油页岩固体热载体回转干馏系统及运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类社会经济的发展,全球对能源需求的持续增长和化石资源日益枯竭所引起的供需矛盾越发突出。油页岩资源储量丰富,是石油天然气等化石资源的重要补充能源。大力发展油页岩工业,不仅可以为全球的能源供应保驾护航,而且对于原油不能满足本国需求的发展中国家,其开发是关乎国民经济发展、国家能源安全的重大问题。油页岩资源的开发利用虽然历史悠久,但由于油页岩资源属于贫矿,存在开发成本高、环境污染严重等问题,高效、清洁、大规模综合利用尚未完全实现。
     本文设计了油页岩固体热载体干馏实验台,对回转装置测温、回转炉内颗粒运动过程、固体热载体与油页岩颗粒间传热等问题进行了详细研究,结果表明:无线测温监控装置应用于回转干馏炉是可行的;通过对桦甸油页岩基本特性进行研究,并分析了铝甑测定的含油率与在回转干馏炉内干馏结果出现差异的原因,进一步验证了采用回转式系统有益于提高颗粒状油页岩干馏效果的结论。
     1、以带有直角抄板的回转式干馏炉为研究平台,在炉体倾角、转速两种变量的影响下,研究了油页岩和固体热载体(灰)的不同配比、干馏炉的不同转向对混合物料在炉内停留时间的影响。炉体转向的不同造成了抄板工作模式的不同,当灰分占有更大比例份额以及工作在直角抄板模式下,物料在炉内的停留时间较长。
     2、采用由散体动力学出发的颗粒轨迹模型推导了炉内颗粒停留时间物理模型。通过模型得出的颗粒停留时间计算值与实验测量值较为吻合,预测误差<15%;而高转速、大倾角及高填充率时,模型的适用性降低。
     3、以离散元素法为理论基础,在炉体转速为10r/min、逆时针旋转(作用在直角抄板模式)、填充率为30%,炉体倾角分别为2.160,3.24°,4.330时,仿真分析了炉体3种倾角时的颗粒停留时间。结果表明,颗粒在炉内抛落轨迹类似抛物线,不同倾角时颗粒停留时间符合正态分布规律;仿真结果与实验结果基本一致。
     4、单颗粒及颗粒群的运行轨迹仿真表明,颗粒间的碰撞会造成卸落轨迹的偏离和分散。在相同的炉体转速时,填充率的变化对于颗粒运行轨迹无明显影响;而在相同填充率下,随着炉体转速加大,颗粒卸落时具有更高的横向速度,但因其同时受到抄板的影响,所以颗粒的携带距离并不一定更远。对于整个颗粒群,当填充率较小时,抄板的携带作用明显,颗粒群的卸落过程中抛落明显;而当填充率较高时,大部分颗粒的运动形式为滚落及滑落。炉体转速的提高,可以明显加快抄板的卸料速度,并提高颗粒的横向位移速度。
     5、模拟研究了干馏炉转速和物料填充率对于油页岩与固体热载体间混合时间以及颗粒间温度分布均匀性的影响。填充率一定时,炉体转速越快,达到500℃时所需的混合时间也越长,两者基本呈线性关系;转速一定时,填充率越大,所需的混合时间就越短。油页岩颗粒的平均温度在传热初期变化较快,随着油页岩颗粒与固体热载体间温差的减小,油页岩颗粒的平均温升速度变缓。填充率较低时,提高转速有利于颗粒的混合,减少颗粒间的温差,使传热更均匀。但填充率较高时,增加转速不会明显提高颗粒间传热的均匀程度。转速一定时,总体上可以认为填充率越小,油页岩颗粒的温度方差越小,即此时油页岩颗粒受热更均匀。
     6、以页岩灰作为固体热载体,利用回转干馏炉针对两种粒径分布条件下的油页岩颗粒进行了干馏实验,以出油率为指标研究了不同因素对干馏过程的影响。当油页岩粒径分布为0-3mm,油页岩与固体热载体混合比例为1:4,固体热载体初温为750℃,回转干馏炉转速为19r/min寸,油页岩出油率可以达到95.02%;油页岩的出油率随转速的提高而增加,但到一定值后(转速ω>19r/min),出油率则显著下降。过快或过慢的转速都不利于油页岩与固体热载体间的换热,从而影响到出油率;较高的固体热载体初始温度有利于提高出油率,但过高则会造成页岩油蒸汽在高温区的二次裂解,减少出油率;油页岩与固体热载体的混合比在1:4时达到最佳的经济性。过少的固体热载体有可能无法提供足够的热量,而过多则会造成热能的浪费和油页岩干馏处理量的降低;较小粒径的油页岩颗粒具有较大的比表面积,有利于其与固体热载体的换热,所以干馏效果较好。
With the development of the human society and economy, the contradiction between supply and demand on energy resources become more and more severe, for the global demand for energy keeps growing, while the mineral energy resources are increasingly exhausted. Oil shale resource with its abundant reserves is an important supplement of the fossil resources which are represented by oil and gas. Vigorous developing of oil shale industry can not only maintain global energy supplies, but also relates to the major concern of the developing countries which don't have enough crude oil, the national economic development and energy security. Although the development of oil shale resources has a long history, but because of the lean ore, the expensive exploiting cost and severe environmental contamination, the large-scale development and utilization has been a bust.
     In the thesis, we self-design and build the oil shale and heat carrier rotary distillation experimental system, detailed studied temperature measurement of rotary equipment, particle motion process in retort and heat transfer between solid heat carrier and oil shale. The results show that it is feasible that using wireless temperature measuring devices for rotary retort. The conclusion that using rotary retort is beneficial to improve oil yield efficient is further verified, by studying the basic features of oil shale which is mined in Huadian and analyzing the reasons which caused different oil yield between aluminum retort method and the self-designed rotary retort.
     1. On the platform of rotary retort in which the right angle stirring plate is internal installed, under different retort inclination and rotate speed, the mean residence time of mixture has been researched that is influenced by the particle proportion of the mixture consisting of oil shale particle and solid heat carriers (ash) and by the retort rotation direction. The different retort rotation direction can make differnet work pattern of stirring plate, and the mean residence time of mixture will be longer when ash has a greater proportion and the stirring plate works at right angle pattern.
     2. The physics model of particle mean residence time has been deduced by particulate trajectory model which is derived from granular dynamics theory. The results from this model relatively agree with measured particle mean residence time data, and the mean prediction error is less than15%. But the model is not sufficient when it works at high rotate speed, large retort inclination and high filling rate.
     3. Theoretically based on discrete element method, when retort rotate speed is10r/min, rotation is anti-clockwise (work at right angle stirring plate), filling rate is 30%, and retort inclinations are2.16°,3.24°,4.33°respectively, the three particle mean residence times have been simulated. The results show that:the lift and drop trajectory of particles in retort is similar to parabola; at different retort inclination, the particle mean residence time is in accord with normal distribution; and simulation and experiment results show a good consistency.
     4. Motion track simulation of single particle and granular flow shows that impact between particles will cause particles deviation, dispersion and off-track. When at the same rotary speed, the change of filling rate is of no significant effect on motion track of particles. When at the same filling rate, particles has higher horizontal speed as the rotary speed increase, meanwhile, due to the impact of the right angle stirring plate, particles are not have farther lateral displacement. To the granular flow, when the filling rate is lower, the impact of the right angle stirring plate is more obvious, there are more particles dropped on the retort floor. But when the filling rate is higher, most of the particles are moving by rolling and slipping. When the rotary speed increases, discharge rate of particles on stirring plate is significantly raised, and get the particle's lateral speed faster.
     5. The influence of rotate speed and filling rate on the heat transfer time of mixing oil shale and solid heat carrier and temperature distribution uniformity among particles has been conducted. At a fixed filling rate, the heat transfer time needed to reach500℃increases in accord with the increase of rotate speed. They are in linear related. At a fixed rotate speed, the needed heat transfer time decreases with the increase of filling rate. The mean temperature of oil shale particle changes fast at the beginning of heat transfer; and then change slowly when the temperature diffirence between oil shale and ash is decreasing. At a lower filling rate, the increase of rotate speed is benefit to particle mixing, decrease temperture difference, and get more heat transfer uniformity. But if the filling rate is higher, the increase of rotate speed can not improve uniformity obviously. At a fixed rotate speed, the temperature variance descreases according to filling rate, and then the oil shale heat evenly.
     6. The shale ash being served as solid heat carrier, the distillation experiments have been implemented by the rotary retort on2kinds of oil shale particles which have different size distribution. Based on the quantitve evaluation of the oil yield, the influence of certain factors on distillation process has been studied. When the size distribution is0-3mm, the mix proportion of oil shale and solid heat carrier is1:4, the initial temperature of solid heat carrier is750℃and the rotate speed is19r/min, the oil yielding rate can achieve95.02%. The oil yielding rate increases in accord with rotate speed, but decreases obviously when the rotate speed ω>19r/min. The rotate speed that is either too fast or too slow will adversely affect the heat transfer between oil shale and solid heat carrier, thus will decrease oil yielding rate. A higher initial temperature of solid heat carrier is benefit to oil yielding rate, but a too high initial temperature of solid heat carrier will cause shale oil vapour secondary pyrogenation in the high-temperature region, therefore, decrease oil yielding rate. The best economical efficiency can be achieved when the mix proportion is1:4. If the solid heat carrier is in less proportion, it may not supply enough heat, and if in too much proportion, it will cause heat waste and decrease in the capacity of oil shale processing. Small-sized oil shale particle has larger surface area, so it is beneficial to heat transfer, thus will have good distillation effect.
引文
[1]钱家麟,尹亮主编.油页岩——石油的补充能源[M].北京:中国石化出版社,2008.
    [2]Dyni J R. Geology and resources of some world oil shale deposits[J]. Oil shale, 2003,20(3):193-252.
    [3]刘招君,董清水,叶松青,等.中国油页岩资源现状[J].吉林大学学报(地球科学版),2006,36(6):869-976.
    [4]钱家麟,王剑秋,李术元.世界油页岩综述[J].中国能源,2006,28(8):16-19.
    [5]王擎,郝志金,孙键,等.大型油页岩循环床电站锅炉运行性能分析[J].热能动力工程,2001,16(5):513-516.
    [6]Shemyakin V, Karapetov A. Experience of oil shale burning in low-temperature fluidized-bed boilers[J]. Oil shale,2003,20(35):383-387.
    [7]Holopainen H. Experience of oil shale combustion in Ahlstrom pyroflow CFB-boiler[J]. Oil shale,1991,8(3):194-209.
    [8]Fainberg V, Hestsroni G. Research and development in oil shale combustion and processing in Israel[J]. Oil shale,1996,13(2):87-99.
    [9]Liive S. Oil shale energetics in Estonia[J]. Oil shale,2007,24(1):1-4.
    [10]钱家麟,王剑秋,李术元.世界油页岩资源利用和发展趋势[J].吉林大学学报(地球科学版),2006,36(6):877-887.
    [11]Veiderma M. Estonian oil shale-resources and usage[J]. Oil shale,2003, 20(35):395-303.
    [12]侯祥麟.中国页岩油工业[M].北京:石油工业出版社,1984.
    [13]Sonne J, Doilov S. Sustainalbe utilization of oil shale resources and comparison of comtemporary technologies used for oul shale processing[J]. Oil shale,2003,20(3S):311-323.
    [14]Reocess J. Present state of development of the Petrosix process[A]. In:Allred V D. Oil shale processing technology[C]. New Jersey, East Brunswick, The center for professional advancement.1982,121-135.
    [15]Opik J, Golubev N, Kaidalov A. Current status of oil shale processing in solid heat carrier UTT(Galoter) retorts in Estonia[J]. Oil shale,2001,18(2):99-107.
    [16]Schmidt S J. New direction for shale oil:path to a secure new oil supply well into this century:on the example of Australia[J]. Oil shale,2003,20(3S):333-346.
    [17]Rammler R W. The Lurgi-Ruhrgas process for the retorting of oil shale[A]. In: Allred V D. Oil shale processing technology[C]. New Jerey, East Brunswick, The center for professional advancement.1982,83-105.
    [18]大连工学院煤化工研究室.褐煤和油页岩新法干馏技术试验研究综合报告[M].1986.
    [19]Luo R T. Reactor-combustor fluidized bed retorting of Maoming oil shale[A]. In:International conference on oil shale and shale oil[C]. Beijing:Chemical industry press.1988,353-359.
    [20]Williams P T, Ahmad N. Influence of process conditions on the pyrolysis of Pakistani oil shales[J]. Fuel,1999,78(6):335349.
    [21]Kok M V, Pokol G. Combustion characteristics of lignite and oil shale samples by thermal analysis techniques[J]. Journal of Thermal Analysis and Calorimetry, 2004,76247-254.
    [22]王剑秋,李述元,杨克勇.利用热重仪进行颗粒页岩干馏的研究[J].石油大学学报(自然科学版),1988,12(4):104-109.
    [23]杨继涛.黄县油页岩热分解动力学——不同粒度试样的热分解[J].燃料化学学报,1987,15(1):25-30.
    [24]李术元,王剑秋.压力作用下颗粒页岩快速燃烧过程的实验研究[J].石油大学学报(自然科学版),1996,20(增刊):73-76.
    [25]于海龙,姜秀民.颗粒粒度对油页岩燃烧特性的影响[J].动力工程,2007,27(4):640-644.
    [26]史宇亮,董良杰,陈明东.小颗粒油页岩热裂解工艺及其影响因素[J].矿产综合利用,2008,139-141.
    [27]Jenkins J T, Savage S B. A theory for the rapid flow of identical, smooth, nearly elastic, spherical particles[J]. Journal of Fluid Mechanics,1983,130: 187-202.
    [28]Mccarthy J J, Troy S, Metcalfe G, et al. Mixing of granular materials in slowly rotated containers[J]. Particle Technology and Fluidization,1996,42(12): 3351-3361.
    [29]王文周.三弧抄板[J].化工学报,2000,51(4):446-451.
    [30]李爱民,蔡九菊,王志,等.固体废弃物在回转窑内混合特性的试验[J].东北大学学报(自然科学版),2002,23(2):152-155.
    [31]王平,祁文青,付明录.回转窑内衬结构的改进[J].轻金属,2008,3:35-42.
    [32]王春华陈文仲,陈海耿,等.变径炭素回转窑内物料平均停留时间的计算[J].化工学报,2009,60(3):574-579.
    [33]李水清,池涌,李润东,等.城市垃圾在回转窑内传输过程的模型和优化[J].化工学报,2002,53(10):1015-1021.
    [34]刘刚,池涌,蒋旭光,等.颗粒物料在回转窑内的运动特性模型[J].浙江大学学报(工学版),2007,41(7):1195-1200.
    [35]张立栋,李少华,朱明亮,等.回转干馏炉内抄板形式与双组元颗粒混合过程冷模数值研究[J].中国电机工程学报,2012,32(11):72-78.
    [36]Saeman W C. Passage of solids through rotary kilns[J]. Chemical Engineering Progress,1951,47(10):508-514.
    [37]Henein H, Brimacombe J K, Watkinson A P. Experimental study of transverse bed motion in rotary kilns[J]. Metallurgical and Materials Transactions B,1983, 14(2):191-205.
    [38]Baker C G J. The design of flights in cascading rotary dryers[J]. Drying Technology,1988,6(4):631-653.
    [39]Spurling R J, Davidson J F, Scott D M. The no-flow problem for granular material in rotating kilns and dish granulators[J]. Chemical Engineering Science, 2000,55(12):2303-2313.
    [40]黄志刚.转筒干燥器中颗粒物料流动和传热传质过程的研究[D].北京:中国农业大学,2004:15-20.
    [41]潘健平.带倾斜抄板的水平转鼓内的颗粒输送特性研究[D].北京:清华大学,2006:50-53.
    [42]王勇,万忠炎.几种不同类型的回转窑温度检测方法[J].山东冶金,2008,30(4):68-69.
    [43]易正明,吕子剑,周孑民.基于红外测温的回转窑状态预报系统研究[J].武汉理工大学学报,2005,27(12):79-82.
    [44]杜启亮,莫鸿强,毛宗源,等.硫化钡回转窑红外温度测量与分析[J].仪器仪表学报,2007,28(8):1492-1496.
    [45]姜慧研,王晓丹,周晓杰,等.基于SVR的回转窑烧成带温度软测量方法的研究[J].系统仿真学报,2008,20(11):2951-2955.
    [46]沃国经.红外通讯在回转窑温度测量中的应用[J].矿冶,2000,9(4):87-90.
    [47]刘小燕,周生健,张小刚.基于图像处理的回转窑物料休止角检测方法[J].控制工程,2009,16(4):495-501.
    [48]刘志逊,高健,赵寒冬,等.国内油页岩干馏技术现状与发展趋势[J].煤 炭加工与综合利用,2007,1:45-48.
    [49]Wallman P H. Coproduction of oil and electric power from Colorado oil shale[J]. Energy,1992,17(4):313-319.
    [50]Jaber J O, Probert S D, Williams P T. Modelling oil shale integrated tri-generator behaviour:predicted performance and financial assessment[J]. Applied energy,1998,59(2-3):73-95.
    [51]Jaber J O, Probert S D, Tahat M A. Oil shale integrated tri-generation system: the technology and predicted performance[J]. Oil shale,1998,15(1):3-30.
    [52]姜秀民,韩向新,崔志刚.油页岩综合利用技术的研究[J].自然科学进展,2005,15(11):1342-1345.
    [53]Wang S, Jiang X M, Han X X. Investigation of Chinese oil shale resources comprehensive utilization performance[J]. Energy,2012,42(1):224-232.
    [54]Jiang X M, Han X X, Cui Z G. New technology for the comprehensive utilization of Chinese oil shale resources[J]. Energy,2007,32(5):772-777.
    [55]Wang Q, Bai J R, Sun B Z, et al. Strategy of Huadian oil shale comprehensive utilization[J]. Oil shale,2005,22(3):305-315.
    [56]孙键王擎,孙东红,等.油页岩综合利用集成技术与循环经济[J].现代电力,2007,24(5):57-67.
    [57]张磊,韩向新,王忠存,等.油页岩综合利用技术的研究进展[J],中国矿业,2012,21(9):50-53.
    [58]Hilger J. Combined utilization of oil shale enery and oil shale minerals within the production of cement and other hydranlic binders[J]. Oil shale,2003,20(3S): 347-355.
    [59]Rohrbach Zement Gmbh, Co K G. Oil shale technology bu Rohrbach Zement, Brochure presented at the Tallinn Symposium on oil shale[M]. Dotternhausen: Robach Zement Co,2002.
    [60]钱家麟,王剑秋.世界油页岩科技进展[J].燃料化学学报,1982,10(3):268-278.
    [61]陈应泰,刘文彬.国外油页岩综合利用的进展[J].地球科学进展,1992,7(2):48-50.
    [62]王超.早评:农产品全线攀升原油期价走势持坚[J/OL]http://www.cs.com.cn/qhsc/zzqh/201210/t20121012_3619680.html.2012-10-12.
    [63]钱家麟,王剑秋.世界油页岩发展近况——并记2006年两次国际油页岩会议[J].中外能源,2007,12(1):7-11.
    [64]王擎,柏静儒,孙佰仲,等.油页岩综合开发利用集成技术[J].长春工业大学学报(自然科学版),2007,28(增刊):54-58.
    [65]刘同仁,张磊.龙口矿区油页岩综合利用集成技术[J].山东煤炭科技,2010,476-478.
    [66]王雨.以循环经济的理念促进油页岩产业健康发展[J].中国能源,2011,33(4):42-45.
    [67]崔洪涛.抚顺油母页岩的综合利用开发与现状[J].露天采矿技术,2011,3:76-79.
    [68]Sun B M, Wang G, Miao Y, Li S H. Design and implementation of experimental system for comprehensive utilization of oil shale[J]. Advanced materials research, 2012,550-553:2883-2886.
    [69]张翠宣叶京生,宋继田.喷动床研究与进展[J].化工进展,2002,21(9):630-634.
    [70]祝京旭,洪江.喷动床发展与现状[J].化学反应工程与工艺,1997,13(2):207-222.
    [71]Lim C J, Watkinson A P, Khoe G K, et al. Spouted, Fluidized and Spout-Fluid Bed Combustion of Bituminous Coals[J]. Fuel,1988,67:1211-1217.
    [72]Barz M. Sewage Sludge Combustion in a Spouted Bed Cascade System[J]. China Particuology,2003,1(5):223-228.
    [73]王国胜,郭瓦力,王红心.导向管充气喷动床流体力学性能[J].化工学报,1999,50(5):637-643.
    [74]魏伟胜,陈恒志,徐健.加压喷动床中细颗粒喷动特性[J].化工学报,2002,53(3):280-284.
    [75]王擎,徐峰,孙佰仲,等.采用等转化率法研究油页岩热解的动力学特性[J].中国电机工程学报,2007,27(26):35-39.
    [76]李少华,张立栋,张轩,等.回转式干馏炉内影响颗粒混合运动因素的数值分析[J].中国电机工程学报,2011,31(2):32-38.
    [77]李少华,张立栋,余侃胜,等.页岩颗粒在回转干馏炉内停留时间的正态性分析[J].中国电机工程学报,2011,31(14):13-18.
    [78]Portillo P M, Ierapetritou M G, Muzzio F J. Effects of rotation rate, mixing angle, and cohesion in two continuous powder mixers-A statistical approach[J]. Powder technology,2009,194(3):217-227.
    [79]李坤芝.导电滑环技术研究[J].舰船科学技术,1994,5:56-58.
    [80]周小全王智勇.精密导电滑环主要检测参数的分析[J].计测技术,2007, 27(增刊):72-73.
    [81]丁立伟,邹甲,刘杰.回转窑胴体红外扫描系统的设计[J].轻金属,2011,增刊:282-284.
    [82]章立新,王少林,茅忠明,等.水泥回转窑温度检测与图像处理系统的研究与开发[J].仪器仪表学报,2002,23(5):70-73.
    [83]Callaway E, Gorday P, Hester L, et al. Home networking with IEEE 802.15.4: A developing standard for low-rate wireless personal area networks[J]. Communications magazine,2002,40(8):70-77.
    [84]Shen X S, Chen W, Lu M. Wireless Sensor Networks for Resourees Tracking at Building Construetion Sites[J]. Tsinghua Science and Technology,2008,13(S1): 78-83.
    [85]Ruiz-Garcia L, Barreiro P, Robla J I. Performance of ZigBee-Based wireless sensor nodes for real-time monitoring of fruit logistics[J]. Journal of food engineering,2008,87(3):405-415.
    [86]Ruiz-Garcia L, Barreiro P, Rodriguez-Bermejo J. Review. Monitoring the intermodal, refrigerated transport of fruit using sensor networks[J]. Spanish Journal of Agricultural Research,2007,5(2):142-156.
    [87]Morais R, Fernandes M A, Matos S G, et al. A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture[J]. Computers and electronics in agriculture,2008,62:94-106.
    [88]刘市生,李哲,张鹏.ZigBee无线网络规划与容量计算[J].无线电工程,2008,28(12):54-61.
    [89]徐敬东,赵文耀,李淼,等.基于ZigBee的无线传感器网络设计[J].计算机工程,2010,36(10):110-112.
    [90]Terada M. Application of ZigBee sensor network to data acquisition and monitoring[J]. Measurement science review,2009,9(6):183-186.
    [91]李俊斌,胡永忠.基于CC2530的ZigBee通信网络的应用设计[J].电子设计工程,2011,19(16):108-111.
    [92]Boquete L, Cambralla R, Rodriguez-Ascariz J M, et al. Portable system for temperature monitoring in all phases of wine production[J]. ISA transactions,2010, 49:270-276.
    [93]马力,郭辉.基于ZigBee协议的煤矿井下智能传感器[J].仪表技术与传感器,2007,8:66-68.
    [94]Yang H J, Yang L L, Yang S H. Hybrid ZigBee RFID sensor network for humanitarian logistics centre management[J]. Journal of network and computer applications,2011,34:938-948.
    [95]Nadimi E S, Sogaard H T, Bak T. ZigBee-based wireless sensor networks for classifying the behaviour of a herd of animals using classification trees[J]. Biosystems engineerning,2008,100(2):167-176.
    [96]Nadimi E S, Sogaard H T, Bak T, et al. ZigBee-based wireless sensor networks for monitoring animal presence and pasture time in a strip of new grass[J]. Computers and electronics in agriculture,2008,61:79-87.
    [97]朱斌,唐勇,谭勇,等.基于ZigBee的工控网数据采集传输系统设计[J].化工自动化及仪表,2010,37(4):81-85.
    [98]宋文.无线传感器网络技术与应用[M].北京:电子工业出版社,2007.
    [99]王恭,孙保民,李少华,张立栋.无线技术在回转式油页岩干馏反应器中的研究与应用[J].中国电机工程学报,2012,32(5):48-53.
    [100]凌志浩,周怡颋,郑丽国ZigBee无线通信技术及其应用研究[J].华东理工大学学报(自然科学版),2006,7: 801-805.
    [101]赵曦,解永平.基于ZigBee的智能传感器网络无线接口设计[J].仪器仪表学报,2006,27(6):1639-1641.
    [102]任秀丽,于海斌ZigBee技术的无线传感器网络的安全性研究[J].仪器仪表学报,2007,28(12):2132-2137.
    [103]Boateng A A, Barr P V. Granular flow behavior in the transverse plane of a partially filled rotary cylinder[J]. Fluid Mech,1997,330:233-249.
    [104]李少华,张立栋,余侃胜,等.回转干馏炉油页岩颗粒停留时间分布[J].华北电力大学学报,2011,38(1):98-102.
    [105]张立栋,李少华,余侃胜,等.油页岩与固体热载体在回转干馏炉内混合特性的冷态实验[J].化工进展,2011,30(3):492-497.
    [106]张世红,刘德昌,郑楚光.流化床床料再生的多级筛分方法实验研究[J].华中科技大学学报(自然科学版),2006,30(9):85-87.
    [107]Yu A B, Bridgwater J, Burbidge A. On the modeling of the packing of fine particles[J]. Powder technology,1997,92:185-194.
    [108]蒋阳,陶珍东.粉体工程[M].武汉:武汉理工大学出版社,2008.
    [109]Liao C H, Yu J H, Tarng Y S. On-line full scan inspection of particle size and shape using digital image processing[J]. Particuology,2010,8:286-292.
    [110]刘柏谦.桦甸油页岩颗粒特性研究[J].东北电力学院院报,1994,14(3):64-67.
    [111]张志军,程惠尔,汤宇浩,等.小颗粒堆积多孔体传热特性实验研究[J].水动力学研究与进展,2002,17(4):454-458.
    [112]赵洪滨,王凤辉,姬忠礼.回转焙烧炉内物料流动性能冷态实验研究[J].化工装备技术,2007,28(1):28-32.
    [113]Kohav T, Richardson J T, Luss D. Axial dispersion of solid particles in a continuous rotary kiln[J]. AIChE Joural,1995,41:2465-2475.
    [114]严建华,李水清,黄景涛,等.回转窑内MSW轴向传输和扩散的数学模型和仿真[J].工程热物理学报,2002,23(3):380-383.
    [115]Boateng A A, Barr P V. Modeling of particle mixing and segregation in the transverse plane of rotary kiln[J]. Chem Eng Sei,1996,51:4167-4181.
    [116]赵宝元.关于轴向扩散模型及边界条件[J].化工冶金,1991,12(4):332-337.
    [117]朱健云,杨晓燕,归柯庭,等.水平管气力输送最佳经济速度的模拟研究[J].工程热物理学报,2008,29(10):1688-1690.
    [118]孙利民,杨阳,梁江涛.散体力学研究的现状及其发展[J].开封大学学报,2011,25(2):74-77.
    [119]Campbell C S. Granular material flows:an overview[J]. Powder technology, 2006,162:208-229.
    [120]Kamike F A, Wilson J B. Computer simulation of a rotary dryer Part I retention time[J]. AICHE Journal,1986,32(2):263-268.
    [121]Sudah O S, Chester A W, Kowalski J A, et al. Quantitative characterization of mixing processes in rotary calciners[J]. Powder technology,2002,126:166-173.
    [122]刘刚,池涌,蒋旭光,等.模拟危险废物颗粒回转窑内运动特性试验研究[J].工程热物理学报,2005,26(2):343-346.
    [123]李少华,张立栋,余侃胜,等.回转干馏炉内油页岩颗粒群断续给料混合运动模式[J].化工进展,2010,29(8):1433-1437.
    [124]乔斌,朱玲利,雷晓娟.基于EDEM软件的石灰石在回转窑内停留时间的模拟研究[J].矿山机械,2012,38(19):83-85.
    [125]刘安源刘石,潘忠刚.振动给料机中固体颗粒物料运动规律的数值研究[J].中国科学院研究生院学报,2002,19(1):35-42.
    [126]欧阳鸿武刘泳,陈海林,等.粉体混合过程的实验和数值模拟研究[J].材料导报,2003,17(8):5-7.
    [127]潘振海,王昊,王习,等.油砂干馏系统的DEM-CFD耦合模拟[J].天然气工业,2008,28(12):124-126.
    [128]卢洲刘雪东,潘兵.基于CFD-DEM方法的柱状颗粒在弯管中输送过程的数值模拟[J].中国粉体技术,2011,17(5):65-69.
    [129]胡国明.颗粒系统的离散元素法分析仿真[M].武汉:武汉理工大学出版社,2011.
    [130]Nakashima H. Discrete Element Method (DEM) and its possible application[A]. In:SICE 2004 Annual Conference[C]. Japan:Hokkaido Institute of Technology.2004,1004-1007.
    [131]王恭,苗宇,孙灵芳,等.回转干馏炉内颗粒停留时间的计算机模拟研究[J].东北电力大学学报,2012,32(2):37-41.
    [132]Bertrand F, Leclaire L A, Levecque G. DEM-based models for the mixing of granular materials[J]. Chemical Engineering Science,2005,60(8-9):2517-2531.
    [133]Leguen L, Huchet F, Tamagny P. Drying and heating modelling of granular flow:application to the mix-asphalt processes[J]. Journal of Applied Fluid Mechanics,2011,4(2):71-80.
    [134]张品.基于DEM方法的散体颗粒热传导模拟[D].长沙:中南大学,2011:25-32.
    [135]刘安源刘石.流化床内单个颗粒传热特性的模拟[J].工程热物理学报,2006,27(5):835-837.
    [136]武锦涛.移动床中固体颗粒运动与传热的研究[D].杭州:浙江大学,2005:56-114.
    [137]王春华陈文仲,贾冯睿,等.回转窑内传热及燃烧过程的数值模拟[J].化工学报,2010,61(6):1379-1384.
    [138]Bodhisattwa C, Muzzio F J, Tomassone M S. Modeling of heat transfer in granular flow in rotating vessels[J]. Chemical Engineering Science,2006,61: 6348-6360.
    [139]郭树才.煤和油页岩新法干馏技术——LR固体热载体快速热解法[J].煤炭化工设计,1986,37(4):59-71.
    [140]Subramanian M, Hanson F V. Supercritial fluid extraction of bitumens from utah oil sand[J]. Fuel processing technology,1998,55:35-55.
    [141]王秋雯.吉林桦甸油页岩热物理和电物理性质实验研究[D].吉林:吉林大学,2011.
    [142]王擎,徐峰,柏静儒,等.桦甸油页岩基础物化特性研究[J].吉林大学学报(地球科学版),2006,36(6):1006-1011.
    [143]Soot P M, Hendrik V, Teet-andrus K. Utilization of oil shale retort gas[J]. Oil shale,2012,29(3):248-267.
    [144]Omole O, Olieh M N, Osinowo T. Thermal visbreaking of heavy oil from the nigerian tar sand[J]. Fuel,1999,78(12):1489-1496.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700