船舶制造相关工艺的应力与变形问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
提高船舶质量,降低生产成本,缩短施工时间,是船舶行业经济发展到一定阶段的必然结果和要求。改进造船工艺水平是提高船舶质量,降低生产成本的主要手段。船舶建造过程应力和变形控制研究是改进造船工艺水平的基础,深入研究船舶制造中的应力和变形问题,从力学角度分析造船工艺的科学性和合理性,发现问题,找出改进措施,进而为施工工艺改进提供理论基础和技术支持。
     本论文主要对如下三项船舶制造相关工艺技术进行研究:
     (1)船体外板自重成型预报研究
     开展了船体外板自重成型预报系统研究。在考虑大应变效应基础上,采用有限元方法分析薄板大挠度弯曲,经实船板自重成型实验验证,所建立的船体板有限元模型准确可靠。应用有限元法进行船体板自重成型数值实验,确定钢板几何参数与钢板成型间的函数关系,建立船体外板自重成型的数学模型。基于以上算法,结合加工精度要求,开发了自重成型预报系统。该预报系统已用于船厂生产实践,产生良好效益。
     (2)上层建筑整体吊装工艺技术研究
     首先,进行了上层建筑整体吊装工艺研究。以1.26万吨油船上层建筑为例,进行上层建筑整体吊装强度分析。在此基础上,进行吊装辅助工装设备—吊架的发明设计工作,并根据吊架设计整吊工艺方案,计算验证方案的可靠性,对上层建筑整体吊装用吊架发明进行详细说明。
     其次,开展了吊环强度校核方法研究。分析吊环孔分布力情况,并结合曲梁理论推导了新的吊环强度计算公式。通过与传统强度校核公式和有限元计算结果对比可以看出,新公式计算结果比传统强度校核公式更加接近实际情况。采用新的吊环强度计算公式可显著提高吊环结构设计的可靠性。
     (3)船体结构修造开口工艺技术研究
     采用热弹塑性理论,应用有限元方法,建立切割分析数值模型。进行切割实验研究,采用红外测温技术测量切割过程温度场,采用压痕应变法测量钢板切割残余应力。将实验数据和数值模拟结果对比,可以看出二者基本一致,验证了切割数值模型的可靠性。在此基础上,对平板切割开口进行数值实验,分析了割缝长度、钢板边界约束条件、钢板尺寸、开口形式和开口位置的影响规律。应用所建立的切割模型,对船体结构开口进行数值模拟,分析切割开口工艺的安全性。
Improving manufacturing accuracy, reduce the production costs and increasing labor productivity are inevitable results and requests of the development of shipbuilding. It is an important method for advancing shipbuilding quality to improve shipbuilding processes. Research on technic of shipbuilding processes is the foundation of improve shipbuilding processes. Therefore, research on technic of shipbuilding processes is essential. In this study, researches on three shipbuilding key processes are performed.
     (1) Research on Dead Load Forming of Hull Steel Plates
     The relatively large deflections of sheet are described and the models of finite element method are built and checked up by experimental measure of dead load forming. The database of the calculations for dead load forming of hull steel plates is established. Data of effective parameters are measured, and the effect principles of the primary parameters such as length, width, thickness, and radius are qualitatively analyzed. With curve estimate and multi-variable stepwise regression analysis methods, mathematical models for the dead load forming of hull steel plates based on the primary parameters such as length, width, thickness are presented.. Based on above algorithm, and combined with shipyard production condition, a forecasting system is developed for the dead load forming of hull saddle shaped steel plates. Factual plate tests in shipyard production show a forming precision of this system.
     (2) Research on technic of ship superstructure's integral assembly
     First, ship superstructure's integral assembly (SSIA) is an advance process, but still a hard nut, in ship construction. In this study, taken 12,600 tons oil tanker as an example, the arrangement of lifting padeyes in SSIA is analyzed with the theory of structure strength and finite element method (FEM). Base on the strength analysis, a new hanger of SSIA is invented and the credibility of design is verified. Some basic regulations of SSIA are found.
     Secondly, strength Analysis methods of Lifting Padeye are developed. In the paper, the external loads on the padeyes are analyzed and a robust stress check formula is derived using curved beam theory. The results of finite element method (FEM) and the solutions of traditional check formula and new check formula are compared. It is shown that the new expressions account for a better representation of the real stress value and distribution. By applying the strength check formula presented in the paper, the safe reliability of structure design can be improved significantly.
     (3) Research on technic of cutting hatch openings in ship structure
     Numerical analysis of cutting in ship structure is performed. This study applies thermal elastoplastic analysis, using finite element techniques, to build a model for the temperature distribution during cutting and stress distribution in the workpiece. A non-contact temperature method—Infrared Radiation (IR) is used for surface temperature measurement. The residual stresses at the surface of the workpiece were measured by impact-indentation measurement. The results of finite element analysis were compared with experimental results to confirm the accuracy of the method. Numerical experiment of cutting hatch in flat plate is put up, and the effect principles of the primary parameters such as length of cutting line, bound condition, size of steel plate, the form of hatch, position of hatch are analyzed. On this basis, numerical analysis of cutting in ship structure is performed and the deformation and stress are analyzed.
引文
[1]叶家玮.现代造船技术概论(M).华南理工大学出版社,2001,7.
    [2]徐兆康.船舶建造工艺学(M).人民交通出版社,2005,3.
    [3]宋天民.焊接残余应力的产生与消除(M).中国石化出版社,2004.
    [4]#12
    [5]金世良,于文喜,姜春满.考虑加工塑性变形因素的外板展开方法[J].造船技术,1994(8).11-15.
    [6]戴寅生,邓燕萍,刘玉君.大型船舶外板自重成型预报研究[J].大连理工大学学报,1998,7(4).400-404.
    [7]戴寅生,周文韬.船体外板自重弯曲有限元法研究[J].造船技术,1991(6):5-82.
    [8]刘玉君,陈涛,张骏等.船体外板鞍形板自重成型的数学模型[J].中国造船,2004,(6)73-80.
    [9]杨永谦,黄贻平,陈超核.29000t货船上层建筑整体吊装变形及应力计算[J].武汉交通科技大学学报.1994,9,vol 3,301-306.
    [10]龚恢.大型上层建筑的整体吊装[J].船舶.1999,6,vol3,27-31.
    [11]张延昌,王自力,罗广恩.船舶上层建筑整体吊装强度有限元分析[J].船舶工程.2006,Vol.28,No362-65.
    [12]鲁学林.一艘万吨级散货船上层建筑的整体吊装[J].造船技术.2001年第二期,17-18.
    [13]金俊洪.大型船体分段水上吊装的实现[J].造船技术.2006年第二期,26-29.
    [14]吴仲其,马庆莲,袁文林.船体分段吊装工艺[J].江苏船舶,1990年第2期,19-22.
    [15]顾延家.船体分段吊装工作的安全性分析[J].造船技术,1987年06期,19-22.
    [16]王大伟.北京路大桥钢箱梁吊装施工研究[J].大连理工大学硕士论文,2006年6月.
    [17]张冰.大跨度空间结构建造过程中吊点和支撑位置合理性研究[D].浙江大学硕士学位论文.2006年3月.
    [18]Soh Ai-Kah,Soh Chee-Kiong.Design and analysis of offshore lifting padeyes[J].Journal of Constructional Steel Research,v14,1989,p167-180.
    [19]Bin Siao Wen(Nanyang Technological Inst),Fan Wong Wai.Ultimate static strength of padeye on tubular member[J].Source:Journal of Constructional Steel Research,v 19,n 3,1991,p 167-181.
    [20]Russo Edwin P.,Gelpi Sid I.,Cayll David R.,Gaffe Gregory.Padeye design and analysis[C].Proceedings of the Second International Offshore and Polar Engineering Conference.v1 1992,p 326-330.
    [21]Russo Edwin P.,Crisp John N.,St.Cyr William W.,Egeseli Engin A.Lifting eye design[C].Proceedings of the International Offshore and Polar Engineering Conference,v1,1997,p 425-433.
    [22]Choo Y.S.,Lee K.H.,Lee W.H.Stresses and strength of padeye to circular pipe connection[C].Proceedings of the International Offshore and Polar Engineering Conference,v 1,1996,p 570-576.
    [23]刘善德,宋岩苓.船体分段吊环最佳型式的选择[J].造船技术,1987年12月,30-37.
    [24]梁有祥,赵建英,徐鸿志.修造船施工中的吊环设计[J].中国修船,Vol.19 No.3,2006,38-41.
    [25]宋恒家.起重机吊环的曲梁计算[J].起重运输机械,2006(8)52-57.
    [26]张晓音.吊装眼板在船舶工业使用中的安全可靠性分析[D].大连理工大学硕士学位论文.2004,7.
    [27]许寿彭,马大为,冯勇,李志刚.基于有限元方法的吊环数值仿真[J].系统仿真学报.2006,Vol.18No.12,3362-3364.
    [28]梁桂芳.切割技术手册(M).北京:机械工业出版社.1997,5.
    [29]松山钦一.切断技術の最近の動向[J].溶解技術.1991,39(5):64-69.
    [30]#12
    [31]安村幹明.最近の熱切斷機器[J].溶接技術.1988,36(5):71-76.
    [32]Irving B.High-Tolerance Plasma Are Cutting Carves out some Niches in Industry[J].Welding Journal.1992,71(10):33-37.
    [33]梁桂芳.数控切割机在船厂中应用价值[J].船舶世界.1979,(9):1.
    [34]Commission I of the IIW.Some Historical Notes on Thermal Cutting Processes[J].Welding in the World,1980,18(1/2):23-27.
    [35]Air Plasma Cutting.Weld and Mentle Fabrication.1973,41(12):425-426.
    [36]Coueb R W et al.High Quality Water-Arc Cutting[J].Welding Journal.1971,50(4):233-237.
    [37]Multi-Fold Laser Cutting.Welding and Metal Fabrication.1972,40(1):32-33.
    [38]梁桂芳.小电流空气等离子弧切割中、薄板的技术经济性[J].焊接.1987(11),19-21.
    [39]孙松年.水射流切割技术及其应用[J].造船技术.1992,(9):29-32.
    [40]梁桂芳编著.高速氧气割割法[M].北京:机械工业出版社,1975.
    [41]崔信昌编著.等离子弧焊结和切割[M].北京:国防工业出版社,1980.
    [42]J.Powell,A.Ivarson,C.Magnusson.An energy balance for inert gas laser cutting[C].ICALEO,1993:12-20.
    [43]J.Powell,A.Ivarson,L.Ohlsson.et al..Energy redistribution in laser cutting[J].Welding in the World,1993,31(3):31-36.
    [44]W.Schulz,D.Becker,J.Franke,et al.,Heat conduction losses in laser cutting of metals[J].J.Phys.D:Appl.Phys.1993,26:1357-1363.
    [45]W.Sclaulz,G.Simon,H.M.urbassek,et al.,On laser fusion cutting ofmetals[J].J.Phys.D:Appl.Phys.1987,20:481-488.
    [46]A.F.H.Kaplan.An analytical model of metal cutting with a laser beam[J].J.Appl.Phys.1996.79(5):2198-2208.
    [47]Dayana Espinal,Aravinda Kar,.Thermochemical modeling ofoxygen-assistedlaser cutting[J].Journal of Laser Applications,2000,12(1):16-22.
    [48]M.J.Hsu,P.A.Molian.Thermoehemical modeling in C02 laser outing of carbon steel.[J].Journal of materials science,1994,79:5607-5611.
    [49]M.Vieanek,G.Simon.Momentum and heat transfer of an inert gas jet to the melt in laser cutting[J].J.Phys.D:Appl.Phys.1987,20:1191-1196.
    [50]Ming-Jye Tsai,Cheng-I weng.Linear stability analysis of molten flow in laser cutting[J].J.Phys.D:Appl.Phys.1993,26:719-727.
    [51]P.DI Pietro,Y L.Yao.A new technique to characterize and predict laser cut striations[J].Journal of Materials Processing Technology,1995,35(7):993-1002.
    [52]F.T.阿雷克主编.激光的技术应用—激光手册第六分册[MI。北京:科学出版社,1983,154-219.
    [53]K.A.Bunting,G.Cornfield,Toward a general theory of cutting:A relationship between the incident power density and the cut speed[J],ASME J.Heat Transfer 97(1975) 116-121.
    [54]F.W.Dabby,U.C.Paek,High intensity laser-induced vaporization and expiosion of solid material[J],IEEE J.Quant.Electron.QE-8(1972) 106-111.
    [55]M.F.Modest,H.Abakian,Evaporative cutting of a semi-infinite body with a moving CW laser[J],ASME J.Heat Transfer 108(1986) 597-601.
    [56]J.F.Reddy,Effects of High Power Laser Radiation[M],Academic Press,NY,1971.
    [57]B.Basu,J.Srinivasan,Numerical study of steady-state laser melting problem[J],Int.J.Heat Mass Transfer 31(1988) 2331-2338.
    [58]M.F.Modest,H.Abakian,Heat conduction in a moving semi-infinite solid subjected to pulsed laser irradiation[J],ASME J.Heat Transfer 108(1986) 602-607.
    [59]M.Gross,I.Black,W.Muller,Computer simulation of the processing of engineering materials with lasers—theory and first applications[J],J.Phys.D—Appl.Phys.36(2003) 929-938.
    [60]M.S.Gross,I.Black,W.H.Muller,3-d simulation model for gas-assisted laser cutting[J],Lasers Eng.15(2005) 129-146.
    [61]Markus S Gross.On gas dynamic effects in the modeling of laser cutting processes[J].Applied Mathematical Modelling 30(2006) 307-318.
    [62]邓德圣.氧助散焦CO2激光切割厚板技术研究[D].华中科技大学硕士学位论文.2002.4.
    [63]Paul S.Sheng,Vinay S.Joshi.Analysis of heat afected zone formation for laser cuting of strainless steel[J].Journal of Materials Processing Technology,1995,53:879-892.
    [64]Paul S.Sheng,LI-Hong Cai.Model-based path planning for laser cutting of curved trajectories[J].Int J.Mach.Tools Manufact.,1996,36(6):739-754.
    [65]P.DI.Pietro,Y L.Yao.A numerical investigation into curing front mobility into CO2 laser cutting[J].Int[J].J.Maeh.Tools Manufaet.,1995,35(5):673-688.
    [66]P.DI.Pietro,Y.L.Yao.Elects of workpiece boundary and motion on laser cutting front phenomema [J].Journal of Materials Processing technology,1994,44:237-245.
    [67]M.J.Kim,Z.H.Chen,P.Majumdar.Finite element modelling of the laser cutting process[J].Computers&Structures,1993,49(2):231-241.
    [68]Joseph M.Prusa,Girish Venkitaehalam,Palaniappa A.Molian.Estimation of heat conduction losses in laser cutting[J].International J.of Machine Tools& Manufacture,1999,39:431-458.
    [69]S-L Chen.Analysis and modelling of reactive three-dimensional high-power CO_2 laser cutting[J].Proc.Instn.Mech.Engrs.Part B 1998,212:113-128.
    [70]S-L Chen.Thermal modelling of outing from edge dynamic behaviour in high-power reactive CO2laser cutting[J].Proc.Instn.Mech.Engrs.Part B 1998,212:535-570.
    [71]J.Mazumder and W.M.Steen,Heat transfer model for CW laser material processing,J.Appl.Phys.,51(1980) 941-947.
    [72]Yu,L.M..Three-dimensional finite element modeling of laser cutting.Journal of Materials Processing Technology 63,(1997) 637-639.
    [73]M.J.Kim,3D finite element analysis of evaporative laser cutting.Applied Mathematical Modelling 29(2005) 938-954.
    [1]戴寅生,邓燕萍,刘玉君.大型船舶外板自重成型预报研究[J].大连理工大学学报,1998,7(4).400-404.
    [2]刘玉君,陈涛,张骏等.船体外板鞍形板自重成型的数学模型[J].中国造船,2004,(6)73-80.
    [3]戴寅生,周文韬.船体外板自重弯曲有限元法研究[J].造船技术,1991(6):5-82.
    [4]徐芝纶.弹性力学[M].高等教育出版社,1990.
    [5]王瑁成.有限单元法基本原理和数值方法[M].清华大学出版社,1997.
    [6]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西北工业大学出版社,1999.
    [7]朱伯芳著.有限单元法原理与应用(第2版).北京:中国水利水电出版社,1998.
    [8]蒋维城编著.固体力学有限元分析[M].北京:北京理工大学出版社,1989.
    [9]Saeed Moaveni.Finite Element Method Theory and Application with ANSYS[M].New Jersey:Prentice-Hall,Inc.,1999.
    [10]R.W.Clough.The finite element in plane stress analysis[C].Proc.2nd ASCE Conf.On Electronic Computation.Pittsburg,Pa.,Sept.1960.
    [11]S.I.Oh,W.T.Wu,K.Arimoto.Recent developments in process simulation for bulk forming processes[J].Journal of Materials Processing Technology 111(2001) 2-9.
    [12]G.Yu,R.J.Anderson,T.Maekawa,N.M.Patrikalakis,Efficient simulation of shell forming by line heating[J],International Journal of Mechanical Sciences,2001(43),pp.2349-2370.
    [13]H.C.Kuo,L.J.Wu,Fuzzy control of a heat-bending system[J],Journal of Materials Processing Technology,2002(120),pp.186-201.
    [14]刘玉君.水火弯板成型参数回归分析[J].中国造船,1994(1).
    [15]刘玉君,纪卓尚等.水火弯板工艺参数对收缩量影响的实验分析[J].造船技术,1996(7),27-29.
    [16]刘玉君,纪卓尚,董守富.水火弯板局部收缩和整体变形的理论分析[J].中国造船,1995(2),90-100.
    [17]刘玉君,纪卓尚,董守富等.曲面成形收缩量的近似计算[J].大连理工大学学报,1995(1),88-93.
    [18]刘玉君,纪卓尚,戴寅生.水火弯板成型参数回归分析[J].中国造船,1994(1),65-73.
    [19]刘玉君,董守富,林哲.水火弯板焰道布置设计优化[J].造船技术,1993(9),6-10.
    [20]赵洪福等.水火弯板帆形板成形参数的确定[J].造船技术,1993(6),9-14.
    [21]戴寅生等.船体外板火焰成形专家系统的研究[J].船舶工程,1992(3),18-21.
    [22]戴寅生等.船体外板自重引起的纵向变形[J].造船技术,1987(5),12-15.
    [23]董守富等.船体外板几何造型技术研究[J].大连理工大学学报,1993(5),544-547.
    [24]戴寅生,于金生.船体外板计算展开[M].北京:国防工业出版社,1985.
    [25]戴寅生.船体外板火焰成型加工专家系统[J].船舶工程,1991(2):41-473.
    [26]卢文岱.SPSS for Windows统计分析[M].电子工业出版社.2002.
    [27]滕素珍,姜炳蔚,任玉杰,李浩.数理统计[M].大连:大连理工大学出版社,1996.
    [28]张辉,陈庆云.实用回归分析[M].北京:科学出版社,1988.
    [29]沙定国等.应用回归分析[M].杭州:浙江大学出版社,1991.
    [30]方开泰.全用误差理论与数据处理[M].北京:北京理工大学出版社,1993.
    [31]罗南星.测量误差及数据处理[M].北京:计量出版社,1984.
    [32]白新桂.数据分析与实验优化设计[M].北京:清华大学出版社,1986.
    [33]魏兆正.材料力学[M].大连理工大学出版社,1994.
    [34]Mc Culloch.W.S.,W.H.Pitts.A logical calculus of ideas immanent in nervous activity[J].Bulletin of math.Biophsics,1943,5:115-133.
    [35]Hopfield,J.J.Neural network and physical systems with emergent collective computational abilies[J].Proc.Natl.Acad.Sci.USA.1982,79:1552-2558.
    [36]田景文,高美娟.人工神经网络算法研究及应用[M].北京:北京理工大学出版社,2006.7,2-20.
    [37]刘玉君,李艳君.运用BP神经网络对船用钢焊接收缩量建模研究[J].大连理工大学学报,2004,44(4):533-535.
    [38]史济民.软件工程原理、方法与应用[M].北京:高等教育出版社,1990.
    [39]谭浩强,田淑清.FORTRAN语言程序设计[M].北京:清华大学出版社,1997.
    [40]王勇毅,董守富.计算机辅助船体建造[M].北京:人民交通出版社,1995.
    [1]杨永谦,黄贻平,陈超核.29000t货船上层建筑整体吊装变形及应力计算[J].武汉交通科技大学学报.1994,9,vol 3,301-306.
    [2]龚恢.大型上层建筑的整体吊装[J].船舶.1999,6,vol3,27-31.
    [3]张延昌,王自力,罗广恩.船舶上层建筑整体吊装强度有限元分析[J].船舶工程.2006,Vol.28,No362-65.
    [4]鲁学林.一艘万吨级散货船上层建筑的整体吊装[J].造船技术.2001年第二期,17-18.
    [5]金俊洪.大型船体分段水上吊装的实现[J].造船技术.2006年第二期,26-29.
    [6]吴仲其,马庆莲,袁文林.船体分段吊装工艺[J]。江苏船舶,1990年第2期,19-22.
    [7]顾廷家.船体分段吊装工作的安全性分析[J].造船技术.1987,6,19-22.
    [8]R.Das,R.Jones,Y.M.Xie.Design of structures for optimal static strength using ESO[J].Engineering Failure Analysis 12(2005) 61-80.
    [9]H.J.Rathbun,F.W.Zok,A.G.Evans.Strength optimization of metallic sandwich panels subject to bending[J].Iuternational Journal of Solids and Structures 42(2005) 6643-6661.
    [10]R.Kathiravan,R.Ganguli.Strength design of composite beam using gradient and particle swarm optimization[J].Composite Structures,81(2007)471-479.
    [11]贾文强,王民利,康文河.优化起重机钢结构件设计方法研究[J].制造业自动化,2004,26(1):20-24.
    [12]Soh Ai-Kah,Soh Chee-Kiong.Design and analysis of offshore lifting padeyes[J].Journal of Constructional Steel Research,v14,1989,p167-180.
    [13]Bin Siao Wen(Nanyang Technological Iust),Fan Wong Wai.Ultimate static strength of padeye on tubular member[J].Source:Journal of Constructional Steel Research,v 19,n 3,1991,p 167-181.
    [14]Russo Edwin P.,Gelpi Sid I.,Cayll David R.,Gaffe Gregory.Padeye design and analysis[C].Proceedings of the Second International Offshore and Polar Engineering Conference.v1 1992,p 326-330.
    [15]Russo Edwin P.,Crisp John N.,St.Cyr William W.,Egeseli Engin A.Lifting eye design[C].Proceedings of the International Offshore and Polar Engineering Conference,v1,1997,p 425-433.
    [16]Choo Y.S.,Lee K.H.,Lee W.H.Stresses and strength of padeye to circular pipe connection[C].Proceedings of the International Offshore and Polar Engineering Conference,v 1,1996,p 570-576.
    [17]刘善德,宋岩苓.船体分段吊环最佳型式的选择[J].造船技术,1988,12,30-37.
    [18]梁有祥,赵建英,徐鸿志.修造船施工中的吊环设计[J].中国修船,Vol.19 No.3,2006,38-41.
    [19]宋恒家.起重机吊环的曲梁计算[J].起重运输机械,2006(8)52-57.
    [20]张晓音.吊装眼板在船舶工业使用中的安全可靠性分析[J].大连理工大学硕士论文,2004,3.
    [21]许寿彭,马大为,冯勇,李志刚.基于有限元方法的吊环数值仿真[J].系统仿真学报.2006,Vol.18No.12,3362-3364.
    [22]黄浩主编.船体工艺手册IM].北京.国防工业出版社 1989.
    [23]梁有祥,赵建英,徐鸿志.修造船施工中的吊环设计[J].中国修船,2006年6月,P38-42.
    [24]魏兆正.材料力学[M].大连理工大学出版社,1994年9月第1版.
    [25]Michele Ciavarella,Paolo Decuzzi.The state of stress induced by the plane frictionless cylindrical contact.Ⅰ[J].The case of elastic similarity[J].International Journal of Solids and Structures.38(2001),4507-4523.
    [26]Persson,A.,1964.On the stress distribution of cylindrical elastic bodies in contact[D].Ph.D.dissertation,Chalmers,Tekniska,Goteborg,Sweden.
    [27]Lin,S.,Hills,D.A.,Nowell,D.,1997.Stresses in a fiat plate due to a loose pin pressing against a crocked hole[J].Journal of Strain Analytical Engineering Design 32(2),145-156.
    [28]Michele Ciavarella,Paolo Decuzzi.The state of stress induced by the plane frictionless cylindrical contact.Ⅱ[J].The general case(elastic dissimilarity).International Journal of Solids and Structures[J].38(2001),4525-4533.
    [29]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西北工业大学出版社,1999年8月,1-7.
    [30]Bin,Siao Wen,Fan,Wong Wai.Ultimate static strength of padeye on tubular member[J].Journal of construct steel research,v19(1991) 167-181.
    [1]梁桂芳.切割技术手册[M].北京:机械工业出版社.1997,5.
    [2]Irving B.High-Tolerance Plasma Arc Cutting Carves out some Niches in Industry[J].Welding Journal.1992,71(10):33-37.
    [3]梁桂芳.数控切割机在船厂中应用价值[M].船舶世界.1979,(9):1.
    [4]Commission Ⅰ of the ⅡW.Some Historical Notes on Thermal Cutting Processes.Welding in the World,1980,18(1/2):23-27.
    [5]Coucb R W et al.Air Plasma Cutting[J].Weld and Mentle Fabrication.1973,41(12):425-426.
    [6]Coucb R W et al.High Quality Water-Arc Cutting[J].Welding Journal.1971,50(4):233-237.
    [7]Multi-Fold Laser Cutting.Welding and Metal Fabrication[M].1972,40(1):32-33.
    [8]梁桂芳.小电流空气等离子弧切割中、薄板的技术经济性[J].焊接.1987(11),19-21.
    [9]孙松年.水射流切割技术及其应用[J].造船技术.1992,(9):29-32.
    [10]梁桂芳编著.高速氧气割割法.北京:机械工业出版社,1975.
    [11]崔信昌编著.等离子弧焊结和切割.北京:国防工业出版社,1980.
    [12]邓德圣.氧助散焦CO2激光切割厚板技术研究[D].华中科技大学硕士学位论文.2002.4.
    [13]陈祝年等编.焊接工程师手册[M].北京:机械工业出版社,2002.1.
    [14]陈丙森主编.计算机辅助焊接技术[M].北京:机械工业出版社,1999.
    [15]刘涛,杨凤鹏等.精通ANSYS[M].北京:清华大学出版社.2002.9.
    [16]宋天民.焊接残余应力的产生与消除[M].北京:中国石化出版社.2005.1.
    [17]曹雷,严俊,宗培.船舶焊接结构件残余应力消除的若干方法[J].船舶.2002.4.26-29.
    [18]米谷茂.残余应力的产生和对策[M].北京:机械工业出版社,1983.
    [19]D.拉达伊.焊接热效应[M].北京:机械工业出版社,1997.
    [20]王者昌.关于焊接残余应力消除原理的探讨[J].焊接学报.2002.2.55-58.
    [21]陈楚等.数值分析在焊接中的应用[M].上海:上海交通大学出版社,1985.
    [22]武传松.焊接热过程数值分析[M].哈尔滨:哈尔滨工业大学出版社,1990.
    [23]王勖成,邵敏.有限元法基本原理和数值方法[M].清华大学出版社.1997.
    [24]史清宇.焊接过程三维数值模拟的研究及应用[D].清华大学机械工程系博士学位论文,2000.
    [25]蔡志朋.大型结构焊接变形数值模拟的研究与应用[D].清华大学机械工程系博士学位论文,2001.
    [26]汪建华,戚新海,钟小敏等.焊接结构三维热变形的有限元模拟[J].上海交通大学学报,1994.59-65.
    [27]L.Lindgren,L.Karlsson.Deformations and stresses in welding of shell structures[J].Int.J.Num.Meth.Engng,1988,25.
    [28]K.Masubuchi.Prediction and control of residual stresses and distortion in welded structures[J].Proceedings of the international symposium on theoretical prediction in joining and welding.Osaka,Japan,1996.
    [29]Wang J,et al.Improvement in numerical accuracy and stability of 3-D FEManalysis in welding[J].Welding Journal,1996,75(4):129-134.
    [30]Mochizuki M.;Hattori T.;Nakakado K.Residual stress reduction and fatigue strength improvement by controlling welding pass sequences[J].Journal of Engineering Materials and Technology-Transaction of the ASME,2000,122(1).
    [31]张书奎,罗植廷.浅析焊接残余应力及其消除方法[J].冶金动力.1996.6.23-27.
    [32]宗培等.焊接过程对焊接残余应力及残余变形的影响[J].海军工程大学学报.2002.4.77-80.
    [33]游敏,郑小玲,余海洲.关于焊接残余应力形成机制的探讨[J].焊接学报.2003.4.51-58.
    [34]林燕,董俊慧,刘军.焊接残余应力数值模拟研究技术的现状与发展[J].焊接学报.2003.6.5-7.
    [35]熊健民,周金枝,余天庆.厚板焊接中焊接残余应力的分布规律[J].湖北工学院学报.1997.9.6-10.
    [36]陈楚,汪建华等.非线性焊接热传导的有限元计算和计算[J].焊接学报.1993.3.12-15.
    [37]鹿安理,史清宇,赵海燕等.厚板焊接温度场、应力场的三维有限元数值模拟[J].中国机械工程.2001.12(2).193-16.
    [38]郭培军.水火弯板加工自动化关键技术研究[D].大连理工大学船舶工程系.2005
    [39]Valsgard S,Svensen T E,Thorkildsen H.A computational method for analysis of container vessels[C].SNAME Annual Meeting,Washington D.C.Oct,1995,5-6.
    [40]顾永宁,滕晓青,戴立广,等.大开口船波浪载荷长期预报和弯扭强度整船有限元分析[J].中国造船,1998(2):63-70.
    [41]刘建成,顾永宁.大开口船舱口角隅应力集中问题研究[J].船舶工程,2000(6):9-13.
    [42]胡毓仁,陈伯真.大开口船舶的扭转极限状态[J].上海交通大学学报,Vol.35 No.4,2001,556-561.
    [43]王立军,王伟,叶步永.大开口船舶角隅强度有限元分析研究[J].浙江海洋学院学报,Vol.26No.4,2007,425-428.
    [44]黄浩主编.船体工艺手册[M].北京-国防工业出版社 1989 机械设计手册.
    [45]王国强主编.实用工程数值模拟技术及其ANSYS在上的实践[M].西安:西北工业大学出版社,1999.
    [46]CCS.中国船级社钢质海船入级规范(2006).中国船级社,2006.
    [47]Kutt L M,Chen Y K.Evaluation of the longitudinal ultimate strength of various ship hull configurations[J].Trans SNAME,1985,2:33-53.
    [48]Alagusundaramoorthy P,Sundaravadivelli R,Ganapathy C.Ultimate strength of stiffened panels with cutouts under uniaxial compression[J].Marine Structure,1995(8):279-308.
    [49]王杰德等.船体强度与结构设计[M].北京:国防工业出版社,1995.8-10.
    [50]陈伯真,胡毓仁薄壁结构力学[M].上海:上海交通大学出版社,1998,85-120.
    [51]朱援祥,王勤,赵学荣,孙秦明.基于ANSYS平台的焊接残余应力模拟[J].武汉理工大学学报,第26卷,第2期,2004年2月,69-72.
    [52]葛森.厚板焊接残余应力实验测量与计算[D].北京工业大学学位论文,2002,5.
    [53]杨明.厚板焊接残余应力的有限元计算[D].北京工业大学学位论文,2003,5.
    [54]J.Powell.A.Ivarson,C.Magnusson.An energy balance for inert gas laser cutting[C].ICALEO,1993:12-20.
    [55]Rykalin,N.N.,Calculation of Heat processes in Welding[M],Mashinotroenije,Moscow,1960.
    [56]Moshaiov,A.& Latorre,R.,Temperature Distribution during Plate Bending by Torch Flame Heating[J],Journal of Ship Research,29(1):1-11,1985.
    [57]Shin,J.G.,Kim,W.D.&Lee,J.H.Numerical Modelling for Systemization of Line heating Process[J],Journal of Hydrospace Technology,2(1):41-54,1996.
    [58]Hu Y,Jin X,Chen B.A finite element model for static and dynamic analysis of thin-walled beams with asymmetric cross-sections[J].Computers & Structures,1996,61(5):897-908.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700