用户名: 密码: 验证码:
欠驱动水面船舶航迹自抗扰控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决常规水面船舶的欠驱动、系统内部动态和外部干扰不确定性、控制输入饱和、运动状态约束条件特性及风流干扰作用下的横漂等控制问题,本文进行了基于自抗扰控制的欠驱动水面船舶航迹控制的研究,主要工作和成果包括:
     1.欠驱动船舶非线性动力学模型的研究:基于船舶分离型模型并结合前人试验数据,建立了精度较高的欠驱动船舶运动数学模型;结合模型分析了船舶运动特性;应用建立的船舶非线性水动力模型,在Matlab Simulink环境下搭建了高精度的三自由度船舶运动控制仿真平台,为后面验证航迹跟踪控制器的有效性打下基础。
     2.滑模自抗扰控制算法的研究:利用扩张状态观测器能够求微分的功能将跟踪控制问题转化为镇定控制问题,简化了自抗扰控制结构;提出了滑模自抗扰控制方法,应用滑模迭代方法设计自抗扰控制律中误差反馈环节,并分别利用线性滑模和具有约束条件的非线性滑模设计误差反馈控制律以解决船舶运动状态的约束条件特性问题,改进了自抗扰控制的结构,参数物理意义明显、调整简单直观;应用单调有界的双曲正切函数解决自抗扰控制输入饱和的问题。
     3.船舶路径跟踪自抗扰控制设计的研究:利用自抗扰控制主动抗扰模式,控制设计时不考虑航向,直接将船舶路径的横向偏差作为被控制量,设计了基于无参考航向角的滑模自抗扰路径跟踪控制器,实现了船舶的初始船首向与计划航向差值小于90度时的直线和曲线路径跟踪;利用双曲正切函数的单调有界性设计了路径横向偏差与航向偏差的非线性组合函数,并将对其镇定作为控制目标,设计了基于参考航向的路径跟踪自抗扰控制器,确保船舶在初始船首向与计划航向角差值大于90度依然能够回到计划航线;为解决风流干扰造成的船舶横漂问题,基于参考航向的船舶路径跟踪控制算法,采用如下三种各自独立的控制设计方法进行船舶路径跟踪自抗扰控制设计,实现了欠驱动船舶能够在风流干扰作用下对直线和(或)曲线路径的跟踪控制。三种方法分别为:(1)基于Backstepping思想的路径跟踪控制;(2)基于航迹向跟踪的路径跟踪控制;(3)基于构造期望参考船首向的路径跟踪控制。
     4.船舶轨迹跟踪自抗扰分散控制设计的研究:将分散控制理论应用于欠驱动船舶航迹跟踪控制,结合自抗扰控制方法,针对多输入多输出船舶轨迹跟踪控制系统设计欠驱动船舶轨迹跟踪自抗扰分散控制器,设计思路是将命令舵角和螺旋桨转速看做系统的控制输入,舵角控制船舶路径、螺旋桨转速控制前进速度,将耦合部分纳入总扰动由扩张状态观测器根据系统的输入和输出进行实时估计并在控制律中加以补偿。
     5.以大连海事大学实习船“育龙”轮为仿真对象,基于第二章搭建的仿真、平台进行了大量仿真实验,验证了本文提出的控制方法的有效性。
To solve the control problems on the characteristics of underactuation, systemic uncertainty of internal dynamic and external disturbances, control input saturation, motion constraint conditions, lateral drifting caused by the wind and current for conventional surface ships, the research of ship tracking control for underactuated surface is conducted based on Active Disturbance Rejection Control (ADRC) theory in this dissertation. The following main work and the achievement include:
     1. The study of nonlinear kinetic model of underactuated ship:A high precision maneuvering mathematic modeling of underactuated ship is designed by use of MMG(Manoeuvring Mathematical Model Group) model and experimental data from the literature; the ship motion characteristics was analyzed according to the above model; the simulation platform of ship motion with three degrees of freedom was built in the circumstance of Matlab Simulink.
     2. The study of slide mode ADRC algorithm:Tracking control problem was transformed into stabilization problem by use of differential ability of extended state observer (ESO), which simplified the structure of ADRC algorithm; The sliding mode ADRC approach is put forward, which means that error feedback in ADRC law was designed using the sliding mode iteration approach. The problem of constrained condition characteristic about control object is solved by using respectively linear slide mode and nonlinear slide mode with constrained conditions to design feedback control law, so the ADRC of improved structure made the parameters evident physical interpretation, easier and more intuitive to be tuned. The method of dealing with the problem of ADRC input saturation is proposed by use of monotone bounded hyperbolic tangent function.
     3. The study of ADRC design for ship path following:Firstly, taking advantage of the rejecting actively disturbance mode of ADRC, a sliding mode ADRC controller was designed according to the cross error of ship path ignoring reference course angle method which realized the ship tracking straight and curve path, and this method was applicable to the condition that is no more than90degrees of deviation between initial ship heading and planned course; Secondly, to design a nonlinear stabilization function combined path deviation with course deviation, the controller of path following is proposed based on the reference course, which applicable to the condition that is more than90degrees of deviation between initial ship heading and planned course; Thirdly, to solve the ship lateral drifting problem caused by the disturbances of wind and current, the following three separate ship tracking control methods is put forward:(1) Ship path following control based on Backstepping method;(2) Ship path following control based on CG (course made good) tracking;(3) Ship path following control by constructing desired reference ship heading angle. The above ADRC path following controllers were designed to realize tracking control of underactuated surface ship for straight line and/or curve path under the disturbance of wind and current.
     4. The study of ADRC design for ship trajectory tracking:Applying decentralized control theory combining with ADRC method to ship trajectory tracking control, the ADRC decentralized controller was designed for the multiple input and multiple output system of ship trajectory tracking, which idea was that the command rudder angle and rotating speed of propeller was regarded as control input, and path is controlled by rudder angle and speed is controlled by revolving speed of propeller, the coupling part was put into the total disturbance of system. The total disturbance was estimated at real time by ESO as per input and output of the system, and was compensated in control law.
     5. Extensive simulation experiments on the emulational platform constructed in chapter2were performed based on the training ship "Yulong" of Dalian Maritime University verified the effectiveness of the control methods proposed in this dissertation.
引文
[1]Amerongen J V. Adaptive steering of ships-a model reference approach. Automatica,1984, 20(1):3-14.
    [2]周祥龙,赵景波.欠驱动非线性控制方法综述.工业仪表与自动化装置.2004,34(5):10-13.
    [3]韩冰.欠驱动船舶非线性控制研究:(博士学位论文).哈尔滨:哈尔滨工程大学,2004.
    [4]Prince W S, Bishop R E D. Probablistic theory of ship dynamics. London:Chapmann and Hall Ltd,1974.
    [5]周岗,姚琼荟,陈永冰等.基于输入输出线性化的船舶全局直线航迹控制.控制理论与应用,2007,24(1):117-121.
    [6]Fossen T I. Recent Developments in Ship Control Systems Design. World Superyacht Review, Sterling Publications Limited, London,2000:115-116
    [7]陈雪丽.程启明.船舶自动舵控制技术的发展.南京化工大学学报(自然科学版),2001,23(4):101-105.
    [8]Do K D, Pan J, Control of ships and underwater vehicle-design for underactuated and nonlinear marine systems, Springer,2009.
    [9]李世华.非完整移动机器人的轨迹跟踪控制.控制与决策,2002,17(3):301-305.
    [10]董文杰,霍伟.链式系统的轨迹跟踪控制.自动化学报,2000,26(3):310-316.
    [11]郭晨,汪洋,孙福春,沈智鹏.欠驱动水面船舶运动控制研究综述.控制与决策,2009,24(3):321-329.
    [12]李铁山.船舶直线航迹控制非线性设计方法:(博士学位论文).大连:大连海事大学,2005.
    [13]Fossen T I. Marine Control Systems-Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles [M]. Norwegian University of Science and Technology. Trondheim, Norway, 2002.
    [14]周丽明,刘胜.船舶航向保持静态抗饱和控制.船舶力学,2011,15(7):757-762.
    [15]Wang Xiao-fei, Li Tie-shan, Zou Zao-jian, Nonlinear model predictive controller design for path following of underactuated ships. Journal of Ship Mechanics,2010,14(3):217-227.
    [16]周岗,周永余,陈永冰等.舰船航迹控制器中模糊线性化方法的应用.中国惯性技术学报,2000,8(4):67-71.
    [17]刘鹰,赵琳,钱华明.航迹仪误差分析和控制.哈尔滨工程大学学报,2001,22(4):12-14.
    [18]Godhavn. Nonlinear motion control:nonholonomic, underactuated and hybrid systems. [dissertation]. Dep. of Eng. Cybernatics, NTNU, Trondheim.1999.
    [19]Godhavn J M. Nonlinear tracking of underactuated surface vessels. In proceedings of the 35th IEEE Conference on Decision and Control kobe, Japan. Dec.1996, Vol.1:975-980.
    [20]Godhhavn J M, Fossen T I and Berge S P. Nonlinear and adaptive backstepping designs for tracking control of ships. Int. J. Adapt. Control Signal Processing,1998, Vol.12:649-670.
    [21]Pettersen K Y, Nijmeijer H. Tracking control of an underactuated surface vessel. Proceedings of the IEEE Conference on Decision and Control,1998. Vol.4:4561-4566.
    [22]Reyhanoglu M. Exponential Stabilization of an Underactuated Autonomous Surface Vessel [J]. Automatica,1997,33(12):2249-2254.
    [23]Pettersen K Y, Nijmeijer H. Global Practical Stabilization and Tracking for an Underactuated Ship-a Combined Averaging and Backstepping Approach. IFAC System Structure and Control. Jantes,1998:59-64.
    [24]Pettersen K Y. Exponential stabilization of underactuated vehicles[dissertation], Norwegian University of Science Technology,1996.
    [25]Behal D, Dawson D M, Xian B, etal.Adaptive tracking control of underactuated surface vessels. Proeeedings of the 2001 IEEE international conference on control applications, Mexico City, Mexico,2001:645-650.
    [26]Behal D, Dawson D M, DIXonWE, etal.Tracking and regulation control of an underactuated surface vessel with nonintegrable dynamics. IEEE Transactions on Automatic Control,2002, 47(3):495-500.
    [27]Jiang Z P. Global tracking control of underactuated ships by Lyapunov's direct method. Automatica,2002,38(2):301-309.
    [28]Lefeber E, Pettersen K Y, Nijmeijer H. Tracking Control of an Underactuated Ship. IEEE Transactions on Control Systems Technology,2003,11(1):52-61.
    [29]Lefeber E. Traeking control of nonlinear mechanical systems:(Ph.D.thesis), the Netherlands: University of Twenie,2000.
    [30]Do K D, Z P Jiang, J Pan. Underactuated ship global tracking under relaxed conditions. IEEE Transactions on Automatic Control,2002,47(9):1529-1536.
    [31]Toussaint G J, Basar T, Bullo F. H∞-optimal tracking control techniques for nonlinear underactuated systems. Proceedings of the 39 the IEEE conference on decision and control, sydney, Australsa,2000:2078-2083.
    [32]Ti-Chung L, Jiang Z P. New Cascade Approach for Global -Exponential Tracking of Underactuated Ships. IEEE Transactions on Automatic Cntrol,2004,49(12):2297-2303.
    [33]Pettersen K Y, Lefeber E. Way-point tracking control of ships. Proceedings of the IEEE Conference on Decision and Control,2001:940-945.
    [34]Pettersen K Y and Nijmeijer H. Global practical stabilization and tracking for an underactuated ship-A combined averaging and backstepping approach, Proc. IFAC Conf. System Structure Control, Nantes, France, July 1998:59-64.
    [35]Pettersen K Y, Nijmeijer H. Semi-Global Practical Stabilization and Disturbance Adaptation for an Underactuated Ship. Modeling, Identification and Control.2001,22(2):89-101.
    [36]Pettersen K Y and Nijmeijer H. Underactuated ship tracking control:theory and experiments. Internafional Journalof Control,2001,74(14):1435-1446.
    [37]Indiveri G, Aicardi M. Casalino G. Nonlinear time-invariant feedback control of an underactuated marine vehicle along a straight course. Proc. of the IFAC Conference on Manoeuvring and Control of Marine Craft, MCMC 2000, Aalborg, Denmark, August 2000:221-226.
    [38]Aicardi M, caslino G, and Indiveri G etc. A planar path following controller for underactuated marine vehicles IEEE Conference on Control and Automation, Dubrovnik, Croatia, 2001.
    [39]Do K D, Jiang Z P, Pan J. Robust global stabilization of underactuated ships on a linear course:state and output feedback. International Journal of Control,2003.76(1):1-17.
    [40]Do K. D, Pan J, Jiang Z P. Global exponential tracking control of underactuated surface ships in the body frame, Proceedings of the American Control Conference, Anchorage, AK May, 2002:4702-4707.
    [41]Do K D, Jiang Z P, Pan J, Nijmeijer H. A global output-feedback controller for stabilization and tracking of underactuated ODIN:a spherical underwater vehicle. Automatica,2004(40): 117-124.
    [42]韩冰,赵国良.基于微分平滑的欠驱动船舶航迹控制.哈尔滨工程大学学报,2004,25(6):709-713,727.
    [43]周倩,宋立忠,姚琼荟.基于线性化模型的船舶航迹滑模控制器的设计.海军工程大学学报,2007,19(1):99-104.
    [44]Husa K E, Fossen T I. Backstepping designs for nonlinear way-point tracking of ships. The 4th IFAC Conference on Manoeuvring and Control of Marine Craft(MCMC'97),1997.
    [45]Toussaint G J, Baqar T, and Bullo F. Tracking for Nonlinear Underactuated Surface Vessels With Generalized Forces, Proc. IEEE Int. Conf. Contr. App., Anchorage, Alaska, Sep.2000: 355-360.
    [46]Yan P, Jianda H, Qi S. Tracking Control of Underactuated Surface Ships:Using Unscented Kalman Filter to Estimate the Uncertain Parameters. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation Harbin, China.2007:1884-1889.
    [47]Do K D, Pan J. Global tracking control of underactuated ships with off-diagonal terms. Proceedings of the 42nd IEEE Conference an Decision and Control, Maui, Hawaii USA, 2003:1250-1255.
    [48]Do K D, Jiang Z P Pan J. Universal controllers for stabilization and tracking of underactuated ships. Systems and control letters.2002(51):299-317.
    [49]Do K D, Jiang Z P, Pan J. Robust adaptive path following of underactuated ships. Proceedings of the 41st IEEE Conference on Decision and Control,2002(3):3243-3248.
    [50]Do K D, Pan J. Global tracking control of underactuated ships with nonzero off-diagonal terms in their system matrices. Automatica,2005(41):87-95.
    [51]Do K D, Pan J. Robust path following of underactuated ships using Serret-Frenet frame. Proceedings of the American Control Conference Denver, Colorado,2003:2000-2005.
    [52]Do K D, Pan J. Underactuated Ships Follow Smooth Paths With Integral Actions and Without Velocity Measurements for Feedback:Theory and Experiments. IEEE Transactions on Control Systems Technology,2006,14(2):308-325.
    [53]曾博文,朱齐丹,于瑞亭.欠驱动水面船舶的曲线航迹跟踪控制.哈尔滨工程大学学报,2011,32(10):1317-1322.
    [54]Fossen T I, Breivik M, Skjetne R. Line-of-Sight Path Following of Underactuated Marine Craft, Proc. of the IFAC MCMC'03, Girona, Spain, September 2003.
    [55]Breivik M, Fossen T I. Path Following of Straight Lines and Circles for Marine Surface Vessels, Proc. of the IFAC CAMS'04, Ancona, Italy,2004:65-70.
    [56]Fossen T I, Godhavn J M, Berge S P, Lindegaard K P, Nonlinear control of underactuated ships with forward speed compensation, in IFAC NOLCOS'98, Enschede, Netherlands, July, 1998:121-127.
    [57]Fredriksen E, Pettersen K Y. Global κ-exponential way-point manoeuvering of sips. The 43rd IEEE Conference on Decision and Control. Atlantis, Paradise Island, Bahamas.2004:5360-5367.
    [58]孟威,郭晨,孙富春等.欠驱动水面船舶的非线性滑模轨迹跟踪控制.哈尔滨工程大学学报,2012,33(5):1-5.
    [59]朱齐丹,于瑞亭,刘志林.欠驱动船舶全局K指数航迹跟踪的级联反步法.船舶工程,2012,34(1):47-51.
    [60]廖煜雷,庄佳园,李哗,庞永杰.欠驱动无人艇轨迹跟踪的滑模控制方法.应用科技学报,2011,29(4):428-434.
    [61]Encarnacao P, Pascoal A, Arcak M. Path Following for Marine Vehicles in the Presence of Unknown Currents, in Proceedings of SYROCO'2000-6th International IFAC Symposium on Robot Control, Vienna, Austria,2000, Vol.2:469-474.
    [62]Aieardi M, Casalino G, Indiveri G, etal. A Plannar Path following controller for underactuated marine vehicles. Proceedings of med'01-09th IEEE Mediterranean conference on control and automation Dubrovnik, Croatia,2001:1-6.
    [63]Do K D, Pan J, Jiang Z P. Robust adaptive control of underactuated ships on a linear course with comfort. Ocean Engineering,2003,30(17):2201-2225.
    [64]Do K D, Jiang Z P, Pan J. Robust adtive Path following of underactuated ships. A utomatica 2004,40(6):929-944.
    [65]K D Do, J Pan. Global robust adaptive Path following of underactuated ships. Automatica, 2006,42(10):1713-1722.
    [66]Ashrafiuon H, Muske K, McNinch L, et al. Sliding mode tracking control of surface vessels. IEEE Transactions on Industrial Electronics,2008,55(11):4004-4012.
    [67]王晓飞.基于解析模型预测控制的欠驱动船舶路径跟踪控制研究:(博士学位论文),上海:上海交通大学,2009.
    [68]程金.水面船舶非线性控制研究:(博士学位论文),北京:中国科学院自动化研究所,2007.
    [69]卜仁祥.欠驱动水面船舶非线性反馈控制研究:(博士学位论文).大连:大连海事大学,2007.
    [70]Michael G P, Ailan C C, Yusong Cao. An Assessment of Fuzzy Logic Vessel Path Control. IEEE JOURNAL OF OCEANIC ENGINEERING,1995,20(4):276-284.
    [71]Yao Z. A neural network approach to ship track-keeping control. IEEE J Oceanic Eng,1996, 21(4):513-527.
    [72]刘杨.欠驱动水面船舶的非线性自适应控制的究:(博士学位论文),大连:大连海事大学,2010.
    [73]Doyle, T C, Francis, B., Tannenbaum, A., Feedback Control Theory,3rd Macmillan, New York,1992.
    [74]Krstic M, Kanellakopoulos I, Kokotovic P. Nonlinear and Adaptive Control Design. Boston: Wiley,1995.
    [75]Jeffrey T. Spooner, Manfredi Maggiore, et al. Stable Adaptive Control and Estimation for Nonlinear Systems, Neural and Fuzzy Approximator Techniques, John Wiley and Sons, NY,2002.
    [76]Bennett Stuart, Nicolas Minorsky. the automatic steering off ship. IEEE Control Systems, 1984:10-15.
    [77]Johnson, C.D. Disturbance-accommodating control:An overview, Proc. of the 1986 American Control Conference,1986:526-536.
    [78]Francis B A, Wonham W M. the internal model principle of control theory. Automatica, 1976,12(5):457-465.
    [79]Hostetter G H, Meditch J. On the generalization of observers to systems with unmeasurable, unknown inputs, Automatica,1973,9(6):721-724.
    [80]Profeta J, Vogt W, Mickle M. Disturbance Estimation and Compensation in Linear Systems, IEEE Trans. Aerosp. Electron. Syst.,1990,26(2):225-231.
    [81]Umeno T, Hori Y. Robust speed control of dc servomotors using modern two degrees-of-freedom controller design, IEEE Trans. Ind. Electron,1991,38(5):363-368.
    [82]Ohishi K, Nakao M, Miyachi K. (1987), Microprocessor-controlled DC motor for load-insensitive position servo system, IEEE Trans. Ind. Electron.,1987,34(1):44-49.
    [83]Schrijver E, Dijk J V. Disturbance observers for rigid mechanical systems:Equivalence, stability, and design, Journal of Dynamic Systems, Measurement, and Control,2002,124(4): 539-548.
    [84]Kwon S, Chung W K. A Discrete-Time Design and Analysis of Perturbation Observer for Motion Control Applications, IEEE Trans. Control Syst. Technol.,2003,11(3):399-407.
    [85]Hsia T C, Gao L S. Robot Manipulator Control Using Decentralized Linear Time-Invariant Time-Delayed Controller, Proc. of the 1990 IEEE Int. Conf. on Robot, and Auto.,1990(3): 2070-2075.
    [86]Guo Lei, Chen Wen-Hua, Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Journal of Robust Nonlinear Control,2005(15):109-125.
    [87]Utkin V I. Sliding Modes in Control and Optimization. Springer-Verlag,1992.
    [88]Huang Y, Han J Q. A new synthesis method for control systems--Self-Stable Region approach, International J. Systems Science,1999,30(1):33-38.
    [89]Nazrulla S, Khalil H K. Robust Stabilization of Non-Minimum Phase Nonlinear Systems Using Extended High Gain Observers, Proc. of the 2008 American Control Conference, 2008:1734-1739.
    [90]Praly L, Jiang Z P. Further results on robust semiglobal stabilization with dynamic input uncertainties, in Proc. Of the 37th IEEE Conf. Decision Control,1998(1):891-896.
    [91]Esfandiari F, Khalil H K. Output feedback stabilization of fully linearizable systems. Int. J. Contr.,1992,56(5):1007-1037.
    [92]韩京清.自抗扰控制技术.北京.国防工业出版社,2008.
    [93]Han J Q. From PID to Active Disturbance Rejection Control, IEEE Transactions on Industrial Electronics.2009,56(3):900-906.
    [94]韩京清.自抗扰控制技术.前沿科学,2007,1(1):24-31.
    [95]韩京清.从PID技术到“自抗扰控制”技术.控制工程.2002,9(3):13-18.
    [96]Gao Z Q. Active disturbance Rejection control:a paradigm shift in feedback control system design. Proceedings of the 2006 American Control Conference Minneapolis, Minnesota, USA, June 2006:2399-2405.
    [97]Gao Z Q. Scaling and bandwidth-parameterization based controller tuning. American control conference, Denver, Colrado, June 2003:4989-4996.
    [98]Gao Z Q, Huang Y, Han J Q. An alternative paradigm for control system design. Proc. Of the 40th IEEE Conference on Decision and Control, Orlando, Florida, USA, December 2001:4578-4585.
    [99]Guo B Z, Zhao Z L. On the convergence of an extended state observer for nonlinear systems with uncertainty. Systems & Control Letters,2011,60(6):420-430.
    [100]Guo B Z, Zhao Z L. On the convergence of tracking differentiator. International Journal of Control,2011,84(4):693-701.
    [101]黄一,薛文超,杨晓霞.自抗扰控制:思想、理论分析及运用,第二十九届中国控制会议 论文集,北京.2010:6083-6090.
    [102]黄一,薛文超,赵春哲.自抗扰控制纵横谈.系统科学与数学,2011,31(9):1111-1129.
    [103]Yang, X X, Huang, Y. Capability of extended state observer for estimating uncertainties. Proc. of the 2009 American Control Conference,2009:3700-3705.
    [104]Zheng Q, Chen Z, Gao Z, A practical approach to disturbance decoupling control, Control Engineering Practice 2009,17(9):1016-1025.
    [105]Zheng Q, Gao L Q, Gao Z Q. On stability analysis of active disturbance rejection control for nonlinear time-varing plant with unknown dynamics. Proceedings of the 46th IEEE Conference on Decision and Control. New Orleans, LA, USA, Dec.12-14,2007:3501-3506.
    [106]Freidovich L B, Khalil H K. Performance recovery of feedback-linearization based designs. IEEE Transactions on Automatic Control,2008,53(10):2324-2334.
    [107]Hou Y, Gao Z, Jiang F, et al. Active Disturbance Rejection Control for Web Tension Regulation, Proc. of the 2001 IEEE Conference on Decision and Control,2001(5): 4974-4979.
    [108]Huang Y, Xu K, Han J, et al. Flight control design using extended state observer and non-smooth feedback, in Proc. of the 2001 IEEE Conference on Decision and Control, 2001(1):223-228.
    [109]Huang Y, Luo Z W, Svinin M, et al. Extended state observer based technique for control of robot systems, in Proc. of the 4th World Congress on Intelligent Control and Automation,2002(4): 2807-2811.
    [110]Feng G, Liu Y, Huang L. A New Robust Algorithm to Improve the Dynamic Performance on the Speed Control of Induction Motor Drive, IEEE Tran. Power Electronics, 2004,19(6):1614-1627.
    [111]Wu D, Chen K, Wang X. Tracking control and active disturbance rejection with application to noncircular machining, International Journal of Machine Tools and Manufacture,2007, 47(15):2207-2217.
    [112]陈新龙,杨涤,耿斌斌.自抗扰控制技术在某型导弹上的应用.飞行力学.2006,24(1):81-84.
    [113]张先勇,吴捷,杨金明.基于自抗扰解祸的变速恒频风力发电功率控制系统.电气传动,2007,37(2):8-11.
    [114]杨苹,周少雄,胡斌,马艺玮.双馈风力发电机系统的自抗扰神经网络的励磁控制.控制理论与应用.2012,29(2):251-256.
    [115]Yan B, Tian Z, Shi S, et al. Fault diagnosis for a class of nonlinear systems via ESO, ISA Transactions,2008,47(4):386-394.
    [116]王丽君,童朝南,李擎等.实用自抗扰控制在大时滞厚度自动监控系统中的应用.控制理论与应用,2012,29(3):368-374.
    [117]Huang Y, Han J Q. Analysis and design for nonlinear continuous extended state observer. Chinese Bulletin,2000,45(21):1938-1944.
    [118]Zhao Shen, Zheng Qinling, Gao Zhiqiang. On model-free accommodation of actuator nonlinearities.Proceedings of the 10th world congress on intelligent control and automation, Beijing, China,2012:2897-2902.
    [119]Zhao Shen, Practical Solutions To The Non-minimum Phase and Vibration Problems Under the Disturbance Rejection Paradigm:[Phd dissertation], USA:Cleveland State University,2012.
    [120]
    [121]Ruan J H, Li Z W, Zhou F Y and LI Yibin. ADRC based ship tracking controller design and simulations. Proceedings of the IEEE International conference on Automation and Logistics. Qingdao, China,September,2006:1763-1768.
    [122]刘文江,隋青美,主风余.基于自抗扰控制技术的船舶直线航迹控制器设计.山东大学学报(工学版),2010,40(6):48-53.
    [123]贾欣乐,张显库.船舶运动智能控制与鲁棒控制,大连:大连海事大学出版社,2002.
    [124]Abkowitz M A. Lectures on ship hydrodynamics steering and manoeuvability. Hydro and aerodynamics Laboratory, Report No.Hy-S, Denmark,1964.
    [125]Abkowitz M A. Measurement of hydrodynamic characteristics from ship manoeuvring trails by system identification.Trans. Of SNAME,1980.
    [126]小濑,贵岛.MMG报告—Ⅳ拘束操纵性试验の方法及び试验装置.日本造船学会志,1977,No.579:404-413.
    [127]藤野,葛西,小林.MSS报告Ⅰ低速·浅水域操纵运动数学モデルの检讨.日本造船学会志,1989,No.717:122.129.
    [129]周昭明,冯悟时,盛子寅.常规运输船舶操纵性预报方法的探索.第三届船舶操纵性学术讨论会论文集,1983.
    [131]SNAME, The Society of Naval Architects and Marine Enginners. Nomenclature for Treating the Motion of Submerged Body Through a Fluid,1950.
    [134]邵世明,赵连恩,朱念昌.船舶阻力.北京:国防工业出版社,1995.
    [135]贾欣乐,杨盐生船舶运动数学模型-机理建模与辨识建模.大连:大连海事大学出版社,1999.
    [136]杨盐生.船舶阻力系数和推力系数计算的数据库方法.大连海事大学学报,1995,21(4):14-17.
    [137]Kijima K, Katsuno T, Nakiri Y, et al. Manoeuvring Performance of a Ship With the Parameter of Loading Condition, Journal of The Society of Naval Architects of Japan, 1990,168(11):141-148.
    [138]Inoue S, Hirano M, Kijima K, et al. A Practical Calculation Method. International Shipbuilding Progress,1981(28):207-222.
    [139]日本造船学会.船舶操纵性能の推定专集,日本造船学会志,668号,1985.
    [143]汤忠谷,施立人.水面船舶的空气动力,武汉水运工程学院论文选,1981-1983:40-45.
    [144]杨盐生.不确定系统的鲁棒控制及其在船舶运动控制系统中的应用:(博士学位论文),大连:大连海事大学.1999.
    [145]任光,颜德文.船舶控制仿真系统.大连海事大学学报,2002,28(3):5-9.
    [146]孟浩.船舶航行的智能自适应控制研究:(博士学位论文),哈尔滨:哈尔滨工程大学,2003.
    [147]薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用,北京:清华大学出版社,2002.
    [148]韩京清,王伟.非线性跟踪-微分器,系统科学与数学,14(2):177-283,1994.
    [149]A. Filippov. Differential Equations with Discontinuous Right Hand Sides. Boston:Kluwer Academic Publiiers,1988.
    [150]高为炳,程勉.变结构控制系统的品质控制.控制与决策,1989,4(4):1-6.
    [151]孙明玮,陈增强,袁著祉.变结构控制中滑模与模型选取的若干原则.控制工程,2003,10(6):481-483.
    [152]佟绍成.非线性系统的自适应模糊控制.北京:科学出版社,2005.
    [153]杜佳璐,郭晨,李如铁.基于逆推算法的非线性船舶航向跟踪控制器.大连海事大学学报,2004,30(2):8-11.
    [154]周风余,单金明,王伟等.基于ADRC的船舶航向控制器设计与仿真研究.山东大学学 报(工学版),2009,39(1):57-63.
    [155]Chen Wenwen, Zhou Fengyu, Li Yibin, et al. The ship nonlinear course system control based on auto disturbance rejection controller. Proceedings of the 7th world congress on intelligent control and automation, Chongqing, China,2008:6454-6458.
    [156]夏元清,付梦印,邓志红,任雪梅.滑模控制与自抗扰控制的研究进展.控制理论与应用,2013,30(2):137-147.
    [157]Li T, Yang Y, Hong B, et al. A Robust Adaptive Nonlinear Control Approach to Ship Straight-path Tracking Design, Proceedings of the American Control Conference, Portland, OR, USA June 8-10,2005:4016-4021.
    [158]李铁山,杨盐生,郑云峰.不完全驱动船舶 非线性控制,交通运输工程学报,2003,3(4):39-43.
    [159]Jiao Liang, Sun Qinglin, Kang Xiaofeng, et al. Autonomous homing of parafoil and payload system based oh. Control engineering and applied informatics.2011.13(3):25-31.
    [160]Tieshan Li, Ronghui Li, Dan Wang, Adaptive neural control of nonlinear MIMO systems with unknown time delays, Neurocomputing,2012,78(1):83-88.
    [161]Tieshan Li, Ronghui Li, Junfang Li, Decentralized adaptive neural control of nonlinear systems with unknown time delays, Nonlinear Dynamics,2012,67(3):2017-2026.
    [162]Tieshan Li. Ronghui Li, Junfang Li, Decentralized adaptive neural control of nonlinear interconnected large-scale systems with unknown time delays and input saturation, Neurocomputing, 2011,74(14-15):2277-2283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700