船用汽轮机汽封压力控制及仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽轮机的转动部件与静止部件之间不能紧密接触,必须保持一定的间隙来防止相互摩擦而发生事故。由于间隙的存在,致使小部分蒸汽没有做功,从各处间隙流入空气中,降低了汽轮机的工作效率,所以必须在转动部件和静止部件之间设置汽封。汽封压力对汽轮机的工作效率有着很大影响,为了提高汽轮机的工作效率,通常会采用汽封压力控制系统对汽封压力进行控制。随着汽轮机技术的发展,人们对汽封压力控制系统的要求也越来越高。我国某型船用汽轮机目前使用的汽封压力自动控制系统在使用过程中存在着许多问题,需要对其进行改进,以提高汽轮机的工作效率。
     论文以原汽封压力控制系统为研究对象,首先对其结构及工作原理进行分析。由于原调节器和执行机构是以纯净水为工作介质的液压系统,根据控制系统的特点以及各种液压系统建模方法的优缺点,采用“灰箱”建模法建立原控制系统的数学模型,结合所建模型利用Matlab软件中的Simulink仿真平台对系统初始压力小于额定压力、大于额定压力以及给稳定系统突然施加偏差干扰信号三种情况进行仿真,得到各种情况的系统响应曲线和偏差曲线,并根据仿真曲线分析原控制系统所存在的问题。由于系统存在着严重的时滞性,采用传统的PID控制技术很难到达满意的效果,根据系统特点设计出模糊自适应PID控制器和模糊PID复合控制器对原汽封压力控制系统进行改进,并利用仿真工具仿真,得到仿真曲线。
     最后结合原控制系统、模糊自适应PID控制系统以及模糊PID复合控制系统的仿真曲线对三种控制系统的性能进行比较。从仿真曲线可以看出模糊自适应PID控制系统以及模糊PID复合控制系统的性能和原控制系统相比得到了很大提升,模糊自适应PID控制系统的系统响应速度最快,调节时间最短、超调量最小,抗干扰能力最强。所以从理论上分析,三种控制系统中模糊自适应PID控制系统的控制效果最好,系统采用模糊自适应PID控制最合适。
Steam rotation parts and static parts can not be in close contacted,we mustmaintain a certain gap to prevent accidents.Due to clearance,result a small part ofthe steam does not do work,flow to the air from the clearance,reduced theefficiency of steam.So steam seal must be placed between the rotating parts andstationary parts.The steam seal pressure has very tremendous influence to theefficiency of the turbine.In order to improve the efficiency of the turbine,usuallyusing the steam seal pressure control system for the control of steam seal pressure.With the development of the turbine technology,the requests to the steam sealpressure control system’S performance are getting higher and higher.There aremany problems in the currently used steam seal pressure control system of onemodel marine turbine during it be used,and it need to be improved in order toimprove the efficiency of the turbine.
     This thesis takes the original steam seal pressure control system as researchobject.Firstly,analysis its structure and principle,the control system use purewater as the working medium,according to the characteristics of control systemsand the advantages and disadvantages of the hydraulic system modeling methods,use the“gray box”modeling method for modeling the original control system anduse the Simulink simulation platform of Matlab for simulation , get the systemresponse curve and deviation Curves of all the circumstances,analysis theproblems of the original control system according to these curve.Because of thetime—delay of the system,use the traditional PID control technology is difficult toreach a good result.So,according to the system characteristics,a fuzzyself-tuning PID controller and a fuzzy-PID compound controller were designed tomake improvement to the system.After that,we obtain the simulation curvethrough the simulation tool.
     Finally,compare the performance of these three systems according to theoriginal control system,fuzzy self-tuning PID control system and fuzzy—PID compound control system’S simulation curve.According to the curve,the performances of the fuzzy self-tuning PID control system and the fuzzy—PIDcompound control system have a great promotion compare to the performance ofthe original control system.The fuzzy self-tuning PID control system has thefastest system response,smallest overshoot,most powerful anti-jammingcapability.So,the fuzzy self-tuning PID control system has the best performancein these three control systems and use fuzzy self-tuning PID control system forsteam turbine steam seal pressure control most appropriate.
引文
[1]程天明.大中型汽轮机自密封汽封系统的应用.热力发电,2001.9: 22-23页
    [2]胡波.汽轮机自密封汽封系统分析及探讨.热力发电,2002.1:54-55页
    [3]肖夏,王雪梅.控制回路的PID参数整定.石油工程建设,2007:27-29页
    [4]张震.浅谈智能控制的发展与应用.决策与信息(财经观察),2008:135页
    [5]谢承泮.神经网络发展综述.科技情报开发与经济,2006:148-149页
    [6]陈建安,杨万海,徐乃平,孙云芝.智能控制的技术、方法及特点分析.电子科技,1997.3:15-19页
    [7]闫永跃,李庆周,于树新.智能PID控制综述.可编程控制器与工厂自动化,2006.12:9-13页
    [8]杨嘉墀.自动控制向智能控制发展.中国科技论坛,1995:48-50页
    [9]陆骏杨,杨建国.基于数字PID控制器的伺服控制系统.科技创新导报,2009:24-27页
    [10]杨柳堤.PID控制的发展.自动化与仪器仪表,1993.3:57-61页
    [11]曹刚.PID控制器参数整定方法及其应用研究.浙江大学硕士论文, 2004.3
    [12]孙林军.智能PID控制研究.浙江工业大学硕士论文,2003.5
    [13]杨智,朱海锋,黄以华.PID控制器设计与参数整定方法综述.化工自动化及仪表,2005.10:1-7页
    [14]严晓照,张兴国.增量式PID控制在温控系统中的应用.南通大学学报(自然科学版),2006.12:46-51页
    [15]郑成.PID参数整定方法的研究.机械制造,2009年3期:23-27页
    [16]肖夏,王雪梅.控制回路的PID参数整定.石油工程建设,2007.12:32-37页
    [17]汪木兰,顾绳谷.模糊控制的发展,困惑和趋势.电气自动化,2004年1期:8-11页
    [18]刘曙光,王志宏.模糊控制的发展与展望.机电工程,2000年1期:9-11页
    [19]王正林,郭阳宽.模糊控制理论与工程应用.华中科技大学出版社,2006.8
    [20]王佳.基于模糊PID的矫直机液压控制系统研究.武汉科技大学硕士论文,2009.5
    [21]钱学森,宋健.工程控制论.科学出版社,1980
    [22]莫智文,舒兰,许彪.模糊数学理论及其应用评述.四川师范大学学报(自然科学版),1998:331-335页
    [23]李晓丹.模糊PID控制器的设计研究.天津大学硕士论文,2009.5
    [24]胡光艳,田会方.动态环境中基于模糊概念的机器人路径跟踪控制.国外建材科技,2002:42-44页
    [25]何平,王鸿绪.模糊控制器的设计及应用.科学出版社,1997:4-9页
    [26]黄长征,谭建平.液压系统建模和仿真技术现状及发展趋势.韶关学院学报,2009:44-48页
    [27]李永堂,雷步芳,高雨茁.液压系统建模与仿真.冶金工业出版社, 2003:221-241页
    [28]雷步芳,李永堂,朱元乾,魏巍.液压大系统“灰箱”建模方法.太原重型机械学院学报,1997:201-217页
    [29]魏德宝.船舶液压推进系统设计及效率研究.大连海事大学硕士论文, 2008.2
    [30]章卫国,杨向忠著.模糊控制理论于应用.西北工业大学出版社,2000:48-63页
    [31]王正林,郭阳宽.过程控制与Simulink应用.电子工业出版社,2006.1
    [32]饶翡鹏,凌德麟.模糊控制的发展和现状.郑州纺织工学院学报, 2000.11:27-29页
    [33]陶永华,尹怡欣,葛芦生.新型PID控制及其应用.机械工业出版社,1998:42-47页
    [34]王鸣.基于模糊控制理论的一种PID参数自整定控制器的设计与仿真,2000:14-17页
    [35]丁永生,应浩..解析模糊控制理论:模糊控制系统的结构和稳定性分析.控制与决策,2000:129-131页
    [36]张柱华.基于MATLAB的模糊控制仿真研究.内江科技,2008:140-141页
    [37]李辉,蔡敏.基于MATLAB的模糊控制仓库温度调节系统的仿真.中国新通信,2009:61-63页
    [38]闫坤,张广栋.模糊PID同步发电机励磁控制器的设计.南昌工程学院学报,2009,28(4):23-26页
    [39]薛文顺,吕剑虹.模糊PID复合控制系统及其在锅炉一次风压力控制中的应用.电力自动化设备,2001,21(8):15-17页
    [40]曹志国,廉小亲.基于MATLAB的两种模糊控制系统的仿真方法.计算机仿真,2004,21(3):41-44页
    [41]曾国伟,赵国军,邢海潇,陆鑫森.基于模糊控制技术的电梯群控系统设计[J] .浙江工业大学学报,2009:115-118页
    [42]方晓亮,张生,李斌.水厂自动混凝投药模糊控制应用[J] .微计算机信息,2009:38-40页
    [43] Edgar N. Sanchez, Hector M. Becerra, Carlos M. Velez. Combining fuzzy, PID and regulation control for an autonomous mini-helicopter. Information Sciences, 2007, 177(10):1999-2022P
    [44] Amin Haj-Ali, Hao Ying. Structural analysis of fuzzy controllers with nonlinear input fuzzy sets in relation to nonlinear PID control with variable gains. Automatica, 2004, 40(9):1551-1559P
    [45] Jian-ming Zheng, Sheng-dun Zhao, Shu-guo Wei. Application of self-tuning fuzzy PID controller for a SRM direct drive volume control hydraulic press control.Engineering Practice, 2009 17(12):1398-1404P
    [46] Manukid Parnichkun, Charoen Ngaecharoenkul.Kinematics control of a pneumatic system by hybrid fuzzy PID. Mechatronics, 2001.11(8): 1001-1023P
    [47] Zhijun Sun, Rentao Xing, Chunsheng Zhao, Weiqing Huang. Fuzzy auto-tuning PID control of multiple joint robot driven by ultrasonic motors. Ultrasonics, 2007, 46(4):303-312P
    [48] S.E. Mansour, G.C. Kember, R. Dubay, B. Robertson. Online optimization of fuzzy-PID control of a thermal process. ISA Transactions, 2005, 44(2):305-314P
    [49] Yan-Jun Liu, Shao-Cheng Tong, Wei Wang. Adaptive fuzzy output tracking control for a class of uncertain nonlinear systems.Fuzzy. Sets and Systems, 2009, 19(1):2727-2754P
    [50] G. M. Khoury, M. Saad, H. Y. Kanaan, C. Asmar.Fuzzy PID Control of a Five DOF Robot Arm. Journal of Intelligent and Robotic Systems, 2004, 40(3):754-758P
    [51] Antonio Sala, Thierry Marie Guerra, Robert Babu?ka. Perspectives of fuzzy systems and control. Fuzzy Sets and Systems, 2005, 156(3):432-444P
    [52] Ayla Alt?nten, Faz?l Ketevanlio?lu, Sebahat Erdo?an, Hale Hapo?lu. Self-tuning PID control of jacketed batch polystyrene reactor using genetic algorithm. Chemical Engineering Journal, 2008, 138(1):490-497P
    [53] Radu-Emil Precup, Stefan Preitl. PI-Fuzzy controllers for integral plants to ensure robust stability. Information Sciences, 2007, 177(20):4410-4429P
    [54] N. Perrot, I. Ioannou, I. Allais, C. Curt, J. Hossenlopp, G. Trystram. Fuzzy concepts applied to food product quality control: A review.Fuzzy. Sets and Systems, 2006,9 (1):1145-1154P
    [55] Min Wang, Bing Chen, Shi-Lu Dai. Direct adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems.Fuzzy. Sets and Systems, 2007, 24(16):2655-2670P
    [56] Tong Shaocheng, Li Changying, Li Yongming. Fuzzy adaptive observer backstepping control for MIMO nonlinear systems.Fuzzy. Sets and Systems, 2009, 19(1):2755-2775P
    [57] Shehu S, George Vachtsevanos. Robust Stability of Fuzzy Logic Control Systems .America Control Conference, 1995: 2287-2291P
    [58] Salim Labiod, Thierry Marie Guerra. Adaptive fuzzy control of a class of SISO nonaffine nonlinear systems. Fuzzy. Sets and Systems, 2007, 158(10):1126-1137P
    [59] Ou, Lin-Lin. PID controller stabilization for first-order integral processes with time delay .Department of Automation, 2006:111-116P
    [60] Dipl-Ing H,Cuppers.Modern water hydraulics-your choice for the future [M] .Germany: 2001
    [61] N. Perrot, I. Ioannou, I. Allais, C. Curt, J. Hossenlopp, G. Trystram .Fuzzy concepts applied to food product quality control Fuzzy. Sets and Systems, 2006,157(9) :1145-1154P
    [62] Min Wang, Bing Chen, Shi-Lu. Dai.Direct adaptive fuzzy tracking control for a class of perturbed strict-feedback nonlinear systems. Fuzzy Sets and Systems, 2007, 158(24) :2655-2670P
    [63] Xu J X,Liu C,Hang C C. Tuning of fuzzy PI controllers based on gain/phase margin specificationsand ITAE index .ISA Transactions, 1996,35:79-91p.
    [64] Hu Bao-Gang. Study on nonlinear PID controllers - Proportional component approach .Institute of Automation, Chinese Academy of Sciences, 2006: 219-227P
    [65] Mansour, S. E. Online optimization of fuzzy-PID control of a thermal process .Department of Mechanical Engineering, University of New Brunswick, 2005:305-314P
    [66] Kazemian, H. B. Developments of fuzzy PID controllers. London Metropolitan University, 2005:254-264P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700