油气分离器数值模拟与分离性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潜艇主减速器及循环滑油舱中的润滑油在高温下产生的油雾,扩散到机舱中,不仅浪费了润滑油资源,并且严重污染潜艇舱室内空气,危害舱室工作人员的身体健康,更为严重的是通过通风系统扩散到其他舱室,将对电子设备产生严重的腐蚀,影响潜艇的战斗力。目前,离心式油气分离器作为除油设备被应用于潜艇上。
     油气分离器是一种利用气液两相流体的旋转运动,使液体油滴在离心力的作用下从气流中分离出来的设备。油气分离器的工作过程是一种极其复杂的三维强旋转湍流、两相分离运动,因此很难通过解析的方法预报内部流动状况。由于实验条件的限制,单纯通过实验来研究离心分离器的性能不仅周期长而且费用高。数值计算技术具有资金投入少、设计计算速度快、信息完全、仿真模拟能力强等特点。因此,用湍流数值模拟方法研究分离器内流体的流动规律,进而优化分离器的结构,可以大大缩短其研发周期,具有重要的工程应用价值。
     本文利用计算流体力学CFD商业软件FLUENT对潜艇上使用的油气分离器内部流场进行了数值模拟。不仅建立了研究分离器内部流动性能和分离性能的合理模型和方法,而且模拟研究了多种情况下的气相流场、压降、颗粒运动轨迹及分离效率等,为优化设计更高除油效率的分离器提供参考,以更好地改善潜艇舱室空气质量,为提高潜艇的战斗力提供保证。通过本文的数值模拟结果,主要得到了如下结论:
     1.对于分离器内部复杂流场的模拟,必须以高质量的网格为前
The lubricating oil mist which produces under the high temperature in the submarine's main gear box and the circulating lubricating oil tank diffuses to the rooms of the submarine. The oil mist does not only waste the lubricating oil resources, but also pollutes the air of the rooms, and will be harm to the health of the staff in the submarine. More serious thing is that the oil mist will diffuse to other rooms through ventilating system, erode electronic installation, and influence battle effectiveness of the submarine. At present, centrifugal oil-air separator is applied to the submarine to eliminate the oil mist.
    Oil-air separator is a sort of equipment that makes the air and oil droplet revolve together and makes the oil droplet separate from the mixture in the function of centrifugal force. Its work-process is a most complex three-dimension movement of revolving turbulence and two-phase separation. So it is very difficult to predict the law of flow with parse means. The study on performance of separator simply by experiment has a long term and expensive consumption. Numerical simulation technology has many merits, for example, the devoted finance is less, the speed of design and computation is quick, the information is full and the ability of simulation is better. Therefore, studying on the law of the turbulent flow in oil-air separator with numerical simulation and then optimizing its configuration, may shorten the period of study and design of separator greatly. This has important application worth in engineering.
    This article does the research on the oil-air separator used in the submarine using FLUENT, the business software of CFD. The article does not only offer the logical model and method to simulate the oil-air separator, but also does the research on the flow of air,
引文
[1] 袁惠新.分离工程.北京,中国石化出版社,2002
    [2] 史德,苏广和,李震.潜艇舱室空气污染与治理技术.北京,国防工业出版社,2005年1月
    [3] Boysan F, Swithenbank J. A Fundamental Mathematical Modeling Approach to Cyclone Design. Trans. I. ChemE. 1982, 60:222-230
    [4] 林玮,王乃宁.用应力模型计算旋风分离器的流场[J].华东工业大学学报,1996,18(3):7-12
    [5] 李玉星,冯叔初,张劲松,液—液旋流分离器数值模拟技术研究[C].第六届非均相分离学术交流会论文集—其他,P206-212
    [6] Hinze JO. Turbulence [M]. New York: McGraw-Hill Book Company. 1975
    [7] 是勋刚.湍流[M].天津:天津大学出版社.1994
    [8] 张兆顺.湍流[M].北京:国防工业出版社.2002
    [9] Matzio Piller, Enrico Nobile, J. Thomas, DNS study of turbulent transport at low Prandtl numbers in a channel flow. Journal of Fluid Mechanics. 2002, (458): 419-441
    [10] J.G. Wissink. DNS of separating low Reynolds number flow in a turbine cascade with incoming wakes. International Journal of Heat and Fluid flow. 2003, 24(4): 626-635
    [11] Orzag SA. and Patterson G S. Numerical simulation of three-dimensional homogeneous isotropic turbulence. Phys. Review Lett. 1992:28-76
    [12] V. Michelassi, J.G. Wissink, W. Rodi, Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier-Stokes simulations of periodic unsteady??flow in a low-pressure turbine cascade: A comparison. Journal of Power and Energy.2003, 217(4): 403-412
    [13] V.Stephane, Local mesh refinement and penalty methods dedicated to the Direct Numerical Simulantion of incompressible flows. Proceedings of the ASME/JSME Joint Fluids Engineering Conference. 2003: 1299-1305
    [14] P.Rllet-Miet, D.L.aurence, J.Ferziger, LES and RANS of turbulent flow in tube bundles.International Journal of Fluid Flow. 1999, 20(3):241-254
    [15] M. B. Abbott, D. R. Basco, Computational Fluid Dynamics-An Introduction for Engineers. Longman Scientific & Technical, Harlow,England,1989
    [16] Y. Lee, A study and improvement of large eddy simulation for practical applications. Ph. D dissertation, Texas A & M University, U.S.A. 1992
    [17] Smagorinsky, J. General circulation experiments with the primitive equation. Monthly Weather Review. 1963, 91 (3): 99-164
    [18] Deardoff, J.W.A numerical study of three-dimensional turbulence channel flow at large Reynolds number. J. Fluid Mech. 1970,41:380-453
    [19] A.A.Feiz, M. Ould-Rouis, G. Lauriat, Large eddy simulation of turbulent flow in a rotating pipe. International Journal of Heat and Fluid Flow.2003, 24(3): 412-420
    [20] Mary Ivan, Sagaut Pierre.Large eddy simulation of flow around an airfoil near stall. AIAA Journal, 40(6): 1139-1145
    [21] D. G. E. Grigoriadia, J. G. Bartzis, A. Goulas, Efficient treatment of complex geometries for large eddy simulations of turbulent flows.Computers and Fluids.2004, 33(2):??201-222
    [22] L. Shen, D.K.P. Yue, Large-edyy simulation of free-surface turbulent. Journal of Fluid Mechanics. 2001, 440:75-116
    [23] R.E. Julian, K. Smolarkiewicz, Eddy resolving simulations of turbulent solar convection, lnterational Journal for Numerical Methods in Fluids, 2002, 39(9):855-864
    [24] J.C. Li, Large eddy simulation of complex turbulent flows: Physical aspects and research trends. Acta Mechanica Sinica, 2001, 17(4): 289-301
    [25] F. Felten, Y. Fautrelle, Y. Du Terrail, O. Metais, Numerical modeling of electrognetically-riven turbulent flows using LES methods. Applied Mathematical Modelling, 2004, 28(1): 15-27
    [26] Etsuro Tamura, Yoshiyuki Ono. LES analysis on aeroelastic insability of prisms in turbulent flow. Journal of Wind Engineering and Industrial Aerodynamics, 2003, 91(12-15): 1827-1846
    [27] L. di Mare, W.P. Jones, LES of turbulent flow past a swept fence. International Journal of Heat and Fluid Flow, 2003, 24(4):606-615
    [28] RodneyC. Schmidt, Alan R. Kerstein, Scott Wunsch, Vebjorn Nilsen. Near-wall LES closure based on one-dimensional tuebulence modeling. Journal of Computational Physics, 2003, 186(1):317-355
    [29] 周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991
    [30] 岑可法,樊建人.工程气固多相流动的理论与计算[M].浙江:浙江大学出版社,1990
    [31] 刘明侯,陈义良,易蔚卿.颗粒轨道模型对粉煤湍流燃烧计算结果影响的研究[J],燃烧科学与技术,1999,5(1)[32] 庞磊.旋风分离器芯管结构形式优化的初步研究及性能计算[D].北京:石油大学,2001
    [33] 范维澄,万跃鹏.流动及燃烧的模型与计算[M].安徽:中国科技大学出版社,1992
    [34] 庄达民,袁修干.差分格式的优化组合[J].北京航空航天大学学报,1999,25(2)
    [35] B.P. Leonard and S. Mokhtari. ULTRA-SHARP Nonoscillatory Convection Schemes for High-Speed Steady Multidimensional Flow. NASA TM 1-2568
    [36] Shih T M and Ren A L. Primitive Variable Formulations Using Nonstaggered Grids. Numer. Heat Transfer, 1984, 7: 413-428
    [37] Majumdar S. Role of Underrelaxation on Momentum Interpolation for Calculation of Flow with Nonstaggered Grids. Numer. Heat Tranfer, 1988, 13: 125-132
    [38] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere, Washington, D.C.,1980
    [39] H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Wiley, New York, 1995
    [40] B. E. Launder, D.B. Spalding, Lectures in Mathematical Models of Turbulence. Academic Press, London, 1972
    [41] V. Yakhot, S.A. Orzag, Renormalization group analysis of turbulence: basic theory. J. Scient Comput. 1986, 1: 3-11
    [42] 陈庆光、徐忠、张永建.RNG k-ε在工程湍流数值计算中的应用.力学季刊。第23卷,第1期,88-95页,2003年3月
    [43] 丁珏,翁培奋.三种湍流模式模拟直角弯管三维分离流动的比较.计算物理.第20卷,第5期,2003年9月
    [44] 陆耀军,周力行,沈熊.油滴在液-液旋流中的随机轨道数值模拟.力学学报.第31卷,第5期,1999年9月
    [45] 何枫,姚朝晖,谢峻石.三维亚声速冲击射流流场的数值模拟,??推进技术,第23卷,第1期,2002年2月
    [46] S. Berry, Peter A. Curreri, R. W. Hyers, L. M. Racz, Abedian, B.,Surface Oscillations of An Electromagnetically Levitated Droplet, Jan. 2002.
    [47] P. Moin, Progress in large eddy simulation of turbulence flows. AIAA paper, 1997, 97-15761
    [48] T.H. Shih, W.W. Liou, A. Shabbir, Z.G. Yang, J. Zhu, Anew k-ε eddy viscosity model for high Reynolds number turbulent flows. Comput Fluids. 1995, 24(3): 227-238
    [49] Fluent Inc., FLUENT User's Guide. Fluent Inc. 2003
    [50] 郭鸿志.传输过程数值模拟.北京:冶金工业出版社,1998
    [51] H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method. Wiley, New York, 1995
    [52] 刘儒勋,王志峰.数值模拟方法和运动界面追踪.中国科学技术大学出版社,2001年10月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700