高Nb微合金钢中Nb的溶解/析出及其对组织演变影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高Nb X80管线钢已经在油气管线工程中得到应用,然而,如何充分发挥Nb在钢中的作用,实现Nb的有效利用,还需要对Nb的溶解和析出以及Nb的这种变化对组织和性能的影响进行定量的研究。本文以六种高Nb钢为研究对象,定量研究了Nb在加热过程中的溶解规律,Nb的固溶和析出对热变形行为、静态软化行为及相变的影响,目的是定量阐明Nb在钢中的作用机制。
     本文首先提出了一种测定钢中固溶Nb和未溶Nb含量的方法。该方法包括化学溶解、过滤分离和电感耦合等离子体原子发射光谱(Inductively Coupled PlasmaAtomic Emission Spectroscopic, ICP-AES)分析,通过测定溶液及溶解残渣中的Nb含量,即可确定钢中的固溶Nb和未溶Nb含量。在此基础上,定量研究了六种高Nb钢在加热过程中Nb的溶解规律,结果表明:对于微Ti处理的高Nb钢,随着加热温度的升高,Nb的固溶量增加,但在1300℃保温3h后,Nb仍不会完全溶解。钢中的C、Nb含量对Nb的固溶量有显著影响,随着C含量的降低和(或)Nb含量的增加,固溶Nb含量增加,在此基础上,建立了固溶Nb量与加热温度以及钢中的C、Nb含量之间的关系。
     采用Gleeble-3500热模拟试验机和固溶Nb的定量分析方法,研究了固溶Nb、未溶Nb及变形过程中Nb的动态析出对热变形行为的影响,结果表明:加热过程中的未溶析出物对变形激活能和峰值应变没有显著影响,但可以增加热变形过程中的流变应力;由于析出量较少,在变形过程中Nb的动态析出对峰值应力和峰值应变均没有明显影响;固溶Nb对动态再结晶有强烈的抑制作用,每增加1%的固溶Nb便可以使变形激活能提高1599.9±137.7kJ/mol。
     采用应力松弛法和双道次变形背插法研究了变形后等温过程中的应变诱导析出和静态软化行为,并定量研究了未溶Nb、固溶Nb对应变诱导析出的影响,以及Nb的固溶和析出对静态软化规律的影响。在变形后的等温过程中,未溶析出物能够作为应变诱导析出物的非均匀形核点,但这种析出对应力松弛曲线影响很小,相反由于其降低了固溶Nb含量,从而推迟了应力松弛曲线上所显示出的应变诱导析出开始时间。应变诱导析出所需的孕育期与钢中过饱和固溶Nb的量呈线性关系,随着过饱和Nb含量的增加,PTT曲线向短时间和高温区移动。
     固溶Nb和应变诱导析出均能抑制变形道次间回复和静态再结晶的发生,从而降低软化率,但应变诱导析出对回复和静态再结晶的抑制作用更大。应变诱导析出未发生时,变形道次间的软化率与钢中的固溶Nb含量呈线性关系。当应变诱导析出发生之后,软化率与析出Nb的量保持线性关系。但随着保温时间的延长,析出物尺寸增大,其对软化的抑制作用逐渐减弱。
     利用Gleeble-3500热模拟试验机并结合相变组织观察,绘制了实验钢的连续冷却转变(CCT)曲线,研究了不同实验条件下高Nb钢的相变行为。低的固溶Nb含量以及变形和变形后的等温处理都可以提高相变温度,促进多边形铁素体转变,使CCT曲线向左上方移动。增加钢中的固溶Nb有利于低温组织的形成,扩大CCT曲线中的针状铁素体转变区。变形在促进多边形铁素体转变的同时还可以细化铁素体晶粒。变形次数越多,其作用越明显。在变形后的等温过程中,回复和再结晶的发生降低了相变形核率,从而导致了相变组织的粗化。
     相变组织硬度随冷速的增加而增大。变形及变形后的等温处理都可以促进NbC的析出。NbC的析出降低了钢中固溶的Nb、C含量,从而减弱了其固溶强化作用,导致多边形铁素体硬度下降。
High-Nb X80pipeline steels have being applied in many pipeline projects. In orderto increase the effectiveness of Nb in Nb-bearing microalloyed steel, it is necessary toquantitatively research the dissolution and precipitation regular of Nb and their effects onmicrostrctures and properties. In this paper, six high-Nb microalloyed steels are taken asresearch objects, the dissolution regular of Nb during heating process and the effects ofdissolution and precipitation of Nb on the hot deformation, static softening and phasetransformation behaviors were investigated quantitatively to elucidate the mechanism ofNb in high-Nb microalloyed steels.
     A method of determining the content of soluble and undissolved Nb in steel has beenpresented. By dissolving, filtering and Inductively Coupled Plasma Atomic EmissionSpectroscopic (ICP-AES) analysis, the content of Nb in filtrate (soluble Nb) and residue(undissolved Nb) was determined. The dissolution regular of Nb in tested steels duringheating process was investigated with this method. The result shows that the soluble Nbcontent in the traceTi treated high-Nb steels increases with the heating temperature. Yet,the Nb in tested steels still can not completely dissolve after the holding of3h at1300°C.The soluble Nb content increases with the decrease of C content and/or the increase of Nbcontent in steel. On this basis, a model was built to describe the relation among the solubleNb content, heating temperature and the content of C and Nb in steel.
     The effects of soluble Nb, undissolved precipitates and dynamic precipitation of Nbduring deformation on hot deformation behavior were researched by Gleeble-3500thermo-mechanical simulator and the method of determining soluble Nb content. Theresults show that the undissolved precipitates have no obvious effect on the deformationactivation energy and peak strain, but increase the flow stress during deformation. Thedynamic precipitation of Nb during deformation can not significantly affect the peakstress and strain because the precipitates are less. Soluble Nb can strongly delay thedynamic recrystallization. For every1wt%increase in soluble Nb, the deformationactivation energy increases1599.9±1.37.7kJ/mol.
     By the stress relaxation way and back extrapolation method, the strain induced precipitation and static softening behaviors during the holding process after deformationwere investigated; the effects of undissolved Nb and soluble Nb on the strain inducedprecipitation of Nb were researched quantitatively and the influences of soluble Nb andprecipitation on static softening were also analyzed. During the holding process afterdeformation, the undissolved precipitates can also act as heterogenous nucleation sitesfor the precipitates induced by strain. However, this precipitation has no obvious effecton the stress relaxation curves. In contrast, the supersaturation of Nb in austenite isreduced due to the heterogeneous nucleation, which delays the precipitation start timeshown in the stress relaxation curves. Moreover, the incubation time of strain-inducedprecipitation is linearly related to the content of supersaturated Nb. Increasing the contentof supersaturated Nb can shift the nose of the precipitation C-curve to shorter time andhigher temperature.
     Both soluble Nb and strain induced precipitates can restrain the recover and staticrecrystallization and then decrease the softening ratio. Yet, the precipitates induced bystrain have more strong retarding effect on the recover and static recrystallization than thesolid solution Nb atoms. The softening ratio is linear with the dissolved Nb content beforethe strain-induced precipitation and with the precipitable Nb content after thestrain-induced precipitation. However, the retarding effect decreases with the prolongingof holding time and the coarsening of precipitate.
     The continuous cooling transformation (CCT) curves were constructed and the phasetransformation behanviors of tested steels were researched by Gleeble-3500thermo-mechanical simulator and metallographic observation. The lower soluble Nbcontent, hot deformation and holding treatment after deformation can increase phasetransformation temperature, promote the transformation of polygonal ferrite and move theCCT curves upper left. The increase of soluble Nb content promotes the low temperaturemicrostructure transformation and enlarges the acicular ferrite area in CCT curves.Deformation not only increases the phase transformation temperature, but also refinesferrite grains. This effect is more obvious with the increase of deformation pass. Therecovery and recrystallization occur during holding process, which decreases thenucleation rate and cause the coarsening of microstructure.
     The hardness of phase transformation microstructure increases with the cooling rate.Moreover, both deformation and the holding process after deformation promote straininduced precipitation of NbC and decrease the content of Nb and C in solid solution,which weakens the solid solution strengthening of Nb and C and decreases the hardness ofpolygonal ferrite.
引文
[1]齐俊杰,黄运华,张跃.微合金化钢[M].北京:冶金工业出版社,2006:1-97.
    [2]戢景文,车韵怡,刘爱生等.钢铁中稀土合金化的内耗研究及其理论[J].中国稀土学报,1996,14(4):350-359.
    [3]孙维,完卫国.铌微合金化长材产品的开发[J].炼钢,2011,27(3):7-12.
    [4]李文斌,曹忠孝,王华等.铌对桥梁结构钢HPS70W性能的影响[J].金属热处理,2011,36(7):43-45.
    [5]解家英,王凤琴,宁林新等. X80管线钢中Nb元素析出规律的研究[J].钢铁研究学报,2010,22(9):38-42.
    [6]康健,王昭东,王国栋等.780MPa级低屈强比高层建筑用钢的生产工艺研究[J].钢铁,2010,45(7):71-75.
    [7] Hulka K, Gray J M, Heisterkamp F. Metallurgical Concept and Full Scale Testing of a HighToughness, H2S Resistant0.03%C-0.10%Nb Steel[R]. Niobium Technical Report NbTR16/90,CBMM, Sao Paulo, Brazil,1990.
    [8] Stalheim D G. The Use of High Temperature Processing (HTP) Steel for High Strength Oil andGas Transmission Pipeline Applications[C]. Fifth International Conference on HSLA Steels,Chinese Society of Metals, China, November2005.
    [9]王晓香.我国天然气工业和管线钢管发展展望[J].焊管,2010,33(3):5-9.
    [10] Zheng L, Gao S, Li Y F, et al. The Development of High Performance Pipeline Steel inChina[C].International Pipeline Steel Forum2008,19-20March2008, Beijing.
    [11]华油钢管有限公司.西气东输二线X80试制报告(鞍钢)[R].华油钢管有限公司,2007年5月22日(内部资料).
    [12]黄一新.南钢HTP工艺试制高铌X80管线钢的组织性能研究[J].江苏冶金,2007,35(4):1-4.
    [13] Nie W J, Wang Z F, Li R, et al. The Production of X80Pipeline Steel Plate For the SecondWest-to-East Natural Gas Transmission Pipeline with Optimized High Temperature Process(OHTP)[C]. International Pipeline Steel Forum2008,19-20March2008, Beijing.
    [14]聂雨青,康跃丰.铌氮微合金化及HRB400NbN钢筋开发[J].金属材料与冶金工程,2011,39(1):8-10.
    [15]侯自勇,许云波,王佳夫等.一种高Nb-IF钢的组织和织构特征[J].东北大学学报(自然科学版),2012,33(2):203-208.
    [16] Yu Q B, Wang Z D, Liu X H, et al Effect of microcontent Nb in solution on the strength of lowcarbon steels[J]. Materials Science and Engineering A,2004,379:384–390.
    [17]苑少强,刘义,梁国俐.微量Nb在低碳微合金钢中的作用机理[J].河北冶金,2008,1:9-11.
    [18]于庆波,孙莹,李子林等.微量固溶Nb在钢中的作用[J].钢铁,2006,41(2):59-62.
    [19] Lan L Y, Qiu C L, Zhao D W, et al. Dynamic and Static Recrystallization Behavior of Low CarbonHigh Niobium Microalloyed Steel[J]. Journal of Iron and Steel Research. International.2011,18(1):55-60.
    [20] Medina S F. Hernandez C A. General Expression of the Zener-Hollomon Parameter as a Functionof the Chemical Composition of Low Alloy and Microalloyed Steels[J]. Acta Metallurgica.1996,44:137-148.
    [21] Cho S H, Kang K B, Jonas J J. Mathematical Modeling of the recrystallization Kinetics of NbMicroalloyed steels[J]. ISIJ International,2001,41(7):766-773.
    [22]缪成亮,刘振伟,郭晖等. Nb含量和热输入量对X80管线钢焊接粗晶区的影响[J].材料热处理学报,2012,33(1):99-105.
    [23]唐正友,李龙,张新等. Nb含量对TRIP钢组织和性能的影响[J].材料与冶金学报,2006,5(2):125-128.
    [24] Ma L Q, Liu Z Y, Jiao S H, et al. Effect of Niobium and Titanium on Dynamic RecrystallizationBehavior of Low Carbon Steels[J]. Journal of Iron and Steel Research. International.2008,15(3):31-36.
    [25] Cho S H, Kang K B, Jonas J J. The dynamic static and metadynamic recrystallization of aNb-microalloyed steel[J]. ISIJ International,2001,41(1):63-69.
    [26] Mousavi Anijdan S H, Yue S. The necessity of dynamic precipitation for the occurrence ofno-recrystallization temperature in Nb-microalloyed steel[J]. Materials Science and EngineeringA.2011,528:803–807.
    [27] Hong S G, Kang K B, Park C G. Strain-induced precipitation of NbC in Nb and Nb-Timicroalloyed HSLA steels[J]. Scripta Materialia.2002,46:163-168.
    [28] Zhang Z H, Liu Y N, Liang X K, et al. The effect of Nb on recrystallization behavior of a Nbmicro-alloyed steel Mater[J]. Materials Science and Engineering A.2008,474:254-260.
    [29] Yuan S Q, Liang G L. Dissolving behaviour of second phase particles in Nb–Ti microalloyed steel[J]. Materials Letters.2009,63:2324–2326.
    [30] Smith W F. Structure and Properties of Engineering Alloys [M]. New York, NY: McGraw-Hill,1981.
    [31] Kurokawa S. Niobium Diffusion in Iron and Some Iron Base Alloys[C]//XXXVI CongressoAnnual de ABM, vol.1. San Paulo, Brasil: Brasilian Association of Metals,1981:47-64.
    [32] Narita K. Physical Chemistry of the Groups IVB (Titanium, Zirconium), VB (Vanadium, Niobium,Tantalum) and the Rare Earth Elements in Steels[J] Trans. Iron Steel Inst.,1975,15(3):145.
    [33] McLean A, Kay D A R. Control of Inclusions in High-Strength, Low-Alloy Steels
    [C]//Microalloying '75,(New York, NY: Union Carbide Corporation,1977),215-231.
    [34] Meyer L, Heisterkamp F, Mueschenborn W. Columbian Titanium and Vanadium in Normalised,Thermomechanically Treated and Cold Rolled Steels[C]//Microalloying '75,(New York, NY:Union Carbide Corporation,1977),153-167.
    [35] Miao C L, Shang C J, Zhang G D, et al. Recrystallization and strain accumulation behaviors ofhigh Nb-bearing line pipe steel in plate and strip rolling [J]. Materials Science and Engineering A,2010,527:4985-4992.
    [36]东涛.铌在高强度船体结构钢中的应用.铌在钢中的应用.国际技术研讨会论文集.1997:3.
    [37]孟繁茂,付俊岩.现代铌钢长条材[M].北京:冶金工业出版社,2006:3-11.
    [38]孟繁茂,付俊岩.现代含铌不锈钢[M].北京:冶金工业出版社,2004:1-16.
    [39]王春明,吴杏芳,刘玠等. X70针状铁素体管线钢析出相[J].北京科技大学学报,2006,28(3):253-258.
    [40]付俊岩,王伟哲,侯豁然等.铌钢春秋[M].北京:冶金工业出版社,2009:261.
    [41] Palmiere E J, Garcia C I, De Ardo A J. Compositional and Microstructural Changes Which AttendReheating and Grain Coarsening in Steels Containing Niobium[J]. Metallurgical and MaterialsTransactions A,1994,25A:277-286.
    [42] Nordberg H, Aronsson B. Solubility of Niobium Carbide in Austenite[J]. Iron Steel Inst.,1968,12:1263.
    [43] Sharma R C, Lakshmanan V K, Kirkaldy J S. Solubility of Niobium Carbide and NiobiumCarbonitride in Alloyed Austenite and Ferrite[J]. Metallurgical Transactions. A,1984,15A(3):545-553.
    [44] Smith R P. The Solubility of Niobium (Columbium) Carbide in Gamma Iron[C]//Transactions ofthe Metallurgical Society of AIME,1966,236(2):220.
    [45] Johansen T H. The Solubility of Niobium (Columbium) Carbide in Gamma Iron[C]//Transactionsof the Metallurgical Society of AIME,1967,239(10):1651.
    [46] Smith R P. The Solubility of Niobium (Columbium) Nitride in Gamma Iron[C]//Transactions ofthe Metallurgical Society of AIME,1962,224(2):190.
    [47] Lagneborg R, Siweck I T, Zajac S, et al. The Role of Vanadium in Microalloyed Steels[J].Scandinavian Journal of Metallurgy,1999,28(5):186-241.
    [48] Andrade H L, Akben M G, Jonas J J. Effect of Molybdenum, Niobium, and Vanadium on StaticRecovery and Recrystallization and on Solute Strengthening in Microalloyed Steels[J].Metallurgical and Materials Transactions A,1983,14A(10):1967-1977.
    [49] Koyama S. Effects of Manganese, Silicon, Chromium, and Nickel on the Dissolution andPrecipitation of Niobium Carbide in Iron Austenite[J]. J. Jap. Inst. Materials,1979,35(11):1089-1094.
    [50] Linda B CKE. Modeling the Effect of Solute Drag on Recovery and Recrystallization during HotDeformation of Nb Microalloyed Steels[J]. ISIJ International.2010,50(2):239–247.
    [51] Park J S, Lee Y K. Determination of Nb(C,N) dissolution temperature by electrical resistivitymeasurement in a low-carbon microalloyed steel[J]. Scripta Materialia.2007,56:225–228.
    [52] Zener C, Hollomon J H. Effect of st rain2rate up on the plastic flow of steel[J]. Journol of AppliedPhysics,1944.15(1):22.
    [53] Sellars C M, Tegart W J M. Relationship Between Strength and St-ructure in Deformation atElevated Temperatures[J]. Mem Sci Rev Met,1966,63(9):731-745.
    [54] Ryan N D, Mc Queen H J. Dynamic Softening Mechanisms in304Austenitic Stainless Steel[J].Can Metall Q,1990,29(2):147-162.
    [55] Poliak E I, Jonas J J. A One-parameter Approach to Determining the Critical Conditions for theInitiation of Dynamic Recrystallization[J]. Acta Metallurgica.1996,44(1):127-136.
    [56] Anelli E. Application of Mathematical Modelling to Hot Rolling and Controlled Cooling of WireRods and Bars[J]. ISIJ International,1992,32(3):440-449.
    [57] Hutchinson C R, Zurob H S, Sinclair C W, et al. The comparative efectiveness of Nb solute andNbC precipitates at impeding grain-boundary motion in Nb steels[J]. Scripta Materialia.2008,59:635-637.
    [58] Herman J C, Donna Y, Leroy V. Precipitation kinetics of microalloying additions duringhot-rolling of HSLA steels [J]. ISIJ International,1992,32(6):779-785.
    [59] Zener C, Smith C S. Trans. Am. Inst. Miner. Eng.1948,175:15.
    [60] Vervynck S, Verbeken K, Thibaux P, et al. Recrystallization-precipitation interaction duringaustenite hot deformation of a Nb microalloyed steel Mater[J]. Materials Science and EngineeringA,2011,528:5519-5528.
    [61] Lifshiz I M, Slyozov V. The Kinetics of Precipitation from Supersaturated Solid Solutions[J].Journal of Physics and Chemistry of Solids,1961,19:35-50.
    [62] Pereloma E V, Crawford B R, Hodgson P D. Strain-induced Precipitation Behaviour in Hot StripSteel[J]. Materials Science and Engineering A,2011,299A:27-31.
    [63] Dutta B, Sellars C M. Effect of Composition and Process Variables on Nb(C,N) Precipitation inNiobium Microalloyed Austenite[J]. Materials Science and Technology,1987,3:197-206.
    [64] Dong J X, Siciliano J F, Jonas J J, et al. Effect of Silicon on the Kinetics of Nb(C, N) Precipitationduring the Hot Working of Nb-bearing Steels[J]. ISIJ International,2000,40(6):613–618.
    [65]肖福仁.针状铁素体管线钢的组织控制与细化工艺研究[D].燕山大学,2003:64.
    [66]张玲,薛春霞,杨王玥等.粗晶奥氏体HTP钢中形变诱导析出的定量研究[J].金属学报,2007,43(8):791-796.
    [67] Dutta B, Valdes E, Sellars C M. B. Mechanism and kinetics of strain-induced precipitation ofNb(C, N) in austenite[J]. Acta metallurgica et materialia,1992,40:653-662.
    [68] Dutta B, Palmiere E J, Sellars C M. Modelling the kinetics of strain-induced precipitation in Nbmicroalloyed steels[J]. Acta Materialia,2001,49:785-794.
    [69] Liu W J, Jonas J J. A Stress Relaxation Method for Following Carbonitride Precipitation inAustenite at Hot Working Temperatures[J]. Metallurgical Transactions A,1988,19A(6):1403-1413.
    [70] Li G, Maccagno T. M, Bai D Q, et al. Effect of Initial Grain Size on the Static RecrystallizationKinetics of Nb Microalloyed Steels[J]. ISIJ International.1996,36(12):1479-1485.
    [71] Kwon O, De Ardo A J. On the recovery and recrystallization which attend static softening inhot-deformed copper and aluminum[J]. Acta metallurgica,1990,38(1):41-54.
    [72] Fernández A I, Lopez B, Rodriguez-Ibabe J M. Relationship Between the Austenite RecrystallizedFraction and the Softening Measured from the Interrupted Torsion Test Technique [J]. ScriptaMaterialia,1999,40(5):543–549.
    [73] Sun W P, Hawbolt E B. Comparison between Static and Metadynamic Recrystallization-AnApplication to the Hot Rolling of Steels[J]. ISIJ International,1997,37(10):1000-1009.
    [74] Gomez M, Medina S F. Quispe A, et al. Static Recrystallization and Induced Precipitation in aLow Nb Microalloyed Steel[J]. ISIJ International,2002,42(4):423-431.
    [75] Medina S F, Mancilla J E. Static recrystallization modelling of hot deformed steels containingseveral alloying elements[J]. ISIJ International,1996,36(8):1070-1076.
    [76] Stalheim D G. Fifth International Conference on HSLA Steels, Chinese Society of Metals, China,November2005.
    [77] Zurob H S, Zhu G, Subramanian S V, et al. Analysis of the effect of Mn on the recrystallizationkinetics of high Nb steel: an example of physically-based alloy design[J]. ISIJ International,2005,45(5):713–722.
    [78]雍岐龙,马鸣图,吴宝榕.微合金钢——物理和力学冶金[M].北京:机械工业出版社,1989:65-341.
    [79] Okaguchi S, Hashimoto T, Ohtani H. Effect of Nb, V and Ti on Transformation Behavior ofHSLA Steel in Accelerated Cooling[C]//Thermec '88, vol.1. Tokyo, Japan: Iron and SteelInstitute of Japan,1988:330-366.
    [80] Chen G A, Yang W Y, Guo S Z, et al. Effect of Nb on the transformation kinetics of low carbon(manganese) steel during deformation of undercooled austenite[J]. Journal of University ofScience and Technology Beijing.2006,13(5):411-415.
    [81]韩晨,于浩,杨海波等.高铌对X80管线钢相变与微观组织的影响[J].广东科技,2009,1:182-183.
    [82] Liang P, Li X G, Du C W, et al. Stress corrosion cracking of X80pipeline steel in simulatedalkaline soil solution[J]. Materials and Design,2009,30:1712–1717.
    [83]蔡星周,郭宝峰,肖福仁.高Nb X80管线钢的屈强比在塑性变形过程中的变化规律[J].塑性工程学报,2010,17(5):103-107.
    [84]黄健,段琳娜,刘清友等.添加Mo对高Nb管线钢组织和CCT曲线的影响[J].材料热处理学报,2009,30(5):96-100.
    [85]陈延清,杜则裕,许良红等.高Nb X70管线钢焊接连续冷却转变曲线分析[J].焊管,2010,33(7):21-24.
    [86]钢铁研究总院.钢与铁、镍合金的物理化学相分析[M].上海:上海科技出版社,1981:221.
    [87]王海舟.钢铁及合金分析(第二分册):低合金钢分析[M].北京:科学出版社,2004:470-493.
    [88] Fernández A I, Uranga P, López B, et al. Dynamic Recrystallization Behavior Covering a WideAustenite Grain Size Range in Nb and Nb-Ti Microalloyed Steels[J]. Materials Science andEngineering A.2003.361A:367-376.
    [89]马立强,袁向前,刘振宇等.铌微合金钢动态再结晶的规律[J].钢铁研究学报,2006,18(9):47-50.
    [90] Minami K, Siciliano J F, Maccagno T M, et al. Mathematical Modeling of the Mean Flow Stress,Fractional Softening and Grain Size during the Hot Strip Rolling of C-Mn Steels[J]. ISIJInternational.1996,36(12):1500-1506.
    [91]付立铭,单爱党,王巍.低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响[J].金属学报,2010,46(7):832-837.
    [92] Yuan J H, Liu Qi Y, Sun D B, et al. Recrystallization Behavior of Deformed Austenite in HighStrength Microalloyed Pipeline Steel[J]. Journal of Iron and Steel Research. International.2009,16(1):75-80.
    [93]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社,1999:161.
    [94] Medina S F, Ouispe A. Influence of strain on induced precipitation kinetics in microalloyedsteels[J]. ISIJ International.1996,36(10):1295-1300.
    [95] Quispe A, Medina S F, Gomez M, et al. Influence of austenite grain size onrecrystallisation-precipitation interaction in a V-microalloyed steel[J]. Materials Science andEngineering A,2007,447:11-18.
    [96] Luo H W, Karjalainen L P, Porter D A, et al. The Influence of Ti on the Hot Ductility ofNb-bearing Steels in Simulated Continuous Casting Process[J]. ISIJ International.2002,42(3):273-282.
    [97] Kejian He, Baker T N. The effects of small titanium additions on the mechanical properties andthe microstructures of controlled rolled niobium-bearing HSLA plate steels[J]. Materials Scienceand Engineering A,1993,169:53-56.
    [98] Kwon O, DeArdo A J. Interactions between recrystallization and precipitation in hot-deformedmicroalloyed steels [J]. Acta metallurgica et materialia,1991,39:529-538.
    [99] Zhong Y, Xiao F R, Zhang J W, et al. In situ TEM study of the efect of M/A films at grainboundaries on crack propagation in an ultra-fine acicular ferrite pipeline steel[J]. Acta Materialia,2006,54:435–443.
    [100] Zhao M C, Yang K, Xiao F R, et al. Continuous cooling transformation of undeformed anddeformed low carbon pipeline steels[J]. Materials Science and Engineering A.2003,355:126-136.
    [101] Bhadeshia H K D H. Another visit to the three definitions of binate[J]. Scripta Metallurgica etMaterialia.1987,21:1017-1022.
    [102]林慧国,付代直.钢的奥氏体转变曲线—原理、测试与方法[M].北京:机械工业出版社,1988:227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700