船舶液压推进系统设计及效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着船舶向大型化、高速化方向发展时,主机的功率也越来越大,这给主机的设计与制造带来很大困难,同时主机增大使得船舱的有效空间越来越小,多主机并联工作模式随之出现。目前有船舶推进方式主要是采用机械推进和电力推进,机械推进方式虽然在传动效率上占有一定优势,但是其有机动性差,功率重量比小,机舱布置不合理等缺点;电力推进虽然机动性高,但是其功率重量比小,大功率调速问题没有得到解决。液压驱动因具有驱动功率大、适应重负荷、调速性和安全性好、便于集中控制、液压动力源可以一机多用等优点,因此提出船舶液压推进
     船舶液压推进技术是将液压技术应用于船舶推进系统中,通过液压泵将主机(船舶柴油机)输出的机械能转变为液压油的压力能,经功率综合油路,分别驱动螺旋桨、舵机、船舶侧推装置以及其它辅助装置。
     本文在对船舶液压推进系统原理分析的基础上,对船舶液压推进的液压系统进行设计,从调速方式、油路循环方式、油源选择系统散热分析等方面对船舶液压推进的液压推进系统进行了分析和研究,并对泵、马达、螺旋桨、柴油机等各元件进行了选型和计算。从理论上分析了影响系统的主要参数,随后基于Matlab/Simulink对系统的动态性能进行了仿真分析。
     系统效率问题是船舶液压推进技术的关键问题之一,文中基于Matlab/Simulink对系统的效率进行了建模与仿真,分析了各主要参数对系统效率的影响,为系统进行改进设计提供了有力的依据。
In recent years, with the development of modern shipping towards macro-scale operation technology, specialization and speed-up, as the traditional propulsion mode, the diesel propulsion mode can not satisfied the modern shipping, at the same time, the cabin became more and more smaller because the diesel occupied much space of the cabin. And then, parallel connection of diesels has been worked. At present, there were two methods about the design of propulsion, that is, mechanical propulsion and electric propulsion. Mechanical propulsion has the advantage of transmission efficiency. Simultaneity, there are many disadvantages, for example, bad flexibility, lower weight power ratio, inappropriate disposal of cabin.
     The driving of hydraulics have much predominance, such as the big driving power, adapting to the heavy carrying, adjusting velocity soon, the safety, being easy to concentrate the control, and the hydraulic source can be used for many machines. So, Integrated Hydraulic Propulsion was put forward in this paper.
     The design scheme of Hydraulic Propulsion Ship was put forward in this paper. In this foundation, this thesis analyses the design of the hydraulic driving system in Hydraulic Propulsion ship, and then, carries on the summary and gives some useful advice, At last, modeling and simulating for this system.
     In this paper, the author gives some suggestion such as the choice of the hydraulic source, the choice of the motor, the way of adjusting velocity, and the analysis of thermal system. After that, the author gives the principle of components of the hydraulic driving system including pump, motor, propeller and diesel engine...etc, and gives theoretical analysis of main parameters.
     For foreseeing the dynamic performance and the static performance of this system, the thesis established the mathematics model and analyzed with the software of Simulink. By analyzing the result, the author put forward the suggestions that improve the system's performance.
     The efficiency is a key point for hydraulic propulsion system. In this paper, the efficiency model is established with Matlab/Simulink. And the author gives useful analysis of main parameters on impact of system efficency. It will afford the convenience for the behind analysis.
引文
[1]吴伯才.船舶液压推进的可行性探讨.宁波大学学报(理工版).2002(02):76-78
    [2]谢清程.吊舱式电力推进器的新发展.机电设备.2007(01):1-2
    [3]叶国泉.吊舱式电力推进装置的应用.上海造船.2007(01):19-21
    [4]王天奎,顾建民.船舶超导磁流体推进技术展望.船舶工程,1994(05):9-13
    [5]郭国才译.“大和1号”超导磁流体推进系统设计结构以及特性.Trans IMarE.Vol 104.The Superconducting magnetohydrodynamic propulsion System of Yamato—1:design,structure and performance(英).黄友朋校
    [6]刘柱.船舶喷水推进技术发展.水路运输文摘.2004(11):40-41
    [7]刘承江.喷水推进研究综述.船舶工程.2006(04):49-52
    [8]杨国平,刘忠.现代工程机械液压与液力实用技术.北京:人民交通出版社,2003
    [9]程国瑞.船舶动力装置原理.北京:人民交通出版社,2001
    [10]Yuri A1Dreizin1 The electromagnetic chemical propulsion concept 1 IEEE Transactions on Magnetics,1995,31(1):279-2831
    [11]刘柱.几种船舶推进系统的比较.青岛远洋船员学院学报.2003(03):40-44
    [12]M.E.Lngrim,G.Y.Masada.The Extend Bond Graph Notation Journal of Dynamic System,Transaction of ASME Measurement and Control,Vol113,1991.3:113-116.
    [13]M.E.Lngrim.Extend Bond Graph representation of the Transaction of the ASME.Vol113,1991.3:118-121
    [14]殷乾训.国外新型船舶液压推进装置.航海工程.1984(05):30-33
    [15]章宏甲.液压与气压传动.北京:机械工业出版社,2003
    [16]俞文胜.船舶电力推进未来发展方向.世界海运.2007(03):43-45
    [17]陈家金.船舶电力推进系统的发展.世界海运.2006(04):9-11
    [18]阎欣.新型船舶推进方式—船舶综合液压推进.液压气动与密封.2006(02):38-39
    [19]Ji Yulong,and Sun Yuqing.Modelling and simulation of IHP ship.The 2nd International Conference On Computational Methods in Fluid Power(FPNI'06).2006
    [20]魏德宝.船舶综合液压推进系统设计.液压气动与密封.2008(01):25-28
    [21]“船舶综合液压推进基础研究”项目申请书
    [22]Zhu Shuwen,and Lu Zhiqing.Working Condition Matching characteristics of Ship&Engine&Propeller.Shanghai:Shanghai Transportation University Press,1990,141-143:147-150.
    [23]He Cunxing.Hydrostatic and Pneumatic Transmission.HuaZhong University of Science and Technology Press(china),2000,4:101-102
    [24]“船舶综合液压推进基础研究”验收材料
    [25]刘国富.船舶液压系统设计及打桩船液压系统的改进设计与仿真研究.硕士论文.上海:上海海事大学,2004
    [26]章宏甲,黄谊.机床液压传动.北京:机械工业出版社,1987
    [27]雷天觉.液压工程手册.北京:机械工业出版社,1990
    [28]He Cunxing.Hydrostatic and Pneumatic Transmission.HuaZhong University of Science and Technology Press(china),2000,4:101-102
    [29]任建勋等.液压传动计算与系统设计.黑龙江:黑龙江省出版局,1982
    [30]吴恒.船舶动力装置技术管理.大连:大连海事大学出版社,1999
    [31]李福义.液压技术与液压伺服系统.哈尔滨:哈尔滨工程大学出版社,1992
    [32]Yan L.G,Sha C.W,and Zhou K.et al.Progress of the MHD ship propulsion project in China.IEEE Transactions on Applied Superconductivity,2000,10(1):951-954
    [33]Helet J F,Inozu B,Roy P,et al.Performance simulation of marine diesel engines with SELENDIA.Journal of Ship Research.1999,43(4):201
    [34]卢长狄等.液压控制系统的分析与设计.北京:煤炭工业出版社,1991
    [35]成大先,机械设计手册(第四版),北京:化学工业出版社,2003
    [36]张利平.液压传动系统及设计.北京:化学工业出版社,2005
    [37]贾铭新.液压传动与控制.北京:国防工业出版社,2000
    [38]杨培元,朱福元.液压系统设计简明手册.北京:机械工业出版社,1998
    [39]陆元章.液压系统的建模与分析.上海:上海交通大学出版社,1989
    [40]万丽荣.基于MATLAB/SIMULINK的变量泵变量马达调速系统动态仿真.煤矿机械.2007(02):26-28
    [41]韩虎.基于MATLAB液压系统的仿真技术研究与应用.液压气动与密封.2007(03):4-6
    [42]Zhenying Zhao,Lilong Cai.Output Feedback Tracking Control of Electro-hydraulic Servo Systems.Proceedings of the 35~(th)Conference on Decision and Control Kobe,Japan.December 1996
    [43]贺利乐.建设机械液压与液力传动.北京:机械工业出版社,2004
    [44]陆元章.液压系统的建模与分析.上海:上海交通大学出版社,1989
    [45]翁史烈.船舶动力装置仿真技术.上海:上海交通大学出版社,1991
    [46]陈鹰.液压仿真技术的新进展.液压传动与气动.1997(01):4-6
    [47]刘国富.工程船舶液压系统设计及打桩船液压系统的改进设计与仿真研究.硕士论文.上海:上海海事大学,2004
    [48]李永堂,雷步芳,高雨茁.液压系统建模与仿真.北京:冶金工业出版社,2003
    [49]朱亚莉,李巍,张维竞,张燕燕.舰船推进装置仿真技术的发展.计算机应用,2001(05):35-38
    [50]Oyama Kazuo.Ship Propulsive Device.HOND A MOROR CO LTR.1990.6
    [51]RAKARUDO RODORIGESU.Propeller for ship.NOTEIKARU PUROPARUJIYON RES L.1989.4
    [52]施阳.MATLAB语言精要及动态仿真工具SIMULIMK.西安:西北工业大学出版社,1999
    [53]李永堂,雷步芳,高雨茁.液压系统建模与仿真.北京:冶金工业出版社,2003
    [54]Y.Jen,C.Lee.Robust speed control of a pump-controlled motor system.IEE PROCEEDINGS-D,Vol.139,No.6,NOVEMBER 1992
    [55]彭天好.变频泵控马达调速及补偿特性的研究.博士学位论文.浙江:浙江大学.,2003
    [56]Wang Xue Zhi,Cui Zhi She,Xu Yong.The Application of the Man-simulated Intelligent Control to Electro-hydraulic Servo System.1997 IEEE Internationl Conference on Intelligent Processing Systems,October 28-3l,Beijing,China
    [57]薛晓虎.杜金凤.泵控马达回路动态特性的影响因素分析.起重运输机械.2005.(02):33-38
    [58]王沫然.Simulink建模及动态仿真.北京:电子工业出版社,2002
    [59]M.J.Jin,W.Hu,F.Liu,S.W.Mei and Q.Lu.Nonlinear co-ordinated control of excitation and governor for hydraulic power plants.IEE Proc.-Gener.Transm.Distrib.,Vol.152,No
    [60]Liu Changnian.The Analysis and Design of The Hydraulic Servo System.Beijing:Science Press,1985:75-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700