [41] Bousson Kouamana. Single Gridpoint Dynamic Programming for trajectory Optimization[A]. In.AIAA Atmospheric Flight Mechanics Conference and Exhibit[C]. San Francisco, California, 2005
    [42] Verma Ajay, Junkins John L. Inverse dynamics approach for real-time determination of feasible aircraft reference trajectories[A]. In.AIAA Atmospheric Flight Mechanics Conference and Exhibit[C]. Portland,OR, 1999
    [43] Verma Ajay, Oppenheimer Michael W., Doman David B. On-Line Adaptive Estimation and Trajectory Reshaping[A]. In.AIAA Guidance, Navigation, and Control Conference and Exhibit[C]. San Francisco, CA; USA, 2005 .AIAA 2005-6436
    [44] Lu Ping, Pierson Bion L. Optimal Aircraft Terrain-Following Analysis and Trajectory Generation[J]. Journal of Guidance ,Control and Dynamics, 1995, 18(3): 555-560
    [45]玄光男,程润伟著.遗传算法与工程优化[M].北京:清华大学出版社, 2004
    [46] Adam W., Tim C., Ellen B. Genetic algorithm and calculus of variations-based trajectory optimization technique[J]. Journal of Spacecraft and Rockets, 2003, 40(6): 882-888
    [47] Gang Chen, Min Xu, Zi-ming Wan, et al. RLV Reentry Trajectory Multi-objective Optimization Design Based on NSGA-II Algorithm[A]. In.AIAA Atmospheri Flight Mechanis Conferene and Exhibit[C]. San Francisco, California, USA, 2005
    [48] Hu Ying, Chen Gang, Wan Zi-Ming, et al. Multi-Objective Pareto Collaborative Optimization And Its Application[A]. In.11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference [C]. Portsmouth, Virginia, 2006.
    [49] Akhtar Saqlaini, Linshu He. An Efficient Evolutionary Multi-Objective Approach for Robust Design of Multi-Stage Space Launch Vehicle[A]. In.11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference[C]. Psrtsmouth, Virginia, 2006
    [50] Suzuki Shinji, Yoshizawa Takeshi. Multiobjective Trajectory Optimization by Goal Programming with Fuzzy Decisions[J]. Journal of Guidance ,Control and Dynamics, 1994, 17(2): 297-303
    [51] Elnagar J., Kazemi M. A., Razzaghi M. The pseudospectral Legendre method for discretizintg optimal control problems[J]. IEEE Transactions on Automatic Control, 1995, 40(10): 1793-1796
    [52] Fahroo F., Ross I. M. On discrete-time optimality conditions for pseudopectral methods[A]. In.AIAA/AAS Astrodynamics Specialist Conference and Exhibit[C]. Keystone, CO, 2006.
    [53] Ross I. M., Fahroo F. Pseudospectral knotting methods for solving optimal control problems [J]. Journal of Guidance ,Control and Dynamics, 2004, 27(3): 397-405
    [54] F. Fahroo, Ross I. M. Costate estimation by a Legendre pseudospectral method[A]. In.AIAA Guidance, Navigation, and Control Conference and Exhibit[C]. Boston, MA, 1998. AIAA 98-4222
    [55] Bollino Kevin P, Oppenheimer Michael W, Doman David D. Optimal Guidance Command Generation and Tracking for Reusable Launch Vehicle Reentry[A]. In.AIAA Guidance, Navigation, and Control Conference Proceedings[C]. Keystone, Colorado, 2006. AIAA 2006-6691
    [56] Williams Paul. Real-Time Computation of Optimal Three-Dimensional Aircraft Trajectories including Terrain-Following[A]. In.AIAA Guidance, Navigation, and Control Conference Proceedings[C]. Keystone, Colorado, 2006
    [57] Bollino Kevin P. High-Fidelity Real-Time Trajectory Optimization for Reusable Launch Vehicles[D]. Monterey, California: Naval Postgraduate School, 2006
    [58] Willianms P. A comparison of differentiation and integration based direct transcription methods[A]. In.AAS/AIAA Space Flight Mechanics Conference[C]. Copper Mountain, CO., 2005
    [59] Paris S. W., Riehl J. P., Sjuaw W. K. Enhanced procedures for direct trajectory optimization using nonlinear programming and implict integration[A]. In.AIAA/AAS Astrodynamics Specialist Conference and Exhibit[C]. Keystone CO 2006.
    [60] Gong Q., Kang W., Ross I. M. A pseudospectral method for the optimal control of constrained feedback linearizable systems[J]. IEEE Transactions on Automatic Control, 2006, 51(7):1115-1129
    [61] Ross I. M., Fahroo F. A pseudospectral transformation of the covectors of optimal control systems[A]. In.Proceedings of the 1st IFAC/IEEE Symposium on Structure and Control[C]. Prague, Czech Republic, 2001
    [62] Reddien W. Collocation at Gauss Points as a Discretization in Optimal Control[J]. SIAMJournal of Control and Optimization, 1979, 17(2):518-525
    [63] Banks H. T., Fahroo. Legendre-Tau Approximations for LQR Feedback Control of Acoustic Pressure Fields[J]. Journal of Mathematical Systems,Estimation, and Control, 1995, 5(2): 271-274
    [64] Rao Anil V., Clarke Kimberley A. Performance optimization of a maneuvering reentry vehicle using a legendre pseudospectral method[A]. In.AIAA Atmospheric Flight Mechanics Conference and Exhibit[C]. Monterey, California, 2002
    [65] Benson David. A Gauss Pseudospectral Transcription for Optimal Control[D]. Cambridge, Massachusetts: Massachusetts Institute of Technology, 2005
    [66] Fahroo F., Ross I. M. Direct trajectory optimization by a chebyshev pseudospectral method[J]. Journal of Guidance ,Control and Dynamics, 2002, 25(1): 160-166
    [67] Ross I. M., Rea Jeremy, Fahroo F. Exploiting highter-order derivatives in computational optimal control[A]. In.Proceedings of the 10th Mediterranean Conference on Control and Automation[C]. Mediterranean Control Assoc., 2002
    [68] Benson A., Thorvaldsen T., Rao V. Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method[J]. Journal of Guidance ,Control and Dynamics, 2006, 29(6): 1435-1440
    [69] Huntington Geoffrey Todd,Rao Anil V. Optimal configuration of spacecraft formation via a Gauss Pseudospectral Method[A]. In.AAS spaceflight Mechanics Meeting[C]. Copper Mountain, CO, 2005
    [70] Frazzoli E., Dahleh M. A., Feron E. Real-Time Motion Planning for Agile Autonomous Vehicles[J]. Journal of Guidance ,Control and Dynamics, 2002, 25(1): 116-129
    [71] Lavalle S. M. Rapidly-Exploring Random Trees: A new Tool for Path Planning[R]. Technique Report No.98-11,Dept. of Computer Science, Iowa State University, 1998
    [72]席裕庚.预测控制[M].北京:国防工业出版社, 1993
    [73] Mayne D., Rawling J., Rao C., et al. Constrained model predictive control: Stability and optimality[J]. Automatica, 1987, 36(6): 789-814
    [74] Bellingham J., Richards A., How J. Receding Horizon Control of Autonomous Aerial Vehicles[A]. In.American Control Conference[C]. 2002.
    [75] Mettler Bernard, Bachelder Edward. Combining On- and Offline Optimization Techniques for Efficient Autonomous Vehicle's Trajectory Planning[A]. In.AIAA Guidance, Navigation, and Control Conference and Exhibit[C]. San Francisco, CA; USA, 2005. 1-13
    [76]唐强,张新国,刘锡成.一种用于低空飞行的在线航迹重规划方法[J].西北工业大学学报, 2005, 23(4): 271-275
    [77] Miele A.. Recent advance in the optimization and guidance of aeroassisted orbital transfer[J]. Acta Astronautica, 1996, 38(10): 747-768
    [78]南英,陈士橹,吕学富等.航天器再入轨迹与控制进展[J].导弹与航天运载技术, 1994, (5): 1-11
    [79]赵汉元.航天器再入制导方法综述[J].航天控制, 1994, (1): 26-33
    [80]吴德隆.气动力辅助变轨的制导研究进展[J].导弹与航天运载技术, 2003, (6): 25-31
    [81] Harpold J. C., Graves C. A., Jr. Shuttle Entry Guidance[J]. The Journal of the Astronautical Sciences, 1979, XXVII(3): 239-268
    [82] Roenneke A. J., Markl Albert. Re-entry control of a Drag vs. Energy Profile[J]. Journal ofGuidance, Control and Dynamics, 1994, 17(5): 916-920
    [83] P. Lu. Entry Guidance and Trajectory Control for Reusable Launch Vehicle[J]. Journal of Guidance, Control and Dynamics, 1997, 20(1): 143-149
    [84] Lu Ping, Hanson J. M. Entry guidance for X-33 Vehicle[J]. Journal of Spacecraft and Rockets, 1998, 35(3): 342-349
    [85] Grimm W., Meulen J. G. van der, Roenneke A. J. Optimal Update Scheme for Drag Reference Profile in an Entry Guidance[J]. Journal of Guidance, Control and Dynamics, 2003, 26(5): 695-701
    [86] Mease Kenneth D., Kremer Jean-Paul. Shuttle Entry Guidance Revisited Using Nonlinear Geometric Methods[J]. Journal of Guidance ,Control and Dynamics, 1994, 17(6): 1350-1356
    [87] Jouhaud F. Closed Loop Reentry Guidance Law of a Space Plane: Application to Hermes[J]. Acta Astronautica, 1992, 26(8-10): 577-585
    [88] Saraf A., Leavitt J. A., Chen D. T., et al. Design and Evaluation of an Acceleration Guidance Algorithm for Entry[J]. Journal of Spacecraft and Rockets, 2004, 41(6): 986-996
    [89] Leavitt James Aaron. Advanced entry guidance algorithm with landing footprint computation[D]. Irvine: University of California, 2005
    [90] Dukeman Greg A. Profile-following entry guidance using linear quadratic regulator theory[A]. In.AIAA Guidance, Navigation, and Control Conference and Exhibit[C]. Monterey, CA, 2002. 1-10
    [91] Zimmerman C., Dukeman G. A., Hanson J. M. Automated Method to Compute Orbital Reentry Trajectories with Heating Constraints[J]. Journal of Guidance, Control and Dynamics, 2003, 26(4): 523-529
    [92] Shen Zuojun, Lu Ping. Onbooard generation of three-dimensional constrained entry trajectories[J]. Journal of Guidance, Control and Dynamics, 2003, 26(1): 110-121
    [93] Shen Z., Lu Ping. Onboard entry trajectory planning expanded to sub-orbital flight[R]. AIAA 2003-5736, 2003
    [94] Sivan K., Amma S. Savithri, Joshi Ashok, et al. An adaptive reentry guidance[R]. Indian: Indian Institute of Technology Bombay, 2004
    [95] Youssef Hussein, Chowdhry Rajiv S., Lee Howard, et al. Predictor-corrector entry guidance for reusable launch vehicles[A]. In.AIAA Guidance, Navigation, and Control Conference and Exhibit[C]. Montreal, Canada, 2001
    [96]潘乐飞,李新国.可重复使用运载器预测-校正再入制导研究[J].飞行力学, 2007, 25(1): 55-58
    [97] Joshi Ashok, Sivan K., Amma S. Savithri. Predictor-Corrector Reentry Guidance Algorithm with Path Constraints for Atmospheric Entry Vehicles[J]. Journal of Guidance, Control and Dynamics, 2007, 30(5): 1307-1318
    [98] Jits Roman Y., Walberg Gerald D. Blended control, predictor-corrector guidance algorithm: an enabling technology for Mars aerocapture[J]. Acta Astronautica, 2004, 54: 385-398
    [99] Menon P., Ohlmeyer E.J. Nonlinear integrated guidance-control laws for homing missiles[A]. In.AIAA guidance, navigation and control Conference and Exhibit[C]. Montreal, Canada, 2001.
    [100] Lin C.F., Ohlmeyer E., Bibel J.E., et al. Optimal design of integrated missile guidance and control [R]. AIAA-98-5519, 1998
    [101] Jessick M.V., Knobbs D.L. Integrated Guidance and Control Algorithms for the nationallaunch system[A]. In.AIAA Guidance, Navigation and Control Conference[C]. Hilton Heard Island, SC, 1992
    [102] Johnson E. N., Calise A. J., Curry M. D. . Adaptive guidance and control for autonomous hypersonic vehicles[J]. Journal of Guidance, Control and Dynamics, 2006, 29(3): 725-737
    [103] Schierman J. D., Ward D., Monaco J. F., et al. A reconfigurable guidance approach for resuable launch vehicle[R]. AIAA 2001-4429, 2001
    [104] J. Burken, P. Lu, Z. Wu. Reconfigurable control designs with application to the X-33 vehicle [R]. AIAA 99-4134, 1999
    [105] Shen Z, Lu Ping. Dynamic Lateral Entry Guidance Logic[J]. Journal of Guidance ,Control and Dynamics, 2004, 27(6): 949-959
    [106] Bharadwaj Sanjay, Rao Anil V., Mease Kenneth D. Entry Trajectory Tracking Law via Feedback Linearization[J]. Journal of Guidance ,Control and Dynamics, 1998, 21(5): 726-732
    [107] Lu Ping. Regulation about Time-Varying Trajectories: Precision Entry Guidance Illustrated [J]. Journal of Guidance, Control and Dynamics, 1999, 22(6): 784-790
    [108] Sudhir M., Tewari Ashish. Adaptive maneugering entry guidance with ground-track control[J]. Aerospace Science and Technology, 2007, 11(2): 419-431
    [109] Jorris Timothy R. Common Aero Vehicle autonomous reentry trajectory optimization satisfying waypoint and no-fly zone constraints[D]. Air University, 2007
    [110] Pournelle P. E. Component based simulation of the space operations vehicle and the Common Aero Vehicle[D]. Monterey: Naval Postgraduate School, 1999
    [111] Anderson Jason. Optimal constellation design for orbital munitions delivery system[D]. Air Force Institute of Technology, 2004
    [112]周须峰.轨道拦截与再入制导策略和方法研究[D].西安:西北工业大学, 2007
    [113]徐德康. "超翱翔"跨大气层飞行轰炸机[J].国际航空, 1998, (12): 36-37
    [114]贾沛然,陈克俊,何力编著.远程火箭弹道学[M].长沙:国防科技大学出版社, 1993
    [115]王贵东.弯头机动弹头再入螺旋弹道分析[D].北京:北京空气动力研究所, 2000
    [116] Corporation, T. P.A Common Aero Vehicle model,description, and employment guide[EB/OL]..www.dtic.mil/matris/sbir/sbir041/srch/af031a.doc,2003
    [117] Tappeta R. V., Renaud J. E.,Messac A. Interactive physical programming - Tradeoff analysis and decision making in multicriteria optimization[J]. Journal of Aircraft, 1997, 33(2): 446-449
    [118] Messac Achille, Chen Xuan. Visualizing the optimization process in real-time using physical programming[J]. Engineering Optimization, 2000, 32(6): 721-747
    [119]王允良,李为吉.物理规划方法在飞机方案设计中的应用[J].航空学报, 2005, 26(5): 562-566
    [120] Messac A., Sundararaj G. J. A robust design approach using physical programming[R]. AIAA 2000-0562, 2000
    [121] McAllister Chales D., Simpson Timothy W., Lewis Kemper, et al. Robust multiobjective optimization through collaborative optimization and linear physical programming[A]. In.10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference[C]. Albany, New York, 2004
    [122] Messac A., Batayneh W., Ismail-Yahaya A. Physical Programming for production planning[A]. In.42th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics andMaterials Conference[C]. Seattle, WA, 2001. AIAA 2001-1496
    [123] Chen Wei, Aahai Atul, Messac A., et al. Physical programming for robust design[R]. AIAA 99-1206, 1999
    [124] Messac Achille. Physical programming - Effective optimization for computational design [J]. AIAA Journal, 1996, 34(1): 149-158
    [125] Messac A., E. Melachrinoudis, Sukam Cyriaque P. Physical Programming: A Mathematical Perspective [R]. AIAA 2000-0686, 2000
    [126] Messac A., Sundararaj G. J. Physical programming's ability to generate a well-distributed set of pareto points[R]. AIAA 2000-1666, 2000
    [127] Ngo Anhtuan, Blake William. Longitudinal control and footprint analysis for a Reusable Military Launch vehicle[A]. In.2003 AIAA Guidance, Navigation, and Control Conference and Exhibit[C]. Austin, TX, 2003
    [128] Saraf A., Leavitt J. A., Mease K. D., et al. Landing Footprint Computation for Entry Vehicles[A]. In.AIAA Guidance, Navigation, and Control Conference and Exhibit[C]. Providence, RI; USA, 2004
    [129] Ngo Anhtuan D., Doman David B. Footprint determination for reusable launch vehicles experiencing control effector failures[A]. In.AIAA Guidance, Navigation, and Control Conference and Exhibit[C]. Monterey, CA
    [130] Stryk von, Bulirsch. Direct and indirect methods for trajectory optimization[J]. Annals of Operations Research, 1992, 37: 357-373
    [131] Subchan S, Zbikowski Rafal, Cleminson John. Optimal trajectory for the terminal bunt problem - An analysis by the indirect method[A]. In.AIAA Guidance, Navigation, and Control Conference and Exhibit[C]. Austin, TX, 2003.
    [132] Robert T. Trajectory optimization for a fixed-trim reentry vehicle using direct collocation and nonlinear programming[A]. In.AIAA Guidance, Navigation, and Control Conference & Exhibit[C]. Denver, USA, 2000.
    [133] Hull David G. Conversion of optimal control problems into parameter optimization problems[J]. Journal of Guidance, Control and Dynamics, 1997, 20(1): 57-60
    [134]黄奕勇,张育林.用高精度配点法进行弹道优化[J].推进技术, 1998, 19(4): 66-69
    [135]黄奕勇,张育林.配点法研究[J].弹道学报, 1998, 10(3): 40-43
    [136] Elnagar J., Kazemi M. A. Pseudospectral Chebyshev optimal control of constrained nonlinear dynamicla systems[J]. Computational Optimization and Applications, 1998, (11): 195-217
    [137] Fahroo F., Ross I. M. On discrete-time optimality conditions for pseudospectral methods[A]. In.AIAA/AAS Astrodynamics Specialist Conference and Exhibit[C]. Keystone, CO, 2006.
    [138] Vinh NGUYEN X., Busemann A., Culp R. D. Hypersonic and planetary entry flight mechanics[M]. Ann Arbor,MI: Univ. of Michigan Press, 1980
    [139] Hull avid G., Speyer son L. Optimal reentry and plane-change trajectories[J]. The Journal of the Astronautical Sciences, 1982, (2): 117-130
    [140] Shen Zuojun. On-board three-dimensional constrained entry flight trajectory generation[D]. Ames, Iowa: Iowa State University, 2002
    [141] Lu Ping, Hanson John M. Entry Guidance for the X-33 Vehicle[J]. Journal of Spacecraft and Rockets, 1998, 35(3): 342-349
    [142] Rouhani H., Milasi R.M., Lucas C. Speed control of switched reluctance motor (SRM) using emotional learning based adaptive controller[A]. In.Control and Automation, 2005. ICCA '05.International Conference on[C]. 2005. 330-334
    [143] Mohammdi-Milasi R., Lucas C., Nadjar-Arrabi B. Speed control of an interior permanent magnet synchronous motor using BELBIC(brain emotional learning based intelligent controller[A]. In.World Automation Congress, 2004. Proceedings[C]. 2004. 280-286
    [144] Moren J. Emotion and Learning- A Computational Model of the Amygdala[D]. Lund: Lund University, 2002
    [145] Lucas C., Shahmiradi D., Sheikholeslami N. Introducing BELBIC: Brain Emotional Learning Based Intelligent Controller[J]. International Journal of Intelligent Automation and Soft Computing, 2004, 10(1): 11-22
    [146] Mehrabian Ali Reza, Lucas Caro. Emotional Learning based Intelligent Robust Adaptive Controller for Stable Uncertain Nonlinear Systems[J]. International Journal of Computational Intelligence, 2006, 2(4): 246-252
    [147]王上飞,王煦法.基于大脑情感回路的人工情感智能模型[J].模式识别与人工智能, 2007, 20(2): 167-172
    [148] Mohammdi-Milasi R., Lucas C., Najar-Arrabi B. A novel controller for a power system based BELBIC (brain emotional learning based intelligent controller[A]. In.World Automation Congress [C]. 409-420
    [149] Rashidi M., Rashidi F. Firing angle control of TCSC using Emotional Learning Based Fuzzy Controller[A]. In.Systems, Man and Cybernetics, 2003. IEEE International Conference on[C]. 2003
    [150] Moren J., Balkenius C. A Computational Model of Emotional Learning in the Amygdala[A]. In.Proceedings of the 6th International Conference on the Simulation of adaptive behavior[C]. Cambridge, Mass., 2000.
    [151]陈文光.美国战区导弹防御系统及其发展[J].导弹与航天运载技术,2001(3):29-32
    [152]史岩译.新兴导弹国家对抗美国NMD系统手段概述[J]. 863先进防御技术通讯(A类),2001(7):27-46
    [153]陈文光.美国战区导弹防御系统及其发展[J].导弹与航天运载技术, 2001, (3): 29-32
    [154]于国桥,张安清.机动目标跟踪的非线性算法[J].火力与指挥控制, 2007, 32(6): 15-24
    [155]张金槐,蔡洪.飞行器试验统计学[M].长沙:国防科技大学出版社, 1995
    [156] Lee Sou-Chen, Huang Yu-Chao A validation of adaptive input estimator from augmented EKF for 3-D trajectory estimation[A]. In.AIAA Space 2001 - Conference and Exposition [C]. Albuquerque, NM, 2001
    [157] Jafarboland Mehrdad, Sadati Nasser, Momeni Hamidreza, et al. Robust tracking control of attitude satellite with using new EKF for large rotational maneuvers[A]. In.2003 AIAA Guidance, Navigation, and Control Conference and Exhibit[C]. Austin, TX, 2003. AIAA 2003-5785
    [158] Pastor P. R., Gay Robert S., Striepe Sott A., et al. Mars entry navigation from EKF proessing of beaon data[A]. In.AIAA/AAS Astrodynamis Speialist Conferene[C]. Denver, CO, 2000
    [159] J. Julier S., K. Uhlmann J. A New Extension of the Kalman Filter to Nonlinear System [A]. In.The 11th Int. Sym. on AeroSense/Defence Sensing, Simulation and Controls[C]. Orlando, Florida, USA, 1997
    [160] J. Julier S., K. Uhlmann J.,F. Durrant-Whyte H. A new method for the nonlinear transformation of means and covariances in filters and estimators[J]. IEEE Transactions onAutomatic Control, 2000, 45: 477-482
    [161] A. Wan E., R. Merwe. The Unscented Kalman Filter for nonlinear estimation[A]. In.Proc. of IEEE Symposium 2000(AS-APCC)[C]. Lake Louise, Albert, Canada, 2000
    [162]蔡洪. Unscented Kalman滤波用于再入飞行器跟踪[J].飞行器测控学报, 2003, 22(3): 12-16
    [163]赵艳丽.弹道导弹雷达跟踪与识别研究[D].长沙:国防科学技术大学, 2007
    [164] Moon R. Migration of real-time optimal control algorithm: from MATLAB TM to Field Programmable Gate Array(FPGA)[D]. Monterey, CA: Naval Postgraduate School, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700