橡胶的热裂解机理及动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用裂解气相色谱-质谱(Py-GC-MS)联用技术研究了天然橡胶、异戊二烯橡胶和顺丁二烯橡胶的裂解产物和裂解温度的关系。并通过对裂解产物的分析研究了天然橡胶、异戊二烯橡胶和顺丁二烯橡胶的裂解机理。
     利用热重分析(TG)和微商热重分析(DTG)研究了天然橡胶、异戊二烯橡胶和顺丁二烯橡胶的热解动力学。利用不同升温速率下相同失重量下的不同失重速率和温度的关系求解了裂解反应活化能。同时利用示差扫描量热法(DSC)研究了天然橡胶、异戊二烯橡胶和顺丁二烯橡胶裂解时的热能变化。也利用不同升温速率下最大放热峰温度值求解了裂解表观活化能。
     结果表明:裂解温度对裂解产物影响较大,随着裂解温度的增加,裂解产物中单体和二聚体增加。当裂解温度较高的时候还会出现少量的无规断裂碎片。天然橡胶的裂解过程和异戊二烯橡胶的裂解过程基本相同,生成了大量的异戊二烯单体和1,4-二甲基-4-乙烯基环己烯。顺丁二烯橡胶裂解生成了大量的顺丁二烯单体和乙烯基环己烯。随着升温速率的提高TG曲线起始温度和DTG曲线峰值温度都逐渐提高。利用TG—DTG数据计算的裂解表观活化能表明,天然橡胶和异戊二烯橡胶的裂解表观活化能基本相同,天然橡胶的裂解表观活化能
    
    E=240.skJ/m。卜1;异戊二烯橡胶的裂解表观活化能E二248.0
    kJ/mo卜1。
    E,二2 1 9.5
    kJ/mo}一1
    顺丁二烯橡胶第一步裂解的表观活化能
    第二步裂解的表观活化能已二229.2 kJ/mol一1。
    DSC曲线
    的峰值温度也随升温速率的增加而增加。利用OSc数据计算的裂解表
    观活化能与利用TG一DTG数据计算的裂解表观活化能相比误差较大。
The relationship between pyrolysis production and temperature of nature rubber isoprene rubber and butadiene rubber was investigated by Pyrolysis Gas-Chromatography-Mass Spectrometry(Py-GC-MS) . The pyrolysis mechanism of nature rubber, isoprene rubber and butadiene rubber was analysis by pyrolysis production.
    The pyrolysis dynamics of nature rubber , isoprene rubber and butadiene rubber was investigated by thermogravimetry analysis(TG)and differential thermogravimetry analysis(DTG). Use the relationship between the different weight-loss rate at the same weight-loss under different heating rate and time to calculate the activation energy. The heat energy of pyrolysis was studied by differential scanning calorimetry (DSC) at same time. The activation energy was also calculated by the temperature of peak on DSC curve at different heating rates.
    The results turned out that pyrolitic temperature has great affection on the out come of pyrolysis. The monomer and di- monomer in the out come increase with the adding of heating rate. There are few random rupture fragments in the production at the higher temperature. The
    
    
    pyrolitic mechanism of nature rubber is similar with it of isoprene rubber. There are mainly isoprene monomer and 1,4-dimethyl-4-ethenyl cyclohexene in the out come of pyrolysis of nature rubber and isoprene rubber. There are mainly butadiene and 4-ethenyl cyclohexene in the out come of pyrolysis of butadiene rubber. The temperatures of peak in TG curves and DTG curves all increase with the adding of heating rate. The pyrolitic activation energies of nature rubber and isoprene calculated by TG-DTG date are similar. The activation energy of nature rubber pyrolysis is E=240.8 kJ/mol-1, the activation energy of isoprene rubber pyrolysis is E=248.0 kJ/mol-1. The activation energies of two step butadiene rubber pyrolysis is El=219.5 kJ/mol-1 E2=229.2 kJ/mol-1 respectively. The temperatures of peak on the DSC curves increase with the increase of heating rate. The activation energy calculated by DSC date is bigger error than it calculated by TG-DTG date.
引文
[1] 高俊刚,李源勋,高分子材料.北京:化学工业出版社,2002:273-279
    [2] 李琼芳,高分子材料学概论.北京:中国人民大学出版社,1986:67-82
    [3] 中国科学技术大学高分子物理教研室编著.高聚物的结构与性能,北京:科学出版社,1981:121-140
    [4] (罗)齐奥塞斯库(Ceausescu,E.)著.高分子领域中的近期研究,北京:科学出版社,1984:79-92
    [5] 王公善,高分子材料学.上海:同济大学出版社,1995:45-66
    [6] D.Y.C. Leung, C.L. Wang. Kinetic study of scrap tyre pyrolysis and combustion, Journal of Analytical and Applied Pyrolysis, 1998,45: 153-169
    [7] 范仁德.废橡胶利用产业的新进展和我国的发展方向,中国橡胶,2000,18(13):3-5
    [8] 黄发荣.高分子材料的循环利用,北京:化学工业出版社,2000:17-55
    [9] 李岩.废橡胶的国内外利用研究现状,合成橡胶工业,2003,26(1):59-61
    [10] 孙玉海,盖国胜,张培新.我国废旧橡胶资源化利用的现状和发展趋势,橡胶工业,2003,50(12):760-763
    [11] 王寅之.部分高分子化合物(天然、合成)热裂解色谱-质谱研究,北京化工大学硕士论文
    [12] 傅若农,常永福.气相色谱和热分析技术,国防工业出版社,1989:77-104
    [13] Walter Kaminsky, Carsten Mennerich. Pyrolysis of synthetic tire rubber in a fluidized-bed reactor to yield 1,3-butadiene styrene and carbon black, Journal of Analytical and Applied Pyrolysis, 2001 ,58-59:803-811
    [14] Christian Roy, Hans Darmstadt. Characterization of naphtha and carbon black obtained by vacuum pyrolysis of polyisoprene rubber, Fuel Processing Technology, 1997,50:87-103
    [15] Dana Pantea, Hans Darmstadt. Heat-treatment of carbon black obtained by pryolysis of used tires. Effect on the surface chemistry, porosity and electrical conductivity, Journal of Analytical and Applied Pyrolysis, 2003,67:55-76
    
    
    [16] C. Roy, A. Chaala, H. Darmstadt. The vacuum pyrolysis of used tires End-uses for oil and carbon black products, ournal of Analytical and Applied Pyrolysis, 1999,51:201-221
    [17] Takeshi Amari, Nickolas J. Whemelis, Iddo K. Wernick. Resource recovery from used rubber tires, Resource Policy, 1999,25:179-188
    [18] Michael J B, Andre L. Fracture of an epoxy polymer containing recycled elastomeric particles .Journal of Applied Polymer Science, 1997, 66(7):271-277
    [19] 刘阳生,白庆中,李迎霞.废轮胎的热解及其产物分析,环境科学,2000,21(6):85-88
    [20] 唐光阳.废旧橡胶轮胎制备燃料油和活性炭,云南民族大学学报(自然科学版),2003,12(3):186-188
    [21] 董根全,崔洪,杨建丽.废轮胎热解过程及产物研究,1999,28:756-760
    [22] 杨嘉谟,周四平.废旧橡胶轮胎的催化裂解,化工进展,2000,1:71-73
    [23] 董根全,杨建丽,刘振宇.废轮胎热解油品的组成与硫含量研究,燃料化学学报,2000,28(6):537-541
    [24] 王文选,仲兆平,陈晓平.废轮胎热裂解技术,燃烧科学与技术,1999,5(3):331-336
    [25] 黄俐研,史焱,金熹高.分析裂解技术在高分子研究中的进展,高分子通报,1998,3(1):17-25
    [26] 吴惠勤,张桂英,何建强.聚氨酯醇酸的裂解气相色谱质谱研究,分析测试学报,1999,18(2):45-47
    [27] 王寅之,赵邦蓉.聚丙烯腈及丙烯腈共聚物的Py-GC-MS分析,北京化工大学学报,2002,29(2):80-82
    [28] 徐正炎,杨继华.环化聚丁二烯的裂解色谱表征,高分子材料科学与工程,1991,3:101-105
    [29] 罗远芳,金熹高,贾德民.高分子热分解的分子水平研究综述,第十届分析与应用裂解学术会议论文集,1998:14-20
    [30] 景治中,赵媛媛,许威亚.有机硅橡胶裂解产物气相色谱-质谱联用分析,
    
    分析测试学报,2000,19(3):31-33
    [31] 崔洪,杨建丽,刘振宇.废旧橡胶热解行为的TG-DTA研究,化工学报,1992,50(6):826-832
    [32] 王学峰,朱桂芬,刘茜霞.废轮胎橡胶的热重分析,河南师范大学学报,2003,31(1):61-64
    [33] 清华大学分析化学教研室编.现代仪器分析,北京:清华大学出版社,1983:33-54
    [34] 陆明廉,张叔良.近代仪器分析基础与方法,上海:上海医科大学出版社,1993:99-108
    [35] 万家亮,仪器分析.武汉:华中师范大学出版社,1992:102-137
    [36] 傅若农.高分辨气相色谱及高分辨裂解气相色谱,北京:北京理工大学出版社,1992:44-61
    [37] 高家武.高分子材料近代测试技术,北京:北京航空航天大学出版社,1994:77-90
    [38] 陈进福.高分子材料,台北:中央图书有限公司,1990:35-41
    [39] 赵邦蓉,赵贵平,鲁小松.几种橡胶的热裂解质谱研究,质谱学报,1996,17(1):39—41
    [40] 罗远芳,朱敏庄,李国基.用裂解色谱法测定橡胶制品的含胶量,橡胶工业,1991,38(2):102-105
    [41] 赵书兰.高分子材料,哈尔滨:哈尔滨船舶工程学院出版社,1994:113-145
    [42] 王成云,张伟亚,李英.丁基橡胶母炼胶的成分分析,光谱实验室,2002,19(2):157-161
    [43] Shang Pakdel, Christian Roy. Simultaneous gas chromatographic-Fourier transform infrared spectroscopic-mass spectrometric analysis of synthetic fuel derived from used tire vacuum pyrolysis oil, naphtha fraction, Journal of Chromatography A, 1994,683:203-214
    [44] Ghebrehiwet N.Ghebremeskel,姚琳译.用高温裂解法分析胶料,轮胎研究与开发,1999,3:52-56
    [45] C. Roy, A. Chaala, H. Darmstadt. The vacuum pyrolysis of used tires, Journal of Analysis and Applied Pyrolysis, 1999,51:201-221
    
    
    [46] 李余增.热分析,北京:清华大学出版社,1987:99-131
    [47] 沈兴.差热、热重分析与非等温固相反应动力学,北京:冶金工业出版社,1995:47-81
    [48] 胡荣祖,史启祯.热分析动力学,北京:科学出版社,2001:55-69
    [49] 蔡正千.热分析,北京:高等教育出版社,1993:67-89
    [50] 于伯龄,姜胶东.实用热分析,北京:纺织工业出版社,1990:87-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700