基于自动式模糊控制的高压气体配重系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,工具机的研发和制造一直朝着高速、精密、高效的趋势发展。一般而言,工具机的进给系统主要分为两种:(1)线性马达;(2)伺服马达与高导程滚珠螺杆。配重系统分为质量块配重系统、液压配重系统、高压气体配重系统,以克服重力等因素对主轴在垂直进给方向运动的影响。高压气体配重系统与其他配重系统相比,具有降低工具机进给系统的干扰力和有效提高主轴的定位精度等优势。:
     本文延续前人研究所提出的主动式高压气体配重方法,建立的实验机台为模拟高速工具机主轴在垂直方向进给的高压气体配重系统,并以线性马达作为致动器,通过对高压气体配重系统的力学模型分析,在线性马达做垂直方向运动的状态下,以伺服阀进行流量控制,调节气压缸下气室的压力,使压力保持平稳,平衡系统的载重,期望能有效降低干扰力对线性马达推力及定位精度造成的影响。相对于传统的高压气体配重系统而言,在主轴较快速度移动时,气压缸的压力会有较大的波动,使出力较不稳定,无法有效降低干扰力。本文使用自动式模糊控制器,应用在主动式高压气体配重系统进行压力控制,有效的降低系统干扰力的影响,提高了主轴的定位精度。
Because of air inexhaustible, security, environmental protection, as the actuating medium gas pressure drive technology becomes more and more popular and widely is applied gradually in industry. Since the 70's, the worldwide energy crisis occurred, so that people are increasingly concerned about energy conservation. Rapid growth in China's economy today, the development model is still based on consumption of material resources, making resource constraints and the environment has become a major obstacle to economic development, therefore, to conduct research on energy-saving is particularly urgent and important.The gradully integration of gas pressure drive technology with materials, electronics and control technology, making it become one of the main mechanical drive and control technicals.But relative to other transmission technologies, the current gas pressure drive technology has the defect of the lower energy efficiency,therefore,the research on how to save energy and reduce consumption has become an important issue in this field. In addition, the conventional pneumatic counterweight system can appears that the pressure will not stabilize with rather high feeding speed, which still requires further study and improvement.
     In general, the feeding system of machine tool is mainly divided into two types: (1) linear motor; (2) servo motor and high-leading ball bearing and screw. No matter what kind of feeding system, the feeding of the principal axis in the vertical direction using counterweight system is the essential design. The counterweight systems are divided into the quality block counterweight system,the hydraulic counterweight system, the pneumatic counterweight system to overcome the influence of factors such as weight on the principal axis in the vertical direction of feed movement.Compare the pneumatic counterweight system to other counterweight systems, there are many advantages:
     (1)Gas pressure drive using air as transmission medium, as a result of air from the atmosphere can be inexhaustible, non-media supply difficulties and costs to be incurred in the issue of media, used air can be discharged directly into the atmosphere and less pollution of the environment, therefore, can simplify the pipeline equipment.
     (2)The work pressure of compressed air is lower, usually 0.4~0.8MPa. Therefore, the pneumatic components to reduce the material and processing requirements of accuracy, causes that components are easy to manufacture, low cost,simple structure of devices and components, long working life.
     (3) Faster transmission reaction pressure, rapid action is generally only 0.02~0.03s needed to be able to establish the pressure and speed.
     (4)Because the air viscosity is very small and the pressure loss flowing in the pipe is rather slight, the compressed air is advantageous for the centralism supply and the long distance transportation.
     (5)The nature of the air is few influenced by temperature, under high temperature combustion and explosions will not occur,so it is safe to use;When temperature changes,the changes in its viscosity is extremely small,which does not affect transmission performance.
     (6)Because of gas compressibility, the system is easy to realize automatic overload protection.
     (7)Pneumatic components to maintain easy to operate,not easy to plug the pipeline,and there is no medium metamorphic, supplement and replace and so on.
     Therefore, in any modern country,the pneumatic system using compressed air as the actuating medium plays an important role on improving the efficiency in various industrial sectors.
     This article is a continuation of previous studies of active pneumatic counterweight method, the test to establish their machine to simulate high-speed machine tool principal axis in the vertical direction to the pneumatic counterweight system, and linear motors as actuators by weight of the pressure model of power system analysis, so the linear motor under the vertical direction of movement to carry out servo-valve flow control to regulate the cylinder pressure chamber under the pressure so that pressure remained stable, balanced system load, reduced the effective interference power of the linear motors pushing power and the impact of positioning accuracy.
     Compared with the passive pneumatic counterweight system (that is, the traditional pneumatic counterweight system), the degree more quickly in the principal axis moves, the cylinder pressure fluctuations can be larger than, using the stability of power than not, can not effectively reduce the interference power. In this paper, the use of self-tuning fuzzy controller, the application of pressure in the active pneumatic counterweight system, to carry out pressure control,expectations can reduce the impact of power system disturbance, and explore the experimental results, respectively.
引文
[1]Blackburn,J.E,Fluid Power Control,John Wiley & Sons,New York and London,1960.
    [2]Mccloy,D.& Martin,H.R.,Control of Fluid Power:Analysis and Design,2nded.,Ellis Horwood Limited,1980.
    [3]Mudi,R.K.& Pal,N.R.,A Robust Self-Tuning Scheme for PI- and PD-Type Fuzzy Controllers,IEEE Transactions on Fuzzy Systems,vol.7,no.1,pp.2-16,1999.
    [4]Outbib,R.,State Feedback Stabilization of an Electropneumatic System,Journal of Dynamic Systems,Measurement,and Control,Transactions of the ASME,vol.122,pp.410-415,2000.
    [5]Pandian,Pressure Observer -Controller Design for Pneumatic Cylinder Actuators,IEEE/AMSE Transactions on Mechatronics,vol.7,no.4,pp.490-499,2002.
    [6]Richer,E.,A High Performance Pneumatic Force Actuator System:Part Ⅰ -Nonlinear Mathematical Model,Journal of Dynamic Systems,Measurement,and Control,Transactions of the ASME,vol.122,pp.416-425,2000.
    [7]Richer,E.,A High Performance Pneumatic Force Actuator System:Part Ⅱ - Nonlinear Controller Design,Journal of Dynamic Systems,Measurement,and Control,Transactions of the ASME,vol.122,pp.426-434,2000.
    [8]Shieh,L.,Implemntation of Integrated Fuzzy Logic Controller for Servomotor System,IEEE International Conference on Fuzzy Systems,v4,1995.
    [9]Tsai,M.-H.& Shih,M.-C.,A Study of Pneumatic Counterweight of Machine Tools Conventional and Active Pressure Control Method,JSME International Journal,Series C,Vol.49,No.3,pp.890-896,2006.
    [10]王进德、萧大全,类神经网路与模糊控制理论入门,全华科技,2005。
    [11]王文俊,认识Fuzzy,全华科技,2006。
    [12]白凯仁,自动式模糊控制射出成型机射胶速度的研究,国立成功大学机械工程学系硕士论文,1998。
    [13]何启吉,气压缸与步进马达作双轴运动的位置控制研究,国立成功大学机械工程学系硕士论文,台南市,2002。
    [14]李建藩,气压传动系统动力学,华南理工大学出版社,1991。
    [15]周洪,气动技术的新发展,《液压气动与密封》,总第77期,页2-12,1999。
    [16]邱新桥、张桂英、张晨阳,机床垂直运动部件重力平衡方法的研究,《机械制造》,第42卷,第473期,页39-41,2003。
    [17]孙宗瀛、杨英魁,Fuzzy控制:理论、实作与应用,全华科技,台北市,2005。
    [18]张硕,自动控制系统,鼎茂图书,台北市,2001。
    [19]许正道,油空压的数位控制与应用,全华科技,台北市,1989。
    [20]许资永,嵌入气静压轴承的双轴气压伺服平台精密定位控制的研究,国立成功大学机械工程研究所硕士论文,台南市,2006。
    [21]陈志铿、曾伟诚、许旭明,龙门铣床Z轴液压配重测试分析,《机械月刊》,第 28卷,第6期,2002。
    [22]陈国祯,线性马达伺服应用技术,《机械工业杂志》,第229期,页126-138,2002。
    [23]陈国祯,线性马达高压气体配重,《机械工业杂志》,第241期,页156-161,2003。
    [24]张恩生,线性马达工具机的技术发展与应用,《机械工业杂志》,第216期,页156-161,2001。
    [25]曾我部正丰、张哲坚,线型马达的最新技术及其应用,《机械工业杂志》,第252期,页189-193,2004。
    [26]褚明丰,线性马达工具机垂直轴的高性能伺服控制器的设计与实现,国立成功大学制造工程研究所硕士论文,台南市,2003。,6(4):250-262.
    [27]关新春,欧进萍.磁流变减振驱动器的响应时间试验与分析[J]地震工程与工程振动,2002,(06).
    [28]贺建民,黄金,钟银辉.磁流变液在圆筒间的粘塑性流动[J]功能材料,2006,(06).
    [29]任建亭,邓长华,姜节胜.磁流变阻尼器瞬态响应性能的研究[J]功能材料,2006,(05).
    [30]郭亚军.泵控马达变转速节流复合调速系统特性研究[D]安徽理工大学,2008.
    [31]李斌.小型水电站接入系统的设计与研究[D]河海大学,2004.
    [32]徐伟.防爆变频自动排绳系统研究[D]太原理工大学,2006.
    [33]姜唐杰.主动式气压配重系统於高速工具机之研究[D]国立成功大学,2007.
    [34]魏德宝.船舶液压推进系统设计及效率研究[D]大连海事大学,2008.
    [35]孙继亮.盾构液压推进系统的控制仿真研究[D]安徽理工大学,2006.
    [36]阎欣.船舶综合液压推进系统设计及动态仿真[D]大连海事大学,2006.
    [37]来长胜.基于遗传算法-模糊技术的火电厂主汽温控制系统的研究[D]太原理工大学,2007.
    [38]马占有.模糊PID控制技术在烘干炉单片机温度控制系统中的应用研究[D]西北第二民族学院,2007.
    [39]王吉龙.基于变频技术的液压调速系统控制方案的仿真研究[D]大连海事大学,2006.
    [40]沈杰,靳东明,李志坚.模糊控制和模糊控制芯片[J]电子学报,1997,(02).
    [41]王振峰,靳东明,李志坚.单体模糊神经网络:在智能控制中的应用及VLSI实现[J]电子学报,1997,(05).
    [42]王炎,周大威.移动式服务机器人的发展现状及我们的研究[J]电气传动,2000,(04).
    [43]郭亚楠.基于神经网络的软岩巷道变形预测研究[D]河北工程大学,2007.
    [44]李晓利.基于小波神经网络的化工安全评价研究[D]太原理工大学,2007.
    [45]林小峰,廖志伟,谢松.模糊控制中模糊推理算法的研究[J]工业仪表与自动化装置,1999,(02).
    [46]郭煜.Navier-Stokes方程的数值解法[J]鞍山钢铁学院学报,1997,(03).
    [47]李杨,王占林,裘丽华.机载机电设备综合控制管理系统任务分配研究[J]北京航空航天大学学报,1999,(05).
    [48]孙亮.有限宽度平板Couette流的流量计算[J]纺织高校基础科学学报,2001,(03).
    [49]杨岩,黄伟九,李辉.电流变液剪切应力模型的讨论[J]重庆工学院学报,2003,(04).
    [50]郭登云.电流变反后坐装置在大口径前冲舰炮上的应用分析[J]四川兵工学报,2002,(03).
    [51]薛美盛,孙德敏,罗海云.自适应Smith预估器仿真研究[J]工业仪表与自动化装置,2000,(06).
    [52]杨哲,席永国.液体流量控制的几个问题[J]河南化工,1995,(10).
    [53]胡跃明,晁红敏,李志权,梁天培.非线性仿射控制系统的高阶滑模控制[J]自动化学报,2002,(02).
    [54]朱克勤,王侃.平行平板间Couette流起动过程的运算微积解[J]力学与实践,2003,(06).
    [55]孙宁,张琳,田玲.基于ANSYS的磁流变阻尼器设计技术研究[J]机械制造,2006,(02).
    [56]施小丁.一类流体力学方程组第二边值问题的弱解[J]河北科技大学学报,1997,(03).
    [57]尹存涛,王刚.磁流变阻尼器阻尼力模型参数识别研究[J]河南纺织高等专科学校学报,2005,(04).
    [58]杨建波,杨平,刘夫云.油阻尼减振结构流体动力学特性试验研究[J]桂林电子工业学院学报,2004,(02).
    [59]林佳,魏陆顺,刘文光,王豫.油阻尼器的力学性能试验研究[J]国外建材科技,2004,(05).
    [60]高跃飞.抗冲击磁流变缓冲器原理及分析[J]华北工学院学报,2002,(01).
    [61]王丽,赵林.基于MR阻尼器的结构振动半主动跟踪控制[J]河南科技大学学报(自然科学版),2005,(03).
    [62]陈龙,陈杨,江浩斌,杨谋存,汪少华.节流口可调式减振器的性能分析与试验研究[J]江苏大学学报(自然科学版),2004,(03).
    [63]李仁杰,刘峰,辛明影,张利芬.基于不同模糊算子的模糊推理方法及效果分析[J]东北农业大学学报,2002,(01).
    [64]杨亚炜,张明廉.一种新的模糊控制方法及其仿真[J]北京航空航天大学学报,1999,(03).
    [65]任永益,饶聃,潘孟春.自动导向车控制系统的数学模型及应用[J]国防科技大学学报,1997,(06).
    [66]王社伟,张洪钺.容错控制系统的可靠性建模及模型化简[J]北京航空航天大学学报,1999,(03).
    [67]李刚.数字图像的模糊增强方法[D]武汉理工大学,2005
    [68]郑久强.盾构刀盘液压驱动系统研究[D]浙江大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700