基于HAPE的二维不规则零件排样算法及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二维排样问题在许多工业领域均有应用,比如:冲裁件加工、造船、服装、皮革切割等。排样效率的微小提升可为这些行业带来巨大的经济效益。另外排样算法属于一类组合优化问题,具有极高的计算复杂度,国内外学者对此进行了几十年持续不断的研究。二维不规则零件排样问题存在两大瓶颈:临界多边形(NFP)和计算机速度。多数排样算法都是基于NFP的,但其计算时间与零件类型数(N)和转角个数(RN)成平方关系,因此当零件数量很大或旋转角数目很多时,NFP的计算时间将成为一个巨大障碍。另外排样优化算法历来是一个需要多次迭代的耗时算法,排样优化问题为了得到一个较为理想的结果,往往需要几个小时的时间。针对以上问题,本文主要做了如下几个方面的工作。
     (1)提出了一种基于矢量格式的零件靠接算法,突破了“矢量图形靠接速度慢”的论断。该靠接算法包含两部分内容:多边形分离判据和进退法。多边形分离判据将多边形之间的相对关系归结为点与多边形的包含关系以及直线段之间相交关系。至于进退法,其思路如下:如果零件分离,则进;如果零件重叠,则退;直至靠接误差满足精度要求。本文通过一个算例证明了该算法的高效性。
     (2)提出了基于最小势能原理的不规则零件排样算法(HAPE),揭示了零件排样问题的物理意义:零件总是试图通过平移和旋转运动尽量降低零件的重心高度,从而得到更加紧密的排列。为了寻找最优排样姿态使零件重心最低,需要在母材上均匀布置一些点,让零件在每个点间隔一定的角度进行旋转。算例表明HAPE是可靠的,且物理意义明确,不需要计算临界多边形,可以处理任意不规则形状零件。
     (3)将HAPE与爬山算法(HC)和模拟退火算法(SA)结合产生了两种混合排样算法。通过大量测试和对比分析,研究了这两种混合算法的性能,尤其是RN以及PPD (排样点间距)对于排样密度的影响。对混合算法表现出来的“甜蜜”RN现象进行了初步的研究。
     (4)排样问题并行化在国内外尚处于前沿研究阶段。本文成功地将并行计算应用于不规则排样算法。测试结果表明并行技术能够大幅度提高排样的计算速度,但考虑到通信开销,并行计算更适合求解大规模排样问题。
The two-dimensional packing problem arises in several industries: die cutting, shipbuilding, garment, leather cutting, etc. The slight improvement in packing efficiency can make great economic profits for these industries. On the other hand, the packing problem belongs to a class of combinatorial of optimization problems with high complexity. The scientists around the world have kept working on it for decades of years. There are two bottle-necks in the two-dimensional irregular packing problem: no-fit polygon (NFP) and computer speed. Most of the packing algorithms are based on NFP. But the NFP computing time is proportional to the square of type quantity (N) and rotation number (RN). Therefore the NFP will be a tremendous obstacle for large quantity of parts with many rotation angles. The optimation packing problem always needs a lot of iterations, which always needs several hours to reach a comparatively ideal packing result. In view of the above problems, the main works proposed in this dissertation are listed as follows:
     (1)A polygon contacting algorithm based on the vector graphics was proposed, which breaks the declaration that vector-polygon-contacting is slow. This contacting algorithm includes two parts: one is the polygon separation test and the other is the method of advance or retreat. The polygon separation test can be deduced to the point-in-polygon test and the intersection test of line segments. The method of advance or retreat can be described as follows: if one part is separated from the other, then it slides one step forward; else it slides backward; it keeps doing so until the contacting error satisfies the required accuracy. An example was provided to verify the highspeed of the contacting algorithm.
     (2)An irregular packing algorithm(HAPE) based on the principle of minimum potential energy was proposed, which reveals the physical meaning of packing problems: the part always tends to keep its center of gravity as low as possible by means of translation and rotation, thus a more compact layout being obtained. In the investigation, in order to find the optimal packing attitude with the lowest center of gravity, some equally spaced points need to be located on the sheet, and around each point, the part is rotated in a certain angle interval. Computational experiments show that HAPE is credible and is of a clear physical meaning, and that it needs no calculation of NFPs and is capable of dealing with arbitrary irregular parts.
     (3)HAPE is combined with hill-climbing (HC) and simulated annealing (SA), thus two hybrid algorithms being proposed. By lots of tests and comparison, the performance of these two hybrid algorithms was studied especially how the RN and PPD (packing point distance) affect the packing density. The phenomenon of Sweet RN was found in hyrid algorithm and its behaviour was studied.
     (4)The study on parallelization of packing algorithm belongs to the frontiers study of packing optimization. The parallel computing was successfully employed in the irregular packing algorithm. The computational experiments show that the parallel computing can greatly improve the packing speed. But the parallelization of packing algorithm is more suitable for large-scale packing problems considering the time-consuming of communication.
引文
[1]魏凉良.智能二维排样系统的研究及软件开发[D].广州:华南理工大学,2003
    [2]梅颖.船体建造板材套料系统中排样优化算法[D].广州:华南理工大学,2010
    [3] Dowsland K.A., Dowsland W.B.. Packing problems[J].European Journal of Operational Research,1992,56(1):2-14
    [4]崔耀东,周儒荣.单一尺寸矩形毛坯排样时长板的最优分割[J].计算机辅助设计与图形学学报,2001,13(5):434-437
    [5]崔耀东,张春玲,赵谊.同尺寸矩形毛坯排样的连分数分支定界算法[J].计算机辅助设计与图形学学报,2004,16(2):252-256
    [6]崔耀东,黄健民,张显全.矩形毛坯无约束两维剪切排样的递归算法[J].计算机辅助设计与图形学学报,2006,18(7):948-951
    [7]赵新芳,崔耀东,杨莹,等.矩形件带排样的一种遗传算法[J].计算机辅助设计与图形学学报,2008,20(4):540-544
    [8]何冬黎,崔耀东.一种高效的矩形套裁排样的带填充排样算法[J].计算机工程与应用,2008,44(10):238-240
    [9]张德富,韩水华,叶卫国.求解矩形Packing问题的砌墙式启发式算法[J].计算机学报,2008(3):509-515
    [10]朱冠华.矩形件优化排样系统[D].武汉:华中科技大学,2006
    [11]贾志欣,殷国富,罗阳,等.矩形件排样的模拟退火算法求解[J].四川大学学报,2001,33(5):35-38
    [12]龚志辉.基于遗传算法的矩形件优化排样系统研究[D].长沙:湖南大学,2003
    [13]龚志辉,黄星梅.二维矩形件优化排样算法的改进研究[J].湖南大学学报(自然科学版),2003,30(3):47-49
    [14]王菲,罗意平,杨岳,等.定序列矩形件优化排样新算法[J].工程图学学报,2005(4):47-50
    [15]刘德全,腾弘飞.矩形件排样问题的遗传算法求解[J].小型微型计算机系统,1998,19(12):20-25
    [16]饶运清,高伟增.遗传算法在矩形件排样中的应用[J].锻压机械,2002,(2):27-28
    [17]陈端兵,黄文奇.求解矩Packing问题的贪心算法[J].计算机工程,2007(2):160-162
    [18]杨彩君.填充启发式算法的二维矩形排样问题[J].电子科技,2010,24(1):50-51,54
    [19]黄红兵.矩形毛坯优化排样算法的改进[J].机械工程师,2004(11):12-14
    [20]贾丹,董方敏.二维优化排样问题研究[J].计算机系统应用,2008(7):21-24
    [21] Hopper E., Turton B.C.H..Application of genetic algorithms to packing problems- a review[A].Proceedings of the Second On-line World Conference on Soft Computing in Engineering Design and Manufacturing [C].London:Springer,1997:279-288
    [22] Hopper E. Turton B.C.H.. An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem[J]. European Journal of Operational Research, 2001, 128(1): 34-57
    [23] Dowsland K.A., Herbert E.A., Kendall G.,et al. Using tree search bounds to enhance a genetic algorithm approach to two rectangle packing problems[J]. European Journal of Operational Research, 2006, 168(2): 390-402
    [24] Burke E., Kendall G.. Comparison of meta-heuristic algorithms for clustering rectangles[J]. Computers & Industrial Engineering. 1999,37(1-2): 383-386
    [25] Chen M., Huang W.Q.. A two-level search algorithm for 2D rectangular packing problem[J]. Computers & Industrial Engineering, 2007,53(1): 123-136
    [26] Binkley K.J., Hagiwara M..Applying self-adaptive evolutionary algorithms to two-dimensional packing problems using a four corners' heuristic[J]. European Journal of Operational Research, 2007,183(3): 1230-1248
    [27] Baker, B.S., Coffman, J.E.G., Rivest, R.L.. Orthogonal packings in two dimensions[J]. SIAM Journal on Computing, 1980,9(4): 846-855
    [28] Liu D.Q., Teng H.F.. An improved BL-algorithm for genetic algorithm of the orthogonal packing of rectangles[J]. European Journal of Operational Research, 1999, 112(2): 413-420
    [29] Chazelle B..The bottomn-left bin-packing heuristic: an efficient implementation[J].IEEE Transactions on Computers, 1983,C-32(8):697– 707
    [30] Alvarez-Valdes R., Parren?o F., Tamarit J.M.. A tabu search algorithm for a two-dimensional non-guillotine cutting problem[J]. European Journal of Operational Research, 2007, 183(3): 1167-1182
    [31] Gon?alves J.F.. A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal packing problem[J]. European Journal of Operational Research, 2007,183(3): 1212-1229
    [32] Gon?alves J.F., Resende M.G.C.. A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem[J]. Journal of CombinatorialOptimization, 2010, 22(2): 180-201
    [33] Cui Y.D., Yang Y.L., Cheng X., et al. A recursive branch-and-bound algorithm for the rectangular guillotine strip packing problem[J]. Computers & Operations Research, 2008 35(4): 1281-1291
    [34] Adamovicz M., Albano A..Nesting two dimensional shapes in rectangular modules [J].Computer Aided Design, 1976, 8(1):27-33
    [35] Huang W.Q., Chen D.B. An efficient heuristic algorithm for rectangle-packing problem[J]. Simulation Modelling Practice and Theory, 2007, 15(10): 1356-1365.
    [36] Yeung, L.H.W., Tang W.K.S.. Strip-packing using hybrid genetic approach[J]. Engineering Applications of Artificial Intelligence, 2004,17(2): 169-177.
    [37] Wei L.J., Zhang D.F., Chen Q.S.. A least wasted first heuristic algorithm for the rectangular packing problem[J]. Computers & Operations Research, 2009, 36(5): 1608-1614
    [38] Zhang D.F., Chen S.D. Liu Y.J.. An Improved Heuristic Recursive Strategy Based on Genetic Algorithm for the Strip Rectangular Packing Problem[J]. Acta Automatica Sinica, 2007,33(9): 911-916
    [39] Leung, T.W., Chan C.K., Troutt M.D.. Application of a mixed simulated annealing-genetic algorithm heuristic for the two-dimensional orthogonal packing problem[J]. European Journal of Operational Research, 2003, 145(3): 530-542
    [40] Hwang S.M., Cheng Y.K., Horng J.T..On solving rectangle bin packing problems using genetic algorithms[A]. Proceedings of the 1994 IEEE International Conference on Systems[C].NJ:IEEE,1994:1583-1590
    [41] Sarin S.C.. Two-dimensional stock cutting problems and solution methodologies [J]. ASME Transactions Journal of Engineering for Industry, 1983,104: 155-160
    [42] Kenmochi, M., Imamichi T., Nonobe K., et al. Exact algorithms for the two-dimensional strip packing problem with and without rotations[J]. European Journal of Operational Research, 2009, 198(1): 73-83.
    [43] Almeida, A.M.C., Martins E.Q.V., Rodrigues R.D.. Optimal cutting directions and rectangle orientation algorithm[J]. European Journal of Operational Research, 1998, 109(3): 660-671
    [44] Bortfeldt A.. A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces[J]. European Journal of Operational Research, 2006,172(3): 814-837
    [45] Soke, A. ,Bingul Z.. Hybrid genetic algorithm and simulated annealing fortwo-dimensional non-guillotine rectangular packing problems[J]. Engineering Applications of Artificial Intelligence, 2006, 19(5): 557-567
    [46] Cintra G.F., Miyazawa F.K., Wakabayashi Y., et al. Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation[J]. European Journal of Operational Research, 2008, 191(1): 61-85.
    [47] Harald, D., 1990. A typology of cutting and packing problems. European Journal of Operational Research. 44(2): 145-159
    [48]梁利东,叶家玮,魏栋.基于剩余矩形匹配算法的船体零件排样[J].船海工程,2008,37(4):7-9
    [49]韩喜君.基于统计分析的矩形件排样问题遗传算法研究[D].南京:河海大学,2006:18-20
    [50]陈菲,刘勇,刘睿,等.基于3块方式的圆形片剪冲排样算法[J].计算机工程,2009,(14)
    [51]杨剑,黄少丽,侯桂玉,等.圆片剪冲下料排样算法[J].计算机工程与设计,2010,(23)
    [52] George J.A., George J.M., Lamar B.W.. Packing different-sized circles into a rectangular container[J]. European Journal of Operational Research, 1995,84(3): 693-712.
    [53] Wang H.Q, Huang W.Q., Zhang Q.,et al.. An improved algorithm for the packing of unequal circles within a larger containing circle[J]. European Journal of Operational Research, 2002, 141(2): 440-453
    [54] Huang W.Q, Kang Y.. A heuristic quasi-physical strategy for solving disks packing problem[J]. Simulation Modelling Practice and Theory, 2002,10(3-4): 195-207
    [55] Stoyan, Y.G., Yas'kov G.. A mathematical model and a solution method for the problem of placing various-sized circles into a strip [J]. European Journal of Operational Research, 2004, 156(3): 590-600
    [56] Zhang, D.f. Deng A.S.. An effective hybrid algorithm for the problem of packing circles into a larger containing circle[J]. Computers & Operations Research, 2005, 32(8): 1941-1951
    [57] Huang W.Q., Li Y., Li C.M.,et al.. New heuristics for packing unequal circles into a circular container[J]. Computers & Operations Research, 2006, 33(8): 2125-2142
    [58]宋亚男,叶家玮,邓飞其,等.排样系统中基于位图的三种靠接算法比较[J].武汉科技大学学报(自然科学版),2004, 27(1): 54-57
    [59]宋亚男,叶家玮,邓飞其,等.不规则图形排样系统中靠接算法比较研究[J].计算机工程,2004, 30(19): 8-10.
    [60]夏萼辉,卞铭甲,刘汉培,等.任何形状冲裁件最佳排样法[J].模具技术,1983,(3): 16-31
    [61]周济,曹炬.冲裁件排样最优化的数字模型及算法[J].锻压技术,1993,18(6): 21-24
    [62]林好转.平行线分割一步平移法排样算法的研究[J].锻压技术,1994,19(5): 33-35
    [63]孙友松,罗月参.冲裁件优化排样的顶点算法[J].锻压技术,1995,20(4): 23-25.
    [64]吉晓民,杨先海.冲裁件优化排样的最大截距法[J].西安理工大学学报,1996, 12(2): 91-94
    [65]雷贺功,孙厚芳,刘汉雄.冲裁件优化排样的多边形顶点射线算法[J].北京理工大学学报,2004, 24(9): 770-773
    [66]杨洪旗,储家佑.冲裁件的排样优化与动画排样寻优法[J].锻压机械,1987,(6): 7-10
    [67]刘虓,叶家玮.基于多边形重叠检测的冲裁件优化排样[J].锻压技术,2010,35(5):155-158
    [68] Nye T.J.. Stamping strip layout for optimal raw material utilization[J]. Journal of Manufacturing Systems,2000, 19(4): 239-248
    [69] Mulero R., Layton B.. Two-dimensional Minkowski sum optimization of ganged stamping blank layouts for use on pre-cut sheet metal for convex and concave parts[J]. Journal of Manufacturing Systems,2007,26(1):44-52
    [70]曹炬.实用异形件优化排样系统的研究与开发[J].计算机工程与应用,1999,(10):37-40
    [71]曹炬.二维异形切割件优化排样的拟合算法[J].中国机械工程,2000,11(4):438-441
    [72]曹炬.优化排样问题的近似[D].武汉:华中科技大学,2004
    [73]刘嘉敏,张胜男,黄有群.二维不规则形状自动排料算法的研究与实现[J].计算机辅助设计与图形学学报,2000,12(7):488-491
    [74]贾志欣,殷国富,罗阳,等.异性件排样系统的研究与开发[J].计算机工程,2002,28(12)
    [75]贾志欣,殷国富,罗阳.二维不规则零件排样问题的遗传算法求解[J].计算机辅助设计与图形学学报,2002,14(5):467-470
    [76]史俊友,冯美贵,苏传生,等.不规则件优化排样的小生境遗传模拟退火算法[J].机械科学与技术,2007,26(7):940-944
    [77]候胡得,朱灯林,康艳军.基于小生境技术的任意多边形优化排样[J].机械制造与自动化,2004,33(1):14-17
    [78]杨彩,顾海明,史俊友,等.不规则件最优排放布局的实现[J].青岛科技大学学报,2005,26(2):146-149
    [79]杨威.板材排样优化的计算智能方法研究[D].成都:四川大学,2002
    [80]陈勇.二维不规则形优化排样技术研究[D].杭州:浙江大学,2003
    [81]靳旭玲.二维不规则排样问题的研究[D].青岛:山东科技大学,2003
    [82]白瑞斌.临界多边形法在二维不规则零件排样中的研究与实现[D].西安:西北工业大学,2002
    [83]张达科.服装纸样排版自动优化系统[D].广州:华南理工大学,2002
    [84] Hopper E., Turton B..A genetic algorithm for a 2D industrial packing problem[J]. Computers & Industrial Engineering, 1999,37(1-2):375-378
    [85] Hopper E.. Two-dimensional packing utilising evolutionary algorithem and other meta-heuristic methods[D]. Cardiff, UK:University of Wales, 2000
    [86] Oliveira J.F., Gomes A.M., Ferreira J.S.. TOPOS– A new constructive algorithm for nesting problems[J]. OR Spectrum, 2000,22(2): 263-284
    [87] Gomes A.M., Oliveira J.F.. A 2-exchange heuristic for nesting problems[J]. European Journal of Operational Research, 2002,141(2): 359-370.
    [88] Gomes A.M., Oliveira J.F.. Solving Irregular Strip Packing problems by hybridising simulated annealing and linear programming[J]. European Journal of Operational Research, 2006, 171(3): 811-829.
    [89] Burke E., Hellier R., Kendall G., et al.. A New Bottom-Left-Fill Heuristic Algorithm for the Two-Dimensional Irregular Packing Problem[J]. Operations Research, 2006,54(3): 587-601
    [90] Dowsland K.A., Dowsland W.B.. Heuristic approaches to irregular cutting problems[R] . Swansea, UK :University College of Swansea,1993
    [91] Dowsland K.A..Some experiments with simulated annealing techniques for packing problems[J]. European Journal of Operational Research, 1993, 68(3):389-399
    [92] Dowsland K.A., Dowsland W.B. Solution approaches to irregular nesting problems[J].European Journal of Operational Research,1995,84(3):506-521
    [93] Dowsland K.A., Dowsland W.B. , Bennell J.A. . Jostling for position: local improvement for irregular cutting patterns[J]. The Journal of the Operational Research Society, 1998,49(6): 647-658
    [94] Dowsland K.A., Vaid S., Dowsland W.B.. An algorithm for polygon placement using a bottom-left strategy[J]. European Journal of Operational Research, 2002, 141(2): 371-381.
    [95] Lee W.C., Ma H.. Cheng B.W.. A heuristic for nesting problems of irregular shapes[J]. Computer-Aided Design, 2008,40(5): 625-633
    [96] LIU H.Y, HE Y.J..Algorithm for 2D irregular-shaped nesting problem based on the NFP algorithm and lowest-gravity-center principle[J]. Journal of Zhejiang University SCIENCE A,2006,7(4):570-576
    [97] Art R.C.. An approach to the two-dimensional irregular cutting stock problem[R]. Cambridge: IBM Cambridge Centre, 1966
    [98] Albano A., Sapuppo G.. Optimal allocation of two-dimensional irregular shapes using heuristic search methods[J]. IEEE Transactions on Systems, Man and Cybernetics, 1980,SMC-10(5): 242-248
    [99] B?a?ewicz J., Hawryluk P., Walkowiak R.. Using a tabu search approach for solving the two-dimensional irregular cutting problem[J]. Annals of Operations Research, 1993, 41(4): 313-325
    [100] Ratanapan K., Dagli C.H..An object-based evolutionary algorithm for solving irregular nesting problems[A]. Proceedings for Artificial Neural Networks in Engineering Conference(ANNIE'97)[C]. New York: ASME Press, 1997:383-388
    [101] Fujita K., Akagji S., Kirokawa N.. Hybrid approach for optimal nesting using a genetic algorithm and a local minimization algorithm[J]. Advances in Design Automation; American Society of Mechanical Engineers, Design Engineering Division (Publication) DE,1993, 65 pt 1: 477-484
    [102] Jakobs S.. On genetic algorithms for the packing of polygons. European Journal of Operational Research, 1996, 88(1): 165-181
    [103] Marques V.M.M., Bispo C.F.G., Sentieiro J.J.S..A system for the compaction of two-dimensional irregular shapes based on simulated annealing[A]. International Conference On Industrial Electronics, Control and Instrumentation - IECON'91[C]. Kobe, Japan : , 1991:1911-1916
    [104] Imamichi T.,. Yagiura M, Nagamochi H.. An iterated local search algorithm based on nonlinear programming for the irregular strip packing problem[J]. Discrete Optimization, 2009, 6(4): 345-361
    [105] Li Z.Y., Milenkovic V..Compaction and separation algorithms for non-convex polygons and their application[J]. European Journal of Operational Research,1995,84(3):539-561
    [106] Lin C.C..A genetic algorithm for solving the two-dimensional assortment problem[J]. Computers & Industrial Engineering, 2006,50(1-2): 175-184
    [107]刘胡瑶,何援军.基于轨迹计算的临界多边形求解算法[J].计算机辅助设计与图形学学报, 2006, 18 (08), 1123-1129
    [108] Bennell J.A., Dowsland K.A., Dowsland W.B.. The irregular cutting-stock problem - a new procedure for deriving the no-fit polygon[J]. Computers & Operations Research, 2001,28(3):271-287
    [109] Burke E.K., Hellier R.S.R., Kendall G. , et al. Complete and robust no-fit polygon generation for the irregular stock cutting problem[J]. European Journal of Operational Research, 2007,179(1):27-49.
    [110] Wong W.K., Wang X.X., Mok P.Y.,et al. Solving the two-dimensional irregular objects allocation problems by using a two-stage packing approach[J]. Expert Systems with Applications, 2009, 36(2, Part 2): 3489-3496
    [111] Chan F.T.S., Au K.C., Chan L.Y.,et al.. Using genetic algorithms to solve quality-related bin packing problem[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23(1): 71-81.
    [112] Haouari M., Serairi M.. Heuristics for the variable sized bin-packing problem[J]. Computers & Operations Research, 2009, 36(10): 2877-2884
    [113] Puchinger, J. Raidl G.R.. Models and algorithms for three-stage two-dimensional bin packing[J]. European Journal of Operational Research, 2007, 183(3): 1304-1327
    [114]王凌.智能优化算法及其应用[M].北京:清华大学出版社,2000:1,10-11,12
    [115] Wikipedia. Heuristic. http://en.wikipedia.org/wiki/Heuristic, 2011/8/9
    [116] Wikipedia. Hill_climbing.http://en.wikipedia.org/wiki/Hill_climbing,2011/8/31
    [117] Wikipedia.Simulated_annealing.http://en.wikipedia.org/wiki/Simulated_annealing,2011/8/25
    [118]孙家广,杨长贵.计算机图形学[M].北京:清华大学出版社, 1995: 390-391
    [119]刘虓.船舶结构力学[M].广州:华南理工大学出版社,2010:154-157
    [120]同济大学数学教研室.高等数学(下册)[M].北京:高等教育出版社,1988:179-184
    [121] Hibbeler, R.C.. Statics and Mechanics of Materials[M]. New Jersey :Prentice Hall, 2011:261-272
    [122]严蔚敏,吴伟民.数据结构(C语言版)[M].北京:清华大学出版社, 2007
    [123]陈国良,安虹,陈崚,等.并行算法实践[M].北京:高等教育出版社,2004
    [124] Foster I.. Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering [M]. Boston :Addison-Wesley, 1995
    [125] Berkey J.O..Massively parallel computing applied to the one-dimensional bin packing problem [A].2nd Symposium on the Frontiers of Massively ParallelComputation[C].Fairfax:IEEE,1988:317-318
    [126] Wikipedia.Parallel omputing.http://en.wikipedia.org/wiki/Parallel_computing,2011/08/29
    [127] Amdahl, G. (April) The validity of the single processor approach to achieving large-scale computing capabilities[A]. Proceedings of AFIPS Spring Joint Computer Conference[C].Atlantic City: AFIPS Press, 1967: 483–85
    [128]饶运清,刘延林,段正澄.计算机辅助排样系统的研制[J].计算机辅助设计与图形学学报,1994,6(1):72-74
    [129]龚志辉.基于遗传算法的矩形件优化排样系统研究[D].长沙:湖南大学,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700