水下分散自重构机器人控制系统研究与软件设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下分散自重构机器人是一种新的系统设计概念,它不同于常规水下机器人的集中式结构,系统由一定数量的少数几类模块组成,每个模块都是具有一定的运动、作业和环境感知功能的智能体,模块单元互联成网络共同实现总体功能,能根据环境和任务的具体要求进行构形变换,通过步态协调控制实现多种运动形式。
     本文在前人研究的基础上,对水下分散自重构机器人的模块设计、控制系统设计、通信实现、构形变换、运动的协调与控制进行了深入的研究,并完善了其上层控制软件,实现了水下分自重构机器人运动控制功能。
     智能模块是自重构系统的胞元,采用了结构化和模块化的设计思想,增强了系统的可移植性和兼容性。论文在分析系统自重构原理的基础上,详细论述了模块设计中的舵机结构设计、浮力调节装置机械结构设计、对接装置设计、光电引导系统设计、智能单元设计和传感器原理与设计。运动控制单元采用了PID控制器的基本原理进行设计,并根据运动协调的基本特点,对水下自重构机器人的运动模式进行了研究。
     控制策略是自重构机器人研究的一个重要方面,现有的自重构机器人控制算法主要有分布式和集中式两种。而Agent特有的自治性、协作性等为自重构机器人的控制策略提供了一种新的思路。因此,本文结合多Agent系统的控制原理,构造了基于多Agent的运动控制策略模型。该模型能够将复杂任务分析构造成规模较小、相互协调、具有分布性的子任务,以降低计算量和求解的复杂性。
     运用CAN总线技术,实现了模块的联网控制。在考虑水下分散自重构机器人通信需求基础上,设计了自重构系统的应用层通信协议。通过报文滤波技术实现点对点与全局广播两种报文传送方式。模块不仅能够进行消息的应答反馈,还能够根据模块自身的运动状态,主动向上位机反馈一些特点的信息。
     上层软件是实现构形转换和步态控制的工具,上层软件通过CAN总线,与底层模块的单片机进行实时数据交换,协调各模块的运动,对模块进行集中与统一控制。论文中,分析了上层软件的技术需求,详细论述了软件的数据结构,软件结构功能,以及系统构形转换和步态控制的操作过程。
     然后,论文研究了水下分散自重构机器人构形转换的过程,详细阐述了蜿蜒运动、蠕动、章鱼运动的动作机理以及相应的控制方法。研究了对接操作过程中的末端对接面微调方法,采用速度关系雅可比矩阵求逆的方法,实现了自动对接。最后通过水池试验检测了USR的运动和构形变换能力。
The underwater self-reconfigurable robot is a novel concept in the field of underwater robot design. It consists of a quantity, but only a few types of intelligent modules linked with each other. Although each module has simple functions such as motion and environment perceiving, they can achieve complicated global functions by modules’collaboration. The robot can change its configuration and take different gait to adapt to the environment and missions.
     On the base of the predecessors’researches, we investigated the problem of module design, control system design, communication realization, configuration changing, then, the top layer control software was completed, the software realize the function of locomotion control.
     The intelligent modules are basic units of the self-reconfigurable robot, the structure and modularized method is employed in the modules design, which enhances the system’s transplant ability and compatibility. On analysis of the reconfigurable method, the mechanical structure of helm mechanism, buoyancy adjusting mechanism, connect mechanism, photoelectric sensor lead system, intelligent unit, and sensor system design have been discussed in detail. Motion control of the module is based on the PID technique. Considering the requirement of coordinated movement, the USR motion pattern has been investigated.
     Control strategy algorithm, which can be classified into two categories: distributed algorithm and centralized algorithm, is an import part of self-reconfiguration research. Furthermore, it that Agent has special automation, collaboration and so on, gives a new idea for the control strategy of the self-reconfigurable robot. Therefore, in combination with multi-Agent system's principle, this paper constructs a motion planning model based on multi-Agent. This model can divide complicated task into small scale, coefficient and distributed sub-task in order to decrease calculation and complexity.
     The modules control network is built on the CAN bus technique, and the advanced communication protocol was designed to meet USR’S communication needs, which provide both the point to point transmission mode and the broadcasting one by message filtering. The modules can not only feedback message passively, but also feedback some given message actively according to the motion status of itself.
     The top layer software is designed to harmonize modules’movement, here, after analysis the requirement of system function, the software data structure and program structure is detailed discussed, then, the program run process is present.
     Then, the paper presents the principle of configuration switching, demonstrates theory of some typical locomotion, such as eel-like motion, worm motion and octopus motion. And, the thesis provides mathematic methods to solute the joint angle while system configuration is changing from a chain to a circle or micro-adjusting the mechanism. At last, USR’s capability of locomotion and self-reconfiguration is examined through experiments.
引文
[1] 耿元一. 机器人与自动化产业概述. 中国科技信息,2005,9,2,http://www.chinainfo.gov.cn/data/200509/1_117800.html.
    [2] 冯正平. 国外自治水下机器人发展现状综述. 鱼雷技术. Mar.2005 Vol.13.No.15-8
    [3] 李斌、吴镇炜、谈大龙等. 可重构机器人技术的探讨[J]. 信息与控制,2001 30(7):685—691
    [4] 李斌、董慧颖、白雪. 可重构机器人研究和发展现状[J]. 沈阳工业学院学报2000,19(4):68—72
    [5] Pamecha A, Chiang C, Stein D and Chirikjian G S. Design and implementation of metamorphic robots [A]. Proceedings of the 1996 ASME Design Engineering Technical Conference and Computers in Engineering Conference[C]. Irvine, California, USA: ASME, August 1996. 1-10.
    [6] Mark Y, David G D and Kimon D R. PolyBot: a modular reconfigurable robot [A]. Proceedings of the 2000 IEEE International Conference on Robotics & Automation[C]. San Francisco, CA, USA: Institute of Electrical and Electronics Engineers Inc, April 2000. 514-520.
    [7] Murata S.,Kurakawa,H.,Kokaji. Self-Assembling Machine. Proc.of IEEE intl. Conf. On Robotics and Automation 1994.
    [8] Castano. A, Chokkalingam.R.Will.P. Autonomous and Self-Sufficient CONRO Modules for Reconfigurable Robots. Proc. 51th Int’l Symp. Distributed Autonomous Robotic System, SpringerVerlag, pp, 155-164, Knoxville, Oct.2000
    [9] Rus.D.,Vona.M. Self-Reconfiguration Planing with Compressible Unit Modules. Proc.of IEEE Intl. Conf. On Robotics and Automation,1999.
    [10] Murata S.,Kurakawa,H.,Kokaji. Self-Assembling Machine. Proc. of IEEE Intl. Conf. On Robotics and Automation 1994.
    [11] Pamecha,A.Chiang,Stein.D,Chirikjian. Design and Implementation of Metamorphic Robots. Proc. of the 1996 ASME Design Engineering Technical Conf. and Computers in Engineering Conference,1996.
    [12] Castano.A, Chokkalingam.R,Will.P. Autonomous and Self-Sufficient CONRO Modules for Reconfigurable Robots. Proc. 51th Int’l Symp. Distributed Autonomous Robotic System, SpringerVerlag, pp.155-164,Knoxville, Oct.2000.
    [13] Aranzazu Casal. Reconfiguration Planning for Modular Self-Reconfigurable Robots. Stanford University,Dcember 2001.
    [14] Yim M.New locomotion gaits. Proceedings of International Conference on Robotics&Automation(ICRA’94) San Diego, California ,USA. Pages:2508-2514
    [15] Yim M. Duff.D, Roufas K. Polybot: A modular reconfigurable robot. Proceedings of IEEE International Conference on Robotics&Automation(ICRA’00), San Francisco, CA, USA. Pages:514-520
    [16] G.S.Chirikjian,A.Pamecha, and I.Ebert-Uphoff, “Evaluating efficiency of self-reconfiguration in a class of module robots” J.Robot.Syst., 1996 vol.13, no.5, pp.317-338
    [17] Castano A, Behar A, Will P M. The Conro modules for reconfigurable robots. IEEE/ASME Transactions on Mechatronics,2002 Vol. 7(4):403-409
    [18] Rus. D.,Vona. M. Self-Reconfiguration Planning with Compressible Unit Modules. Proc. of IEEE Intl. Conf. On Robotics and Automation ,1999.
    [19] J.Kubika, A.Casal, T.Hogg. Complex Behaviors from Local Rules in Modular Self-reconfigurable Robots. IEEE Intl.Conf. on Robitics and Automation,2001.
    [20] Suh.J.W., Yim.M.,Homans.S. Design Tradeoffs for a Modular Self-Reconfiguarable Robots, the Mechinical Design of TeleCubes. Workshop on Self-reconfigurable Robots, ICRA 2001, Seoul Korea May 22,2001.
    [21] www.cs.cmu.edu/~aml/research/DRS/index.html#I-cubes
    [22] Unsal.C., Khosla.P.K.. Solutions for 3-D self-reconfiguration in a modular robotics system :implementation and motion planning. Sensor Fusion and Decentralized control in Robotic Systems III, Volume 4196,Nov.2000.
    [23] www.cs.cmu.edu/~aml/research/DRS/index.html#millibots
    [24] L.E., Grabowski, etc. Modularity in Small Distributed Robots, Navarro-Serment. Proc. of the SPIE conference on Sensor Fusion Decentralized Control in Robotic Systems II, September 19-22,1999.
    [25] Fukuda.T., and Nakagawa.S.. Dynamically Reconfigurable Robotic Systems. Proc. of IEEE Intl. Conf. On Robotics and Automation,1988.
    [26] 葛彤 水下分散自重构系统设计 2003 年海洋资源开发高技术青年论坛论文集
    [27] 田海涛. 水下分散自重构系统鳗形运动仿真控制. 上海:上海交通大学,2004
    [28] 葛彤、徐雪松、蔡少茹. 水下分散自重构系统设计. 机器人,2004,5,Vol.26, No.3,232~236.
    [29] T.Ge, H.T.Tian, L.Lian. Control of an Underwater Reconfigurable Robot: Spatial Maneuver with Planar Eel-like Configuration. 2004 8th International Conference onControl, Automation, Robotics and Vision Kunming, China, 6-9th, December, 2004.
    [30] 徐爱钧,彭秀华. Keil Cx51 V7.0. 单片机高级语言编程与μ Version2 应用实践. 北京:电子工业出版社,2004,6.
    [31] 潘新民,王燕芳. 微型计算机控制技术. 北京:高等教育出版社,2001,7,209~214.
    [32] 刘金琨. 先进 PID 控制 Matlab 仿真. 北京:电子工业出版社,2004,9.
    [33] 谢宗安 主编. 自动控制系统. 重庆:重庆大学出版社.
    [34] 朱继懋. 潜水器设计[M] . 上海:上海交通大学出版社,1992.
    [35] 盛振邦、杨尚荣、陈雪森. 船舶静力学. 上海:上海交通大学出版社,1988.
    [36] 张亮、赵杰、蔡鹤皋. 自重构机器人的硬件设计及自重构规划研究[J] . 东南大学学报(自然科学版),2005,35(2):243-247.
    [37] 苏一华. 水下分散自重构机器人控制系统设计[学位论文]. 上海:上海交通大学. 2005.
    [38] 刘大有,杨鳃,陈建中. Agent 研究现状与发展趋势软件学报,2000,11( 3): 31 5-32.
    [39] J.Feber. Multi-Agent Systems-An Introduction to Distributed Artificial Intelligence. Addison-Wesley,1999.
    [40] 史忠植. 智能主体及其应用. 北京:科学出版社,2000.
    [41] 刘弘,曾广周,林宗楷. 软件 Agent 的构筑计算机科学,1998,25 (2):24 28,48.
    [42] 赵春霞,盛安冬等. 基于多 Agent 的分布式操作臂控制. 机器人,2000,22( 5) :402-409.
    [43] J.S.Basran, E.M.Petriu, D.C.Petriu. Flexible Agent-based Robotic Assembly Cell. Proc. Proceeding of the IEEE International Conference on Robotics & Automation, 1997,3461-3466.
    [44] E. Oliveira, C. Ramos. A Cooperative Multi-agent System for an Assembly Robotic Cell. Advanced Robotics, 1996,10 (1):15-50
    [45] F. Lin, J. Y Hsu. Cooperation Protocols in Multi-agent Robotic Systems. Autonomous Robots, 1997 ,4( 2):175-198.
    [46] 陈仁际. 基于 Agent 的分布协作式多机器人系统协作控制研究与实现. 哈尔滨工业大学博士学位论文,1999.
    [47] J. Frail, C. J. J. Paredis, C. Wang. Agent-Based Planning and Control of a Multi–Manipulator Assembly System. Proceeding of the IEEE International Conference on Robotics & Automation, 1999, 1219-1225.
    [48] 王越超,谈大龙. 协作机器人学的研究现状与发展.机器人.1998,20(l):69-7
    [49] 阳宪惠 主编. 现场总线技术及其应用. 北京:清华大学出版社,1996,6.
    [50] 邬宽明. CAN 总线原理和应用系统设计. 北京:北京航空航天大学出版社,1996,11.
    [51] BOSCH.CAN Specification Version2.0. Robot Bosch GmbH, 1991.
    [52] 刘樱桃,孔慧. CAN 总线在分布式生物发酵过程控制系统中的应用. 江苏大学学报(自然科学版),2004,3,Vol.25,No.2,109~111.
    [53] ZLgMCU. P8xC591 微控器在 CAN 中的应用. 广州周立功单片机发展有限公司,http://www.zlgmcu.com.
    [54] ZLgMCU. SJA1000 独立的 CAN 控制器应用指南. 广州周立功单片机发展有限公司,http://www.zlgmcu.com.
    [55] ZLgMCU. PCA82C250 CAN 收发器应用指南. 广州周立功单片机发展有限公司,http://www.zlgmcu.com.
    [56] ZLgMCU. CAN-bus 现场总线基础方案通讯篇. 广州周立功单片机发展有限公司,http://www.zlgmcu.com.
    [57] 刘胜道,龚沈光,王金根. 基于控制器局域网(CAN)的远程数据采集系统. 计算机工程,2001,8,Vol.27,No.8,130-131,159.
    [58] 马香峰. 机器人机构学. 北京:机械工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700