船舶综合液压推进液压泵站的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国船舶总吨位已位居世界前列,承接新船订单量位居世界第一。船舶是船舶工业、航运业的主要载体,而主推进装置是船舶的心脏,其性能的优劣决定了整条船性能的好坏。随着船舶向高速化、专业化、安全环保方向发展,现有推进方式在机动性、安全可靠性以及功率重量比等方面的缺点越来越明显,人们越来越渴望一种新型船舶推进方式的出现,以适应蓬勃发展的船舶行业。
     论文中,主要对船舶综合液压推进的液压泵站进行了设计及研究,具体工作内容如下:
     (1)通过对现有船舶推进方式以及船舶综合液压推进优缺点的分析,确定了船舶综合液压推进的研究对促进船舶行业发展是有积极的作用。
     (2)对船舶综合液压推进液压泵站进行设计,论文主要从以下四方面对液压泵站进行设计:1)液压泵的类型;2)液压泵站功率综合运用;3)液压泵组合运行的经济性;4)液压泵组合运行的可靠性。
     (3)通过对液压泵站的研究,设计出一种定量泵—变量泵并联的液压泵站。采用这种液压泵站,设计出船舶综合液压推进的系统,并且对其变量控制机构进行了设计,分析该变量机构如何实现对液压系统流量的控制。
     (4)采用功率键合图法,对设计的液压泵站进行建模及系统元件的选型。使用Matlab/Simulink软件搭建液压泵站的仿真框图,仿真后得出以下结论:1)采用定量泵-变量泵并联式的液压泵站可以实现无级调速;2)系统压力越高,泵站动态超调量越大,稳定性越差;3)流量增大,会延长泵站稳定时间,对泵站的液力冲击增大;4)负载扭矩越大,泵站的功率损失越大,会导致泵站的效率降低。
     通过上述结论可以证明:采用定量泵-变量泵并联式液压泵站可以满足船舶综合液压推进的要求,能够提供系统所需的压力和流量,机动操作性好,系统稳定性较好,整个系统的效率平均在0.78左右。
At present, China's shipbuilding tonnage has been ranked in the forefront of the world, undertake new ship orders highest in the world. Ship is the primary vector of shipbuilding and shipping industry. As the heart of the ship,the main propulsion device's performance determines the merit of the whole ship's performance. However, with the development of high-speed, professional, safety and environmental protection ship, the shortcomings at mobility, security, reliability and power to weight ratio of area of the existing method of propulsion became more and more obvious, people more and more want a new kind of ship propulsion to meet the booming shipbuilding industry.
     The passage is mainly research and design the hydraulic pump station of the ship comprehensive hydraulic propulsion, specific work as follows:
     (1) According to the advantages and disadvantages of the existing ship propulsions and ship comprehensive hydraulic propulsion, it proves the research of ship comprehen-sive hydraulic propulsion has a positive effect to the development of ship industry.
     (2) By the design of the pump station of the ship comprehensive hydraulic propulsion, the design of the pump station is mainly from the flowing four aspects:1) Reasonable selection of hydraulic pumps; 2) Comprehensive use of the power of the hydraulic pump station; 3) The economic of the combined operation of the pumps; 4) The reliability of the combined operation of the pumps.
     (3) Based on the research of the hydraulic pump station, the passage designed a kind of hydraulic pump station which is composed of a quantitative pump-variable pump in parallel. With the use of this kind of hydraulic pump station, the passage designed the system diagram of the ship comprehensive hydraulic propulsion, and its variable control mechanism was designed, and analyzed how the variable control mechanism to control the flow of hydraulic system.
     (4) Using the power bond graph, modeling the designed hydraulic pump station of the ship comprehensive hydraulic propulsion and selecting the components of the system. Setting up the block diagram of hydraulic pumping station with the use of Matlab/Simulink simulation software. At last, the conclusion are:1) It can realize stepless speed regulation with the use of the hydraulic pump station which is composed of a quantitative pump-variable pump in parallel, it has the same function with the hydraulic pump station which is composed of variable pumps in parallel; 2) The higher the pressure of the system, the greater the dynamic overshoot of the hydraulic pump station, the worse the stability of the hydraulic pump station; 3) After the flow rate increases, the system stability time will extend, and it will increase the impact on the system; 4) The greater the load torque, the greater the power lose of the hydraulic pump station, it will lead to the efficiency of the system reduced.
     The above conclusion can proved:The pump station which is composed of qua-ntitative pump-variable pump in parallel can meet the requirements of the ship compre-hencive hydraulic propulsion, the system can provide the necessary pressure and flow, it has good operational and stability, the whole system average power of about 0.8.
引文
[1]吴锦元http://www.ship2000.com.cn/zhenceyanjiu/200118. htm.
    [2]张乐天.民用船舶动力装置.武汉:人民交通出版社,1985:7-8.
    [3]徐筱欣.船舶动力装置.上海:上海交通大学出版社,2007:12-18.
    [4]樊印海.电力推进自动控制.大连:大连海事大学出版社,1998:1-3.
    [5]金德昌.船舶电力推进原理.北京:国防工业出版社,1993:10-28.
    [6]Yuri A1Dreizin1. The electromagnetic chemical propulsion concept1. IEEE Transactions on Magnetics,1995,31(1):279-281.
    [7]谭作武..磁流体推进.北京:北京工业大学出版社,1998:15-29.
    [8]D. L. Mitchell, D. U. Gubser. Magnetohydrodynamic ship propulsion with superconducting magnets. Journal of Superconductivity,1988,1(4):349-364.
    [9]金平仲主编.船舶喷水推进.北京:国防工业出版社,1986:18-46.
    [10]Zeng Bo-Wen, Zhu Qi-Dan. NN-adaptive output feedback for course tracking control of a waterjet propulsion ship. HarBin:HarBin Engineering University,2010:1-3.
    [11]吴伯才.船舶液压推进的可行性探讨.宁波:宁波大学学报(理工版).2002:1-3.
    [12]王阳.船舶液压推进节能研究.大连海事大学图书馆,2008:8-10.
    [13]阎砍.新型船舶推进方式—船舶综合液压推进.液压气动与密封.2006:38-39.
    [14]Ji Yulong, and Sun Yuqing. Modelling and simulation of IHP ship. The 2nd International Conference On Computational Methods in Fluid Power(FPNI'06),2006:1-5.
    [15]Ji Yulong, Sun Yuqing et al. STUDY ON INTEGRATED HYDRAULIC PROPULSION SHIP. IEEE international Symposium on Industrial Electronics (ISIE2007):Spain,2007.
    [16]魏德宝.船舶综合液压推进系统设计.液压气动与密封.2008:25-28.
    [17]菊地忠雄.船舶液压化的展望.内田油压机器工业(株).1977:45-58.
    [18]殷乾训.国外新型船舶液压推进装置.船海工程,1984:30-33.
    [19]贺利乐.建设机械液压与液力传动.北京:机械工业出版社.2004:20-45.
    [20]Ken Ichiryu. Recent trend and future forecast of hydraulic system and control.Achener Flui-dtechnisches Kolloquium.1990:4-6.
    [21]宋学义.液压泵站的设计要点.北京:液压与气动,1985:1-10.
    [22]Zhu Shu-wen, Lu Zhi-qing. Working Condition Matching characteristics of Ship& Engine& Propeller. Shanghai:Shanghai Transportation University Press,1990,141-143:147-150.
    [23]陈海泉.船舶辅机.大连:大连海事大学出版社,2010.7:85-138.
    [24]Ken Ichiryu.. Recent trend and future forecast of hydraulic system and control. Achener Fluidtechnisches Kolloquium,1990:345-369.
    [25]李壮云.液压元件与系统.北京:机械工业出版社,2005:210-252.
    [26]严金坤.液压元件.上海:上海交通大学出版社,1986:89-102.
    [27]张利平.液压站设计与使用.河北:河北科技大学出版社,2003.5:15-19;160-179.
    [28]孙玉清.船用大功率液压泵站的设计.大连:大连海事大学,1985:15-25.
    [29]Brin R. White. Vince E.System for a marine vessel Notareschi Grant Whines. United States: Hydrostatic Propulsion. US 6099367.2000:5-10.
    [30]Czeslaw Dymarski. Comparative analysis of selected design variants of propulsion system for an inland waterways ship. Polish Marine Research,2006 (13):3-7.
    [31]A Pourmovahed, N. H. Beachley, F. J. Fronczak. Modeling of a Hydraulic EnergyRegeneration System-Part II:Experimental Program Journal of Dynamic Systems. Measurement, and Control, 1992(114):160-165.
    [32]He Cunxing. Hydrostatic and Pneumatic Transmission. HuaZhong University of Science and Technology Press(china),2000,4:101-102.
    [33]蔡文彦.液压传动系统.上海:上海交通大学出版社,2006:85-102.
    [34]黎克英.叶片式液压泵和马达.北京:机械工业出版社,1993:216-242.
    [35]王积伟.液压与气压传动第2版.北京:机械工业出版社,2005:159-178.
    [36]朱梅等主编.液压与气动技术.西安:西安电子科技大学出版社,2004:121-163.
    [37]FRAMO HYDRAULIC SYSTEM. Frank Mohn A/S, Otc 1987.
    [38]宋鸿尧.液压阀设设与计算.北京:机械工业出版社,1982:153-159.
    [39]宋宝维.系统可靠性设计与分析.西安:西安工业大学出版社,2000:248-269.
    [40]黄锡滋.系统可靠性设计理论与方法.四川:四川省电子协会可靠性分会,1983:18-52.
    [41]鲁建平.液压系统广义可靠性设计.机床与液压,2002:1-6.
    [42]机械设计手册单行本-失效分析和故障诊断.北京:机械工业出版社,2007.
    [43]Yan L. G, Sha C. W and Zhou K.et al. Progress of the MHD ship propulsion project in China. IEEE Transactions on Applied Superconductivity,2000,10 (1):951-954.
    [44]Ji Yulong, Sun Yuqing et al. MODELLING AND SIMULATION OF IHP SHIP. The 2"International Conference On Computational Methods in Fluid Power (FPNI2006):Denmark, 2006.
    [45]M. E. Lngrim. Extend Bond Graph representation of the Transaction of the ASME. Vol113, 1991.3:118-121.
    [46]Xu Bing, Yang Jian,Yang Huayong. Comparison of energy-saving on the speed control of the vwf hydraulic elevator with and without the pressure accumulator. Mechatronics,2005:1159-1174.
    [47]陆元章.液压系统的建模与分析.上海:上海交通大学出版社,1989:258-569.
    [48]蔡延文.液压系统现代建模方法.北京:中国标准出版社,2002:2-7.
    [49]李成功.液压系统建模与仿真分析.北京:航空工业出版社,2008:205-231.
    [50]Oyama Kazuo. Ship Propulsive Device. HOND A MOROR CO LTR.1990.6.[51]船舶论坛http://www. bbsship. com/html/esf_9245_27. html.
    [52]P. Kaliafetis and TH. Costopoulos. Modelling and Simulation of Hydraulic Components and Systems. TR-931 Machine Elements Laboratory Mechanical Engineering N. T. U. A,1993: 101-102.
    [53]制造业资源数据库-液压数据库h ttp://www.bjzzy.com.cn/epslab/resource/yy.jsp.
    [54]张德丰Matlab/Simulink建模与仿真实例精讲.北京,机械工业出版社,2010:76-115.
    [55]王中鲜Matlab建模与仿真应用.北京:机械工业出版社,2011:65-83.
    [56]肖体兵,吴百海.基于Simulink和功率键合图的液压控制系统的非线性仿真模型的建立.流体传动与控制,2003年第1期:1-3.
    [57]卢贵主,胡国青.利用功率键合图和Simulink实现液压系统动态仿真.机床与液压,2001.No4:1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700