现有船舶螺旋桨切割节能技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前能源危机和全球变暖趋势加剧,航运业温室气体排放受到越来越多的关注,国际上对船舶节能减排技术展开了深入研究。目前船舶节能减排方案基本可以概括为三个类别,即技术性方案、管理性方案和基于市场的减排措施,其中技术性方案旨在改善船队的设计效率,管理性方案旨在改善团队的营运效率,而基于市场的减排措施目的在于通过经济效益杠杆控制船舶CO2排放量。
     首先,本文针对现有船舶普遍采取减速航行、降低能耗的现状,对螺旋桨切割进行了精确计算,螺旋桨等功率切割后,转速增加,敞水效率和航速下降,但转速增加幅度大于航速降低幅度,即转速增加量对切割量更加敏感,这对提高切割后船舶的经济性是有利的。计算得出的螺旋桨切割量和转速、效率、航速变化量之间的关系,为今后螺旋桨切割提供了依据。然后,根据螺旋桨切割后主机运行状态,利用AVL BOOST软件对MAN B & W 5S60MC主机建立模型,模拟计算螺旋桨切割前后主机25%,50%,75%和85%四个典型负荷下的主要运行参数,计算结果表明,螺旋桨切割可以提高主机转速,使主机润滑和振动性能得到改善,油耗率降低,经济性提高。最后,对螺旋桨切割后的主机进行进一步优化,改变燃烧起始角和持续期,排气阀启闭角和压缩比等参数,对机桨二次匹配工况进行模拟计算,确定主机最优工况点,并对优化后的计算结果与切割前后主机运行参数进行对比研究。结果显示,切割并优化后,油耗率、缸内燃烧温度和排烟温度降低,工作压力升高,功率和扭矩输出能力增加,提高了主机的经济性,动力性和排放性能。
     本文所取得的成果对降低航运业燃油成本和减少船舶温室气体排放具有深远意义。
The energy crisis is more and more serious, and the globe is warmer and warmer. So the greenhouse emission from ships is given more concern. There are three sorts of solutions for energy saving and emission reduction. The technical solution aims at improving the design efficiency of the ships, the managing one aims at improving the operation efficiency of the crew, and the emission reduction solution, which based on the market, is to reduce the CO2 emission by the economic lever.
     Because of the economic crisis, that ships sail in lower speed to reduce the fuel consumption is common. According to the calculation, after cutting the edge of propeller under equal power, the rev is increased, but the open water efficiency and the speed both are decreased. However, the increase of the rev is quicker than the decrease of the speed. It shows that the increase of the rev is more sensitive to the cut of the propeller, which is good for improving the economical efficiency. And the relationship among propeller cut capacity with rev, efficiency and sailing speed is useful for the future propeller cut. Based on the running state of the main engine after cutting, the model of the MAN B&W 5S60MC is established, and the main running parameters under the 25%,50%,75% and 85% load are calculated. The research indicates that cutting the edge of propeller can increase the rev, reduce the oil consumption and improve the economical efficiency. In addition, the capability of lubrication and vibration are both improved after cutting. The combustion start angle, the duration of the combustion, the open and close angle of the discharge valve, and the compression ratio are optimized after cutting the edge of propeller and calculates again to make sure that the main engine-runs under the best situation. And it compares the running parameters after optimization with the parameters before and after cutting, which shows that oil consumption, combustion temperature and exhaust gas temperature all decrease, but working pressure, power and torque all increase. And the optimization after cutting can improve the economical efficiency, power performance and exhaust behavior.
     The achievement which is acquired by this paper has profound significance for reducing fuel cost and greenhouse emission from shipping.
引文
[1]秦大河.气候变化对我国经济社会和可持续发展的挑战.外交评论.2007.
    [2]IPCC.气候变化报告2007.
    [3]张爽,张硕慧.国际海事组织在船舶温室气体减排方面所做的工作.国际海事公约研究与动态.2007(7).
    [4]张硕慧,孙隽.MEPC57次会议主要内容介绍.国际海事公约研究与动态.2008(2).
    [5]张硕慧等.MEPC59次会议情况简要报告.国际海事公约研究与动态.2009.
    [6]殷红.国际干散货航运市场主要货种需求发展趋势研究.大连:大连海事大学.2004.
    [7]Review of Maritime Transport, United Nations Conference on Trade and Development (UNCTAD),2006-2008.
    [8]Shipping Statistics Yearbook 2007. Institute of Shipping Economics and Logistics (ISL), Bremen, Germany. ISSN 0721-3220.
    [9]IMO.2000. Study of Greenhouse Gas Emissions from ships. MEPC 45/8.
    [10]Tanaka Y. Economical speed and life cycle value of ship.4th Japan Towing Tank Conference, The Society of Naval Architects of Japan.2003.
    [11]溪泉.节能螺旋桨的发展概况.船舶节能.2002年(3)
    [12]IMO.2000. Study of Greenhouse Gas Emissions from ships. MEPC 45/8.
    [13]The Japan Society of Naval Architects and Ocean Engineers Conference Proceedings, Vol.5W,2007. " A study of energy-saving navigation planning considering weather forecast data"
    [14]水利部应对气候变化研究中心.《联合国气候变化框架公约》及《京都议定书》简介.南京:南京水利科学研究院.2008.2.
    [15]Alex Farrell, Mark Gliek.Natural Gas as a Marine ProPulsion Fuel TransPortationReseareh Reeord. Volume1738/2000.
    [16]Einang, P.M.2007. "Gas-fuelled ships" CIMAC paper 261; Proceedings of the 25th CIMAC World Congress on Combustion Engine Technology, Wien, Austria,21-24 May 2007.
    [17]Hennie et. AI. Altemative Fuels for Marine APPlieations. The ESMA joint venture project 1998.
    [18]王元凯.古今风帆[J].太阳能,1986(3).
    [19]贾石岩.船舶使用岸电对温室气体排放的控制研究.大连:大连海事大学.2009.
    [20]虞鸿庚.改造旧船螺旋桨的几种实用方法.交通部船舶运输节能技术服务中心.
    [21]许云飞.螺旋桨修边技术介绍.江苏船舶.第11卷第4期1994.
    [22]王瑞宣,宫子武.螺旋桨切削叶梢与切削随边的利弊分析.青岛远洋船员学院学报.2003.
    [23]张振新编译.修改旧船螺旋桨提高营运经济效益.造船技术.1987(8).
    [24]杨宗佑.螺旋桨切割对船舶推进性能的影响.船舶工程,1984,(6):42-46.
    [25]张济猛.切割螺旋桨叶片边缘来调整负荷的方法.船舶工程,1981, (3):3-9.
    [26]陈文读.船机桨匹配.坞修技术.
    [27]王瑞宣,宫子武.螺旋桨切削叶梢与切削随边的利弊分析.青岛远洋船员学院学报.2003.
    [28]陈加菁.螺旋桨性能估算的微分方法.广东造船,1983, (1):15-30.
    [29]李洁雅等.螺旋桨切边技术对改善船、机、桨匹配的影响.华南理工大学学报.1996.9,24(9).
    [30]陈振东.船舶营运航速的经济性探讨.航海技术.1998(2).
    [31]杜荣铭.船舶柴油机.大连:大连海事大学出版社.
    [32]王国强,盛振邦.船舶推进.国防工业出版社.1985.12.
    [33]陈朝辉.螺旋桨削边改造的试验研究和理论计算.大连:大连理工大学.2009.
    [34]巫朝鑫.WD615.50柴油机工作过程模拟计算和参数优化: (硕士学位论文).大连:大连海事大学.2008.
    [35]AVL BOOST Version 5.0—Users Guide (M). AVL, GraZ,2006.10.
    [36]Diesel Basic Training of AVL BOOST. AVL Advanced Simulation Technologies.
    [37]Ladommatos N The Dilution, Chemical and Thermal Effects of Exhaust Gas Recirculation on Diesel Engine Emissions [J]. SAE Paper 961165.
    [38]李海鹰.中速船用柴油机的仿真及低NOX排放优化设计.大连:大连理工大学.2009.6.
    [39]刘勤安.大型低速二冲程船用柴油机工作过程数值模拟和优化.大连:大连海事大学.2009.6.
    [40]刘颖.柴油机原理.华中工学院出版社.1984.
    [41]张余庆,崔文彬.船舶柴油机NOx排放控制技术现状与展望[J].航海技术,2006,1:43-45.
    [42]David Cooper and Eje Flodstrom. Continual NOX emission monitoring on board Manon and Stena Jutlandica. IVL Report.2008.3.
    [43]船舶柴油机设计手册.国防工业出版社.1983.
    [44]Development and Improvement of Turbo-Compressors with High Compression Ratio for High Hressure Charged Diesel Engines. V. T. Bardukov G. P. Sivolap P. V. Ivanov 11th CIMAC.
    [45]Pawelski Zbigniew, Wittich Sebastian. Optimistation of Operating Parameters during the Accumulator Charging Process Internat ional Journal of Vehicle Design 2005.
    [46]殷奇章.对YC6112ZCQ柴油机的性能研究.上海:上海交通大学.2000.
    [47]Goran Hellen. A brief guide to controlling marine diesel exhaust emissions [J].Marine News,2005, 1: 16-20.
    [48]杨树森.船舶柴油机排放物控制措施及前景分析[J].江苏船舶,2003,4:19~21.
    [49]David Cooper, IVL Tomas Gustafsson, SCB. Methodology for calculating emissions from ships:1. Update of emission factors. SMED.2004.
    [50]孙万臣等.柴油机燃烧过程的分析诊断方法.燃烧科学与技术.2007第7卷第1期.
    [51]Andy Soos, ENN. EPA to Curb Ship Air Emissions. http://www. epa. gov/otaq/oceanvessels. htm.
    [52]胡健斌.提高车用柴油机性能的实验研究:(硕士学位论文).南宁:广西大学,2003.
    [53]Golverk AA. The Method for Development of a Diesel Engine Universal Performance.SAE Paper941928,1994.
    [54]张雄伟.提高增压柴油机经济性研究:(硕士学位论文).武汉:华中科技大学,2004.
    [55]Timothy P Gardner, Naeim A Henein. Compression Ratio Optimization in a Direct Injeetion Diesel Engine:A Mathematical Model. SAE 880427.
    [56]尹必蜂等.495ZLQ柴油机参数匹配与性能计算分析.车用发动机.2007.
    [57]MAN B&W S60MC Project Guide.2009(7).
    [58]贾明.均质压燃(HCCI)发动机着火与燃烧过程的理论与数值研究:(博士学位论文).大连:大连理工大学,2006.
    [59]船舶柴油机设计手册.国防工业出版社.1983.
    [60]长尾不二夫.内燃机原理与柴油机设计.机械工业出版社.1984.
    [61]陈景锋.低温燃烧降低船用柴油机NOx排放率的研究:(硕士学位论文).大连:大连海事大学.2000.
    [62]IMO Regulations for the Prevention from Ships[Z].MEPC 57.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700