胃漂浮缓释制剂的漂浮机理及西沙必利胃漂浮滞留缓释片的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃内漂浮滞留缓释制剂是根据流体动力学平衡原理(Hydrodynamically
    Balanced System HBS)制成的一种特殊缓释剂型,与一般的缓控释剂型不同,这
    种剂型口服后漂浮在胃内容物之上,在胃内的滞留时间不受胃排空影响。
     本研究以阿基米德定律和漂浮制剂的持续浮力决定其胃内滞留时间为理论指
    导,把漂浮制剂的漂浮性与完整性作为该剂型的两个基本特点,从吸水动力学、膨
    胀动力学、溶蚀动力学和漂浮动力学四个方面对漂浮制剂的漂浮性和完整性进行了
    研究。亲水性高分子材料制备的漂浮片,漂浮力的产生和维持受两个方面的影响,
    吸水膨胀引起密度降低,浮力增大,水渗入导致密度增大,浮力降低。亲水性材料
    制备漂浮片时,降低压片时的压力可以获得密度小、初始浮力大的漂浮片剂,但是,
    密度小又会加快水的渗入,使漂浮制剂持浮力降低的速度增大。为了获得足够大的
    初始浮力和维持稳定的持续浮力,本研究通过加入疏水性材料硬脂酸镁降低水渗入
    的速度,得到了比较满意的漂浮动力学曲线。溶蚀动力学表明,以高粘度HPMC K100
    MCR和K15 MCR制备的漂浮片,其漂浮性能要优于低粘度的HPMC如E15-LV,
    后者的溶蚀符合一级动力学规律,4小时内片面溶蚀达20%,溶蚀速度比前者大22
    倍,由于速度太快,漂浮制剂的漂浮力因此会迅速降低;高分子材料CMC-Na制
    备的漂浮片,虽然遇水后迅速膨胀使体积增大,但是,由于水渗入的速度大于体积
    膨胀的速度,因此不能产生足够的浮力和维持理想的持续浮力,另外,这种材料制
    备的漂浮片的溶蚀速度太快,4小时内片面溶蚀达30%,漂浮制剂的漂浮力也因此
    会迅速降低。本研究通过对溶蚀曲线进行相似性检验,发现片面溶蚀主要与材料的
    性质有关,在一定的压力范围与压力没有显著关系。以水不溶性高分子材料Eudragit
    RS PO制备的漂浮片,其漂浮力主要受到压片时压力的影响。
     本文将漂浮缓释制剂的溶蚀对漂浮动力学的影响与缓释制剂的释药机理联系在
    一起,认为:胃酸中溶解良好的药物,可以制备成单层,也可以制成双层片,靠溶
    蚀释放的水难溶性药物,应制成双层漂浮片,一层起漂浮作用,另一层起载药和释
    药作用,否则,靠片面溶蚀达到释药的同时漂浮制剂的漂浮性会降低。
     以西沙必利为模型药物,制备了双层胃内漂浮滞留缓释片。为了提高药物的溶
    解度,本研究以HPMC E15LV为载体,与西沙必利制备了固体分散体,与原形药
    物相比,固体分散体在水、人工胃液和人工肠液中的溶解度分别提高了3.39,2.32
    
    
     吨田菏料大学俗士学位快丈?文拘婴
     一
     和2* 倍。用均匀设计法优化了双层片漂浮层和载药层的组成,漂浮片的体外漂
     浮动力学表明:在人工胃液中,10 Inn浮力可以达到 100 Due以上,并维持 6 h
     以上;在人工胃液中药物以零级速度连续释放8-12 h。由于药物在酸性介质中的溶
     解度大于在水和人工肠液中,因此,人工胃液中的释药速度快于人工肠液中。
     血浆中的药物常用两步法提取来减少杂质对测定的干扰,首先用有机溶媒提取
     血浆中的药物,再用 0.smol*’的磷酸反提有机溶媒中的药物,最后,吸取水层样
     品进行分析。研究发现,反提有机溶媒中的药物时,向有机相加入药物不良溶剂环
     己烷可以使反提总回收率由60%提高到80%以上。
     采用”“To标记Y闪烁照相技术研究了西沙必利胃漂浮滞留缓释片和非漂浮缓
     释片在健康志愿者体内的滞留倩况,结果表明:漂浮片可以漂浮在胃液之上,胃内
     滞留达3.5土0.sh,非漂浮缓释片在Zh内便从胃中排入肠道。
     分别以家大和健康志愿者为实验对象,研究了西沙必利胃漂浮滞留缓释片的药
     物动力学。以家犬为实验对象时,漂浮滞留缓释片、普通缓释片的C_分别为*.35
     士25.23 "g/ml和 111 *1士25.85 "g/ml都显著低 于速释片 254.49士74.99 "g/Inl
     中<0刀5人漂浮缓释片和普通缓释片的Tin。分别为4.0士0.71h和3二士0.45h,和
     普通片的1.物士0.55有显著差异中刃刀5人普通缓释片的*。和Th之间则没有
     显著差异中>0.05人与普通相比,胃漂浮滞留缓释片和普通缓释片的相对生物利
     用度分别为 84.90%和74刀2%。以健康志愿者为实验对象进行的药物动力学研究结
     果表明:胃漂浮滞留缓释片和普通缓释片的Tinx分别为5.33土1,15 h和2.75士0.50
     h,Cm。分别为 42.83士7.24ng/th和 29.70士3.18ng/m,相对于非漂浮缓释片,漂浮
     滞留缓释片的生物利用度为 168.81 o/o。由于酸性条件下西沙必利的溶解度增大,胃
     内漂浮滞留时间的延长促进了药物的溶解和吸收。
     综上,漂浮制剂的漂浮力和持浮力是决定其胃内滞留的前提,为了提高漂浮制
Sustained release floating dosage forms for gastric retention are designed according
     to the principle of Hydrodynamically Balanced System. Unlike the conventional
     sustained release dosage forms, this kind of special sustained release dosage will float on
     the surface of gastric content when taken orally and its gastric retention is rarely
     influenced.
    
     Under the guidance of the law of Archimede and the discovery that buoyancy
     duration is the key factor determining the gastric retention of the floating dosage, the
     experiment was carried by studying the floatage and integrity梩he preconditions for
     floating dosage for gastric retention from following four aspects, that is water uptake
     kinetics, swelling kinetics, eroding kinetics and floating kinetics. For the floating tablet
     made of hydrophilic macromolecular materials, buoyancy generation and duration is
     controlled by the water uptake and swelling of the floating tablet. Lowing the
     manufacturing pressure can make tablets with low density and greater initial buoyancy.
     However, for the tablet of lower density, the accelerated water uptake will then increase
     the tablet density and decrease the buoyancy duration. That is why some hydrophobic
     ingredients should be added in order to made floating tablet with ideal floating duration
     other than decreasing the tableting pressure alone.
    
     According to the eroding kinetics, the floating tablet made of HPMC with greater
     viscosity as Kl00 MCR and K15 MCR is better than that made of HPMC E 15 LV. The
     erosion of the tablet made of HPMC E 15 LV followed the first order kinetics. 20 % of
     the tablet eroded with 4 hours which is 22 times that of the tablet made of HPMC K 100
     MCR. The fast erosion of the tablet made of HPMC E 15 LV led to quick buoyancy
     decrease. The quick swelling of floating tablet made of CMC-Na led to quicker water
     uptake. Moreover, its quick erosion at a speed of 30% within 4 hours of its original
     weight led to buoyancy decrease. Evaluation by similarity showed that the type of
     materials other than pressure determine the tablet erosion. The buoyancy of tablet made
     of water insoluble Eudragit RS P0 generally comes from its density.
    
     Because of the influence from tablet erosion on the buoyancy, single or two-layer
     tablet can be made if the drug dissolves well in gastric content. For drugs that dissolute
     by means of tablet erosion, two-layer tablet should be made. One layer is for buoyancy
     and the other for drug release. Otherwise, tablet erosion will lead to simultaneous
     buoyancy decrease.
    
     A two條ayer floating tablet for gastric retention was made using cisapride as a model
    
     3
    
    
    
    
    
    
    
    
    
     drug. In order to improve the solubility of the model drug, solid dispersion was made
     using HPMC E 15 LV as carrier at a ratio of 1:4 ( drug:carrier). The solubility of
     cisapride was increased by3.39, 2.32 and 2.18 times in water SGF and SW separately.
     As to the in vitro buoyancy test, the tablet went up to medium surface in less than 10 mm.
     A floating ability as great as 100 Dyne was maintained for more than 6 h. A zero order in
     vitro drug release as long as 8-12 h was achieved when simulated gastric fluid was used
     as dissolution medium. The in vitro dissolution in simulated gastric fluid (SGF) is faster
     than in simulated intestinal fluid (SiT) because the drug has a greater solubility in SGF
     than in SIT. Tablet erosion and drug dissolution does not go simultaneously if SW is used.
    
     Counter extraction was used for processing the bl
引文
[1]屠锡德.近十多年来缓释\控释制剂研制的回顾.中国新药杂志.1996;5(30):164~167.
    [2]A.A. Deshpande, et. al, Controlled release drug delivery systems for prolonged gastric residence, An overview. Drug Dev. Ind. Pharm,. 1996; 22 (6): 531~539.
    [3]B.N.Singh, K.H.Kim. Floating drug delivery system: An approach to oral controlled drug delivery via gastric retention, J. Controlled Release. 2000; 63: 235~269.
    [4]吴伟,周全.胃内滞留漂浮型给药系统的研究概况与进展.国外医学——合成药、生化药、制剂分册.1998:19(2):123~128.
    [5]徐丰彦,张镜如 主编.人体生理学第二版.人民卫生出版社.1526~1533.
    [6]陆美贞.胃肠运动促进剂——西沙必利.国外医学——合成药、生化药、制剂分册.1990;11(1):44~45.
    [7]P.R. Sheth, and J. Tossounian. The hydrodynamically balanced system (HBS~(TM)): a novel drug delivery system for oral use, Drug Dev. Ind. Pharm. 1984; 10(2): 313~339.
    [8]J.T. Michael, J.R. Johnson and P.W. Dettmar. Factors affecting in vitro gastric mucoadhension. IV. Influence of tablet excipients, surfactant and salts on the observed mocoadhension of polymer. Eur. J. Pharm. Biopharm.,1997; 43: 65~71.
    [9]E. Haltner, J. H. Easson and C-M. Leth. Lectins and bacterial invasion factors for controlling endo and transcytosis of bioadhensive drug carrier systems. Eur. J. Pharm. Biopharm, 1997; 44: 3-13.
    [10]R. Groning, M. Memer, M. Berntgen el al. Peroral controlled release dosage form with internal magnets and extracorporal magnet guidance-Investigation into the renal elimination of riboflavin, Eur. J. Pharm. Biopharm. 1996; 42 (1): 25~28.
    [11]J.L. Tossounian, W. J. Mergens and P. R. Sheth. Bioefficient products: A novel delivery system, Drug Dev. Ind. Pharm. 1985; 11 (5): 1019~1050.
    [12]R. Groning, M. Memer and M. Georgarakis. Acyclovir serum concentration following peroral administration of a magnetic depot tablets and influence of extracorporal magnets to control gastrointestinal transit, Eur. J. Pharm. Biopharm. 1998; 46: 285~291.
    [13]A.A. Deshpande, N. H Shah, C. T. Rhode et al. Development of a novel controlled release system for gastric retention, Pharm. Res. 1997; 14: 815~819.
    [14]徐卫龙,屠锡德,陆振达硫酸庆大霉素胃内滞留漂浮型缓释片的研究.药学学报.1991;26(7):541~547.
    
    
    [15]S. Demi, S. Bolton. A floating controlled release drug delivery systems: in vitro-in vivo evaluation, Pharm. Res. 1993; 10:1321~1325.
    [16]M. Ichikawa, S. Watanabe, Y. Miyake, A new multiple-unit oral floating dosage systems. I: Preparation and in vitro evaluation of floating and sustained-release characteristics, J. Pharm. Sci. 1991; 80: 1062~1066.
    [17]屠锡德,郑梁元,赵江华 等.诺氟沙星胃内滞留漂浮型缓释片的研究.中国药科大学学1报.1994;25(4):211~213.
    [18]朱于村,屠锡德.盐酸雷尼替丁胃内滞留漂浮型缓释片的制备及药物动力学研究.中国药科大学学报.1990;21(5):271~275.
    [19]N. Ozdemir, S. Ordu and Y. Ozkan, Studies of floating dosage forms of furosemide: In vitro and in vivo evaluations of bilayer tablet formulations, Drug Dev. Ind. Pharm. 2000; 26 (8): 857~866.
    [20]杜青,赵玲,李晓海.桂利嗪漂浮胶囊的研制.中国药学杂志.1995;30(5):277-279.
    [21]N. Mazer, E. Abisch, J. C. Gfeller et al, Intragastfic behavior and absorption kinetics of a normal and floating modified-release of isradipine under fasted and fed conditions, J. Pharm. Sci., 1988, 77 (8): 647~657.
    [22]H. Yuasa, Y. Takashima, Y. Kanaya, Studies on the development of intragastric floating and sustained release preparation. I. Application of calcium silicate as a floating carder, Chem. Pharm. Bull. 1996,44: 1361~1366.
    [23]D. Khatter, A. Ahuja and R. K. Khar, Hydrodynamically balanced systems as sustained release dosage forms for propranolol hydrochloride, Pharmazie, 1990; 45 (5): 356~358.
    [24]B. C. Thanoo, M. C. Sunny and A. Jayakrislman, Oral sustained-release drug delivery systems using polycarbonate microsphere capable of floating on the gastric fluid, J. Pharm. PharmacoI., 1993; 45: 21~24.
    [25]侯惠民,朱金屏.胃漂浮缓释片研究Ⅰ硝苯啶胃漂浮缓释片的制备与性质.中国医药工业杂志.1991:22(3):106~108.
    [26]N. Rouge, Aspects teclmologiques et biopharmaceutiques de deux concepts de formes galeniques devisees a remanence gastrique. Doctoral thesis, Universitye de Geneve,
    [27]J. Timmermans and A. J. Moes, How well do floating dosage forms float? Int. J. Pharm., 1990; 62: 207~216.
    
    
    [28]V.S. Gerogiannis, D. M. Rekkas, P. P. Dallas et al, Floating and swelling characteristics of various excipients used in controlled release technology, Drug Dev. Ind. Pharm. 1993; 19(9): 1061~1081.
    [29]F. Atyabi, H. L. Sharma, H. A. H. Mohammad et al, In Vivo evaluation of a novel gastric retentive formulation based on ion exchange resins, J. Controlled Release, 1996; 42: 105~113.
    [30]G.A. Agyilirah, M. Green, tL du Cret, et al, Evaluation of the gastric retention properties of a cross-linked polymer coated tablet versus those of a non-disintegrating tablet, Int. J. Pharm., 1991; 75:241~247.
    [31]G.M. Clarke, J. M. Newton, M. B. Short, Comparative gastrointestinal transit of pellet systems of varying density, Int. J. Pharm., 1995; 114:1~11.
    [32]石明德,高汝荔,侯惠民等.漂浮片剂在胃内的初步动态观察.中国医药工业杂志.11990:21(4):162~164.
    [33]Y. Murata, N. Sasaki, E. Miyamoto et al, Use of floating alginate gel beads for stomach-specific drug delivery, Eur. J. Pharm. Biopharm. 2000; 50: 221~226.
    [34]J. Fujimori, Y. Machida, S. Tanaka et al, Effect of magnetically controlled gastric residence of sustained release tablet on bioavailability of acetaminophen, Int. J. Pharm., 1995; 119:47~55.
    [35]张娜,邓树海,宋华先等.氯氮平胃内漂浮片兔体内药物动力学和体内外相关性.沈阳药科大学学报.2001;18(1):12~15.
    [36]刁勇,屠锡德.美欧卡霉素胃内滞留漂浮型缓释片的制备与药物动力学研究.药学学报.1991:26(9):695~700.
    [37]吴伟,周全,张恒弼等.尼莫地平胃内滞留漂浮型缓释片的研究.药学学报.1997:32(10):786~790.
    [38]V. R. Patel and M. M. Amiji, Preparation and characterization of freeze-dried chitosan-poly (ethylene oxide) hydrogels for site-specific antibiotic delivery in the stomach, Pharm. Res., 1996; 13(4): 588~593.
    [39]A.O. Nut and Jun S. Zhang, Cartoptil floating and/or bioadhesive tablets: Design and drug release kinetics. Drug Dev. Ind. Pharm. 2000; 26(9): 965~969.
    [40]M. R. Jimenez-Castellanos, H. Zia and C. T. Rhodes, Design and testing in vitro of a bioadhesive and floating drug delivery system for oral application, Int, J. Pharm. 1994; 105: 65~70.
    [41]朱人敏,胃肠动力药的现状及展望.中国实用内科杂志.1994:14(1):56~58.
    
    
    [42]陆永德西沙必利——一种新型的优越的前动力性药物.国外医学——合成药、生化药、制剂分册.1991;12(6):346~348.(译文)
    [43]L. R. Wiseman and D. Faulds. Cisapride: An updated review of its pharmacology and therapeutics efficacy as a prokinetic agent in gastrointestinal motility disorders. Drugs 1994; 47(1):116~152.
    [44]J.A. Barone, Y-C. Huang, R. H. Bierman et al, Bioavailability of three oral dosage forms of cisapride, a gastrointestinal stimulant agent, Clinical Pharmacy, 1987; 6:640~645.
    [45]H.M. Ingani, J. Timmemans and A. J. Moes, Conception and in vivo investigation of peroral sustained release floating dosage forms with enhanced gastrointestinal transit, Int. J. Pharm., 1987, 35: 157~164.
    [46]J. Timmermans and A. J. Moes. Factors controlling the buoyancy and gastric retention capabilities of floating matrix capsules: New data for reconsidering the controversy. J. Pharm., Sci. 1994, 83 (1): 18~24.
    [47]T.K. Mandal, Swelling controlled release system for the vaginal delivery of micronazole: Eur. J. Pharm. Biopharm.,2000, 50:337~343.
    [48]M.A. Ibrahim, V. H. Dawes, and A. B. Bangudu. The contributions of erosion, swelling, and porosity to theophylline release kinetics from Cissus populnea polymer matrices. Drug Dev. Ind. Pharm., 2000, 26 (5): 571~575.
    [49]O.L. Freichel, B. C.Lippold, A new oral erosion controlled drug delivery system with a late burst in the release profile. Eur. J. Pharm. Biopharm.2000,50: 345~351.
    [50]Kok. Khiang Pen and Choy Fun Wong. Application of similarity factor in development of controlled release diltizem tablet. Drug. Dev. Ind Pharm., 2000, 26(7): 723~730.
    [51]B. Narasiman and N. A. Peppas. Molecular analysis of drug delivery systems controlled by dissolution of the plymer carrier. J. Pharm. Sci., 1997; 86(3):297~304.
    [52]P. Colombo, P. L. Catellani, N. A. Peppas et al, Swelling characteristics of hydrophilic matrices for controlled release: New dimensionless number to describe the swelling and release behavior. Int. J. Pharm., 1992, 88: 99~109.
    [53]Q-G. David, G-Q. Adriana, R-T. Daniel, et al. Relationship between the swelling process and the release of a water-soluble drug from a compressed swellable-soluble matrix of poly (Vinyl Alcohol). Drug. Dev. Ind Pharm., 1999, 25(2): 169~174.
    [54]Rajabi-Siahboomi A. R. Bowtell R.W., Structure and behavior in hydrophilic matrix sustained release form: 2. NMR-imaging studies of dimensional change in the gel layer and core of HPMC tablets undergoing hydration. J Controlled Rel. 1994;31:121~128.
    
    
    [55]Lucy S.C. Wan, Paul W.S. Heng and L.F. Wong. Relationship between swelling and drug release in a hydrophilic matrix. Drug. Dev. Ind. Pharm., 1993, 19(10): 1201~1210.
    [56]L.S. C Wan, P. W. S. Heng and L. F. Wong, The effect of hydroxypropylmethyl cellulose on water penetration into a matrix system. Int. J. Pharm., 1991; 73:111~116.
    [57]J. Siepmann, H. Kranz, R. Bodmeier, and N. A. Peppas. HPMC-Matrices for controlled drug delivery: A new model combining diffusion, swelling, and dissolution mechanism and predicting the release kinetics. Pharm. Res., 1999; 16(11): 1748~1756.
    [58]C.D. Melia. Structure and behavior of hydrophilic matrix sustained release dosage forma: The origin and mechanism of formation of gas bubbles in the hydrated surface layer. Int. J. Pharrn., 1993; 100: 263~269.
    [59]S. Desai, S. Bolton. A floating controlled release drug delivery systems: in vitro-in Vivo evaluation, Pharm Res. 1993; 10:1321~1325.
    [60]Revised labeling for cisapride. JAMA 2000, 283(9): 1131.
    [61]Van peer A. Verlinden M, Woestenborghs R, et al. Clinical pharmacokinetics of cisapride. In Johnson & Lux (Eds) Progress in the treatment of gastrointestinal motility disorder: the role of eisapride, pp.23~29. Excerpta Medica. Amsterdam, 1988.
    [62]K.R. Krishnakumar and R.Ruju. Colourimetric estamation of cisapride using Ioding-Catechol charge transfer complex formation. Indian J. Pharm. Sci., 1996;1-2:39~40.
    [63]C.S.P. Sastry, Y. Srinivas and P.V. Subba Rao. New spectrophotometric method for the determination of cisapride. Indian J. Pharm. Sci., 1996;7-8:169~171.
    [64]曾炽君,霍立茹 徐江等.紫外分光光度法测定西沙必利片中的含量.中国药科大学学1报.1999:30(6):473~474.
    [65]殷恭宽 主编 物理药学.北京医科大学中国协和医科大学联合出版社.350~364.
    [66]陈良康 陈海林 张国庆 等 米索前列醇-HPMC固体分散体的制备及稳定性.沈阳药科大学学报。1999;16(6):4~6.
    [67]A. Nokhodchi, D. Farid, M. Najafi et al. Studies on controlled-release formulations of diclofenac sodiun, Drug Dev. Ind Pharm. 1997; 23 (11: 1019~1023.
    [68]J. Fujimori, Y,. Machida, T. Nagai, Preparation of a magnetically responsive tablet and confirmation of its gastric residence in beagle dog, S.T.P Pharma. Sci 1994;4:425~430.
    
    
    [69]A. Menon, W.A. Ritschel and A.A. Sakr. Development and evaluation of a monolithic floating dosage form for furosemide. J. Pharm. Sci. 1994;83 (2):239~245.
    [70]刘蕾,孙春华,史爱欣等.国产西沙必利片人体药物动力学及生物利用度研究.中国临床药理学杂志.2000,16(3):125~128.
    [71]R. Woestenborghs, W. Lorreyen, F. Vanrompaey et al. Determination of cisapride in plasma and animal tissue by high-performance liquid chromatography. Chromatography, 1988; 424:195~200.
    [72]陈汇,顾世芬,宵宙 等.国产卡维地洛片药物动力学及相对生物利用度研究.中国临床药理学杂志.2000;16(3):213~216.
    [73]张志荣,游学均,魏振平 等.愈风宁心胶囊在家兔体内的药物动力学研究.1997,32(4):224~226.
    [74]孙璐,钟大放,陈笑艳 等.格列喹酮在中国健康受试者体内的生物等效性研究.中国临床药理学杂志,2000;16(2):114~117.
    [75]赵靖平,陈晓岗,陈远光 等.国产盐酸二苯美仑片剂的人体相对生物利用度研究.中国临床药理学杂志,2000:16(1):49~51.
    [76]V.B.M. Babu and R. K. Khar. In vitro and vivo studies of sustained-release floating dosage forms containing salbutamol sulfate. Pharmazie, 1990;45(4):268~270.
    [77]J.A. Fix, R. Cargill and K. Engle. Controlled gastric emptying Ⅲ. Gastric residence time of a nondisintegrating geometric shape in human voltmteers. Pharma. Res, 1993;10 (7): 1087~1089.
    [78]J.L. Richardson, J. Whetstone, A. N. Fisher et al. Gamma-scinfigraphy as a novel method to study the distribution and retention of a bioadhesive vaginal delivery system in sheep. J. Controlled Release. 1996; 42: 133~142.
    [79]A. staib, D. loew, S.Harder et al. Measurement of theophylline absorption from different regions of the gastro-intesfinal tract using a remote controlled drug delivery system. Eur. J. Clin. Pharmacol. 1986; 30: 691-697.
    [80]L.H. Emara, B.S.Ei-Menshawi and M. Y. Estefan. In vitro-in vivo correlation and comparative bioavailability of vineamine in prolonged release preparations. Drug Dev. Ind. Pharm. 2000; 26(3): 243~251.
    [81]P.R.P. Verma and Banu Sustained release of theophylline from Eudragit RLPO and RSPO tablets. Drug Dev. Ind. Pharm. 1996; 22 (12): 1243~1247.
    [82]L. Hovgaard and H. Brondsted Dextran hydrogel for colon-specific drag delivery. J. Controlled release. 1995; 36:159~166.
    
    
    [83]K. Moriyama, N. Yui. Regulated insulin release from biodegrable dextran hydrogel containing polythylene glycol. J. Controlled release. 1996; 42:237~248.
    [84]W.E Hermik O. Franssen, W.N.E. Van D-Wolthuis et al. Dextran hydrogels for the controlled release of proteins. J. Controlled release. 1997; 48:107~114.
    [85]Flurance. Physicochemical Principle of Pharmacy. Third edition.
    [86]药用辅料大全 罗明生高天惠主编 四川科技出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700