IL-1在脑皮质发育不良形成中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脑皮质发育不良是儿童期难治性癫痫的最常见病因之一。其典型的病理学改变是皮质板层结构紊乱和异形、异位神经元的出现。而导致这些病理改变的根本原因在于大脑皮质板层结构形成过程中出现了异常。神经元迁移是大脑皮质板层结构形成的重要环节,因此神经元的异常迁移是导致脑皮质发育不良的一个重要原因。
     目前关于脑皮质发育不良发病机制的研究主要集中在遗传因素,认为特定基因(如Lis1、DCX)的变异是导致脑皮质发育不良的主要原因。但并非所有的脑皮质发育不良患者都存在基因异常,且目前也缺乏公认可靠的基因干预治疗,因此对导致神经元迁移异常的其它因素进行研究,将可能为脑皮质发育不良的防治提供新的策略。
     我们课题组前期在炎症与神经元异常迁移领域做了一系列工作,结果显示IL-1β,一种促炎性细胞因子,在严重癫痫发作后神经元的异常迁移中扮演了重要角色,且对离体培养的神经元迁移具有明显的导向作用。这一结果提示IL-1可能参与了脑皮层发育不良中的神经元迁移异常。已有文献报道IL-1在脑皮质发育不良患者的脑组织中呈高表达,但IL-1在脑皮质发育不良形成中的作用,目前未见报道。
     目的
     本研究拟证实IL-1在发育期大鼠脑内的表达模式;观察下调其功能受体IL1R1的表达对新生神经元迁移及皮质板层结构的影响;进而通过观察放射状胶质的支架结构、新生神经元增殖、神经细胞形态等可能影响神经元迁移的因素来探索IL-1影响神经元迁移的机制;最后对IL-1影响神经迁移可能的分子机制进行初步探讨。
     方法
     我们通过γ射线过度辐射孕16天的母鼠,建立脑皮质发育不良的动物模型,并以正常发育的仔鼠和正常成年大鼠做为对照;之后,通过RT-PCR及Western检测IL-1β及IL1R1在发育期大脑内的表达;接下来,我们应用RNA干扰(RNAi)结合子宫内胚胎电转(in utero eletroporation, IUE)技术,通过免疫组化及western检测,观察下调IL-1R1表达对新生神经元迁移和皮质板层结构的影响并探索其可能机制;最后,我们通过Transwell实验对IL-1β影响神经迁移可能的分子机制进行了初步的探讨。
     结果
     1、孕16天的母鼠接受γ射线过度照射后,有10.7%的仔鼠出现自发性抽搐发作,其他仔鼠也表现出不同程度的兴奋性行为,组织病理结果显示模型组动物的板层结构紊乱、皮质变薄,且皮质的II/III层、部分海马的CA2区、CA3区出现结节样结构,提示脑皮质发育不良动物模型构建成功。
     2、E17至P7,脑皮质发育不良模型组IL-1β的mRNA水平高于同时期的正常发育仔鼠组及正常成年大鼠组。随着时间的延长,脑皮质发育不良组和正常发育仔鼠组IL-1β的mRNA表达呈下降趋势。直至P28,IL-1β的mRNA表达与正常成年大鼠组相比,无明显差异。进一步研究显示,P0时脑皮质发育不良模型组IL-1β的蛋白表达水平高于同期正常发育仔鼠组合正常成年大鼠组。
     IL1R1在各组中的mRNA水平和蛋白水平均有表达,其表达模式与IL-1β类似。随着时间的延长,其mRNA在脑皮质发育不良组和正常发育仔鼠组的表达呈下降趋势,P7时与正常成年大鼠组相比,无明显差异。在蛋白水平上,三组之间的IL1R1的表达在P0时无明显差异。
     3、Western结果显示我们成功构建了针对IL1R1的siRNA质粒及人IL1R1的过表达质粒。在E16时,我们采用子宫内胚胎电转技术下调侧脑室神经前体细胞IL1R1的表达,可观察到新生神经元的迁移出现明显异常。本应迁入皮质II/III层的神经元,在P5时,大部分(约为62%)仍停留在室旁区(VZ)、脑室下带(SVZ)和白质(WM)区域。而同时过表达该siRNA序列不能干预的人IL1R1后,这一现象可以得到纠正。大部分细胞(约为84%)仍能正常迁往皮质II/III层。
     4、对影响神经元迁移的内外因素进行分析,我们发现下调IL1R1表达后,对板层结构有轻度的影响,但对神经胶质细胞的支架结构、神经细胞增殖、细胞形态等都没有影响,通过Western检测IL-1β的在皮质各层的分布规律,我们发现IL-1β的分布具有明显的阶梯性,提示其可能是通过影响神经元的迁移方向来参与了脑皮质发育不良中神经元的异常迁移。
     5、Transwell实验结果显示:下室添加IL-1β对离体培养的神经元胞体的迁移具有明显的吸引作用,而同时添加一定浓度的艰难梭菌毒素B(RhoA信号通路抑制剂)可逆转这种作用。这一结果提示IL-1β可能通过RhoA信号通路参与了脑皮质发育不良中的神经元异常迁移。
     结论
     各种原因导致的IL-1β在脑皮质发育过程中表达异常,可能通过RhoA信号通路,影响神经元的迁移方向,最终导致脑皮质发育不良的形成。这一结论从炎症后神经元异常迁移的角度阐述了脑皮质发育不良的形成机制,并为脑皮质发育不良的防治提供了新的思路。
Cortical dysplasia (CD) is one of the most common causes in children withrefractory epilepsy. The typical pathological changes in CD are disorders ofcortical plate layer structural and ectopic neurons. Neuronal migration plays animportant role in the formation of lamellar structure in the cortex and aberrantneuronal migration may thus contribute to the development of CD.
     A majority of studies aimed to reveal the underlying mechanisms of corticaldysplasia have focused on genetic factors. For example, certain gene mutation,such as Lis1or DCX mutation, may play a crucial role in the formation of CD.However, established gene mutations can not explain the underlying etiology ofall patients with CD. Moreover, there is no such effective gene therapy for CD atpresent. Thus, further investigations of other factors associated with aberrantneuronal migration may provide new clues for the prevention and treatment ofCD.
     Our group had focused on the relationship between inflammation andaberrant neuronal migration for a long time. We found that interleukin1beta (IL-1β), which is a pro-inflammatory cytokines, plays an important role in theaberrant neuronal migration after status epilepticus (SE). What’s more, IL-1βplays an attractive effect on the migration of cultured cortical neurons in vitro.These results suggested that IL-1may be involved in aberrant neuronal migrationin CD formation. It had been reported that the expression of IL-1and IL1R1wereelevated in the brain section removed from the CD patients. However, the role ofIL-1in the formation of CD is not clear.
     Objectives
     The purpose of this study was to confirm the expression pattern of IL-1indeveloping cortex and observe the effect of lamellar structure and neuronalmigration when the IL1R1, the functional receptor of IL-1β,was down-regulated.Then, we investigated the mechanism of IL-1βinvolved in neuronal migrationby observing the effect of radial glia structure, the proliferation of newbornneurons, and the morphology of neural cells when the IL1R1was down-regulated.Finally, the possible downstream signal pathway was discussed.
     Methods
     We established the animal model of CD by giving overdose gama-irradiationto E16pregnant rats, using the normal pups and normal adult rats as control.RT-PCR and western were used to examine the expression pattern of IL-1βandIL1R1in developing cortex. Specific siRNAs, in utero eletroporation,immunohistology, and western were employed to investigate the effect ofneuronal migration and the possible mechanism. Transwell assay was used toconfirm whether RhoA signal pathway was involved in the downstreammechanism.
     Results
     1. There were10%pups in CD group underwent the spontaneous seizuresafter their mothers received overdose γ-irradiation at E16. Other pups appearedto be more excited than the normal pups and normal adult rats. The lamellarstructure in the CD group was in chaos and the cortex became thinner than thenormal pups. Neural nodes can be found in the II/III layers, CA2/CA3region insome rats. These results revealed that we established the CD animal modelsuccessfully.
     2. The mRNA level of IL-1βin CD was higher than that in normal pups atthe same period, and that in normal adult rats from E17-P7. As time passed by,the expression level of IL-1βdeclined in CD group and normal pups. There wasno significance between CD group and normal adult rats at E28. The westernresults showed that the IL-1βproteinis higher in CD group than that in normalpups and normal adult rats at P0.
     IL1R1can be found expressed in all the three groups. The expression patternof IL1R1is similar to IL-1β. As time passed by, the mRNA level of IL-1R1declined in CD group and normal pups. There is no significance of IL1R1mRNAlevel among the three groups at P7. However, unlike IL-1β,the expression ofIL1R1protein has no differences in the three groups.
     3. The western results suggested us that the siRNA plasmids andover-expression plasmids of human IL1R1were established successfully. Afterwe down-regulated the expression of IL1R1in neural precursors by in uteroelectroporation,the migration of newborn neurons appeared to be obviouslyabnormal. The newborn neurons should have migrated to the II/III layers incortex at that stage, but most of them (about62%) remained in ventricular zone (VZ)、subventricular zone(SVZ)和white matter(WM)at P5. This phenotypecan be rescued by over human IL1R1plasmids which can not be interfered by thesiRNA sequence。Most of neurons (about84%) can migrate to the II/III layers inthe cortex as usual.
     4. We found that down-regulated IL1R1had only slight effect on thelamellar structure,while no effect on the structureof radial glia cells, theproliferation of newborn neurons, and the morphology of neural cells when theIL1R1was down-regulated. After examining the IL-1β expression in differentlayer of cortex by Western, we found that the distribution of IL-1βas a ladderpattern, which suggested that the IL-1β might be involved in the aberrantmigration in CD by affecting the direction of migration.
     5. The result of Transwell shows that IL-1βhad an attractive effect on thecortical neurons in vitro, However, clostridium difficile Toxin B(Cdt B), ainhabitator of RhoAsignal pathway, had a negtive effect on the phenotype above.These results suggested that IL-1β may be involved in the aberrant migration inCD by RhoA signal pathway.
     Conclusion
     Our results indicate that abnormal expression of IL-1β in developing cortexmay affect the direction of neuronal migration through RhoA pathway signalling.This study also suggests that inflammation ralated aberrant neuronal migrationmay be a common cause of CD. The data may provide us new clues for theprevention and treatment of CD.
引文
[1] Crino P B. Focal brain malformations: Seizures, signaling, sequencing.Epilepsia,2009,50:3-8.
    [2] Battaglia G, Becker A J, Loturco J, Represa A, Baraban S C, Roper S N,Vezzani A. Basic mechanisms of MCD in animal models. EpilepticDisord,2009,11(3):206-214.
    [3] Govek E E, Hatten M E, Van Aelst L. The role of Rho GTPase proteins inCNS neuronal migration. Dev Neurobiol,2011,71(6):528-553.
    [4] Andrade C S, Leite C C. Malformations of cortical development: currentconcepts and advanced neuroimaging review. Arq Neuropsiquiatr,2011,69(1):130-138.
    [5]王维治,罗祖明.神经病学.第四版.北京:人民卫生出版社:261-262.
    [6] Vezzani A. Inflammation and epilepsy. Epilepsy Curr,2005,5(1):1-6.
    [7] Vezzani A, Aronica E, Mazarati A, Pittman Q J. Epilepsy and braininflammation. Exp Neurol,2011.
    [8] Yang F, Wang J C, Han J L, Zhao G, Jiang W. Different effects of mildand severe seizures on hippocampal neurogenesis in adult rats.Hippocampus,2008,18(5):460-468.
    [9]杨方.实验性癫癎后海马新生神经元迁移分化的研究.西安:第四军医大学,2010.
    [10] Yang F, Liu Z R, Chen J, Zhang S J, Quan Q Y, Huang Y G, Jiang W.Roles of astrocytes and microglia in seizure-induced aberrantneurogenesis in the hippocampus of adult rats. J Neurosci Res,2010,88(3):519-529.
    [11] Zhang S J, Li X W, Wang Y, Wei D, Jiang W.[Expression of IL-1mRNA in the dentate gyrus of adult rats following lithium-pilocarione-induced seizures]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi,2010,26(3):288-290.
    [12]张世俊. IL-1在大鼠癫癎发作后海马新生神经元异常迁移中的作用研究.西安:第四军医大学,2010.
    [13]朱长庚.神经解剖学.第一版.北京:人民卫生出版社,2002:661-666.
    [14] Kandel E, Schwartz J, Jessell T. Principles of Neural Science. ForthEdition. McGraw-Hill Medical,2000.
    [15] Saunders. Neocortex. Dorland's Medical Dictionary for HealthConsumers. Elsevier, Inc. Online available: http://medical-dictionary.thefreedictionary.com/neocortex (03/10/2012).
    [16] Marin O, Valiente M, Ge X, Tsai L H. Guiding neuronal cell migrations.Cold Spring Harb Perspect Biol,2010,2(2): a1834.
    [17] Ayala R, Shu T, Tsai L H. Trekking across the brain: the journey ofneuronal migration. Cell,2007,128(1):29-43.
    [18] Gupta A, Tsai L H, Wynshaw-Boris A. Life is a journey: a genetic look atneocortical development. Nat Rev Genet,2002,3(5):342-355.
    [19] Tamamaki N. Radial glias and radial fibers: what is the function of radialfibers? Anat Sci Int,2002,77(1):2-11.
    [20] Foresti M L, Arisi G M, Shapiro L A. Role of glia in epilepsy-associatedneuropathology, neuroinflammation and neurogenesis. Brain Res Rev,2011,66(1-2):115-122.
    [21] Malatesta P, Hartfuss E, Gotz M. Isolation of radial glial cells byfluorescent-activated cell sorting reveals a neuronal lineage. Development,2000,127(24):5253-5263.
    [22] Noctor S C, Flint A C, Weissman T A, Dammerman R S, Kriegstein A R.Neurons derived from radial glial cells establish radial units in neocortex.Nature,2001,409(6821):714-720.
    [23] Noctor S C, Flint A C, Weissman T A, Wong W S, Clinton B K,Kriegstein A R. Dividing precursor cells of the embryonic corticalventricular zone have morphological and molecular characteristics ofradial glia. J Neurosci,2002,22(8):3161-3173.
    [24] Schmechel D E, Rakic P. A Golgi study of radial glial cells in developingmonkey telencephalon: morphogenesis and transformation into astrocytes.Anat Embryol (Berl),1979,156(2):115-152.
    [25] Voigt T. Development of glial cells in the cerebral wall of ferrets: directtracing of their transformation from radial glia into astrocytes. J CompNeurol,1989,289(1):74-88.
    [26] Anton E S, Kreidberg J A, Rakic P. Distinct functions of alpha3andalpha(v) integrin receptors in neuronal migration and laminarorganization of the cerebral cortex. Neuron,1999,22(2):277-289.
    [27] Nadarajah B, Parnavelas J G. Modes of neuronal migration in thedeveloping cerebral cortex. Nat Rev Neurosci,2002,3(6):423-432.
    [28] Hatten M E. New directions in neuronal migration. Science,2002,297(5587):1660-1663.
    [29] Borrell V, Kaspar B K, Gage F H, Callaway E M. In vivo evidence forradial migration of neurons by long-distance somal translocation in thedeveloping ferret visual cortex. Cereb Cortex,2006,16(11):1571-1583.
    [30] Nadarajah B. Radial glia and somal translocation of radial neurons in thedeveloping cerebral cortex. Glia,2003,43(1):33-36.
    [31] Rakic P. Mode of cell migration to the superficial layers of fetal monkeyneocortex. J Comp Neurol,1972,145(1):61-83.
    [32] Nadarajah B, Brunstrom J E, Grutzendler J, Wong R O, Pearlman A L.Two modes of radial migration in early development of the cerebralcortex. Nat Neurosci,2001,4(2):143-150.
    [33] Kriegstein A R, Noctor S C. Patterns of neuronal migration in theembryonic cortex. Trends Neurosci,2004,27(7):392-399.
    [34] Tabata H, Nakajima K. Multipolar migration: the third mode of radialneuronal migration in the developing cerebral cortex. J Neurosci,2003,23(31):9996-10001.
    [35] Noctor S C, Martinez-Cerdeno V, Ivic L, Kriegstein A R. Corticalneurons arise in symmetric and asymmetric division zones and migratethrough specific phases. Nat Neurosci,2004,7(2):136-144.
    [36] Nadarajah B, Alifragis P, Wong R O, Parnavelas J G. Ventricle-directedmigration in the developing cerebral cortex. Nat Neurosci,2002,5(3):218-224.
    [37] Carlson V C, Yeh H H. GABAA receptor subunit profiles of tangentiallymigrating neurons derived from the medial ganglionic eminence. CerebCortex,2011,21(8):1792-1802.
    [38] Inan M, Welagen J, Anderson S A. Spatial and Temporal Bias in theMitotic Origins of Somatostatin-and Parvalbumin-ExpressingInterneuron Subgroups and the Chandelier Subtype in the MedialGanglionic Eminence. Cereb Cortex,2011.
    [39] Lievajova K, Blasko J, Martoncikova M, Cigankova V, Racekova E.Delayed maturation and altered proliferation within the rat rostralmigratory stream following maternal deprivation. Eur J Histochem,2011,55(4): e33.
    [40] Scranton R A, Fletcher L, Sprague S, Jimenez D F, Digicaylioglu M. Therostral migratory stream plays a key role in intranasal delivery of drugsinto the CNS. PLoS One,2011,6(4): e18711.
    [41] Marin O, Rubenstein J L. Cell migration in the forebrain. Annu RevNeurosci,2003,26:441-483.
    [42] Saitsu H, Osaka H, Sugiyama S, Kurosawa K, Mizuguchi T, Nishiyama K,Nishimura A, Tsurusaki Y, Doi H, Miyake N, Harada N, Kato M,Matsumoto N. Early infantile epileptic encephalopathy associated withthe disrupted gene encoding Slit-Robo Rho GTPase activating protein2(SRGAP2). Am J Med Genet A,2011.
    [43] Kuczewski N, Porcher C, Lessmann V, Medina I, Gaiarsa J L.Activity-dependent dendritic release of BDNF and biologicalconsequences. Mol Neurobiol,2009,39(1):37-49.
    [44] Aguado F, Carmona M A, Pozas E, Aguilo A, Martinez-Guijarro F J,Alcantara S, Borrell V, Yuste R, Ibanez C F, Soriano E. BDNF regulatesspontaneous correlated activity at early developmental stages byincreasing synaptogenesis and expression of the K+/Cl-co-transporterKCC2. Development,2003,130(7):1267-1280.
    [45] Borghesani P R, Peyrin J M, Klein R, Rubin J, Carter A R, Schwartz P M,Luster A, Corfas G, Segal R A. BDNF stimulates migration of cerebellargranule cells. Development,2002,129(6):1435-1442.
    [46] Yoshizawa M, Kawauchi T, Sone M, Nishimura Y V, Terao M, ChihamaK, Nabeshima Y, Hoshino M. Involvement of a Rac activator,P-Rex1, inneurotrophin-derived signaling and neuronal migration. J Neurosci,2005,25(17):4406-4419.
    [47] Wynshaw-Boris A. Lissencephaly and LIS1: insights into the molecularmechanisms of neuronal migration and development. Clin Genet,2007,72(4):296-304.
    [48] Gleeson J G. Classical lissencephaly and double cortex (subcortical bandheterotopia): LIS1and doublecortin. Curr Opin Neurol,2000,13(2):121-125.
    [49] Ohshima T.[Neuronal migration and Cdk5]. Tanpakushitsu KakusanKoso,2009,54(7):796-801.
    [50] Zhao C T, Li K, Li J T, Zheng W, Liang X J, Geng A Q, Li N, Yuan X B.PKCdelta regulates cortical radial migration by stabilizing the Cdk5activator p35. Proc Natl Acad Sci U S A,2009,106(50):21353-21358.
    [51] Schaefer A, Poluch S, Juliano S. Reelin is essential for neuronalmigration but not for radial glial elongation in neonatal ferret cortex. DevNeurobiol,2008,68(5):590-604.
    [52] Gong C, Wang T W, Huang H S, Parent J M. Reelin regulates neuronalprogenitor migration in intact and epileptic hippocampus. J Neurosci,2007,27(8):1803-1811.
    [53] Chen G, Sima J, Jin M, Wang K Y, Xue X J, Zheng W, Ding Y Q, YuanX B. Semaphorin-3A guides radial migration of cortical neurons duringdevelopment. Nat Neurosci,2008,11(1):36-44.
    [54] Murakami S, Ohki-Hamazaki H, Watanabe K, Ikenaka K, Ono K. Netrin1provides a chemoattractive cue for the ventral migration of GnRHneurons in the chick forebrain. J Comp Neurol,2010,518(11):2019-2034.
    [55] Kawasaki T, Ito K, Hirata T. Netrin1regulates ventral tangentialmigration of guidepost neurons in the lateral olfactory tract. Development,2006,133(5):845-853.
    [56] Andrews W, Barber M, Hernadez-Miranda L R, Xian J, Rakic S,Sundaresan V, Rabbitts T H, Pannell R, Rabbitts P, Thompson H, ErskineL, Murakami F, Parnavelas J G. The role of Slit-Robo signaling in thegeneration, migration and morphological differentiation of corticalinterneurons. Dev Biol,2008,313(2):648-658.
    [57] Guan C B, Xu H T, Jin M, Yuan X B, Poo M M. Long-range Ca2+signaling from growth cone to soma mediates reversal of neuronalmigration induced by slit-2. Cell,2007,129(2):385-395.
    [58] Santiago A, Erickson C A. Ephrin-B ligands play a dual role in thecontrol of neural crest cell migration. Development,2002,129(15):3621-3632.
    [59] Senturk A, Pfennig S, Weiss A, Burk K, Acker-Palmer A. Ephrin Bs areessential components of the Reelin pathway to regulate neuronalmigration. Nature,2011,472(7343):356-360.
    [60] El A I, Fernandez C, Baeza N, De Paula A M, Pesheva P,Figarella-Branger D. Spatiotemporal distribution of tenascin-R in thedeveloping human cerebral cortex parallels neuronal migration. J CompNeurol,2011,519(12):2379-2389.
    [61] Huang W, Zhang L, Niu R, Liao H. Tenascin-R distinct domainsmodulate migration of neural stem/progenitor cells in vitro. In Vitro CellDev Biol Anim,2009,45(1-2):10-14.
    [62] Wilson P M, Fryer R H, Fang Y, Hatten M E. Astn2, a novel member ofthe astrotactin gene family, regulates the trafficking of ASTN1duringglial-guided neuronal migration. J Neurosci,2010,30(25):8529-8540.
    [63] Marchetti G, Escuin S, van der Flier A, De Arcangelis A, Hynes R O,Georges-Labouesse E. Integrin alpha5beta1is necessary for regulation ofradial migration of cortical neurons during mouse brain development.Eur J Neurosci,2010,31(3):399-409.
    [64] Messina A, Ferraris N, Wray S, Cagnoni G, Donohue D E, Casoni F,Kramer P R, Derijck A A, Adolfs Y, Fasolo A, Pasterkamp R J, GiacobiniP. Dysregulation of Semaphorin7A/beta1-integrin signaling leads todefective GnRH-1cell migration, abnormal gonadal development andaltered fertility. Hum Mol Genet,2011,20(24):4759-4774.
    [65] Mobley A K, Mccarty J H. beta8integrin is essential for neuroblastmigration in the rostral migratory stream. Glia,2011,59(11):1579-1587.
    [66] Stanco A, Szekeres C, Patel N, Rao S, Campbell K, Kreidberg J A,Polleux F, Anton E S. Netrin-1-alpha3beta1integrin interactions regulatethe migration of interneurons through the cortical marginal zone. ProcNatl Acad Sci U S A,2009,106(18):7595-7600.
    [67] Franco S J, Martinez-Garay I, Gil-Sanz C, Harkins-Perry S R, Muller U.Reelin regulates cadherin function via Dab1/Rap1to control neuronalmigration and lamination in the neocortex. Neuron,2011,69(3):482-497.
    [68] Jossin Y, Cooper J A. Reelin, Rap1and N-cadherin orient the migrationof multipolar neurons in the developing neocortex. Nat Neurosci,2011,14(6):697-703.
    [69] Shikanai M, Nakajima K, Kawauchi T. N-cadherin regulates radial glialfiber-dependent migration of cortical locomoting neurons. CommunIntegr Biol,2011,4(3):326-330.
    [70] Rakic P. Principles of neural cell migration. Experientia,1990,46(9):882-891.
    [71] Nobes C D, Hall A. Rho, rac, and cdc42GTPases regulate the assemblyof multimolecular focal complexes associated with actin stress fibers,lamellipodia, and filopodia. Cell,1995,81(1):53-62.
    [72] Lu J, Sheen V. Periventricular heterotopia. Epilepsy Behav,2005,7(2):143-149.
    [73] Guerrini R, Mei D, Sisodiya S, Sicca F, Harding B, Takahashi Y, Dorn T,Yoshida A, Campistol J, Kramer G, Moro F, Dobyns W B, Parrini E.Germline and mosaic mutations of FLN1in men with periventricularheterotopia. Neurology,2004,63(1):51-56.
    [74] Parrini E, Mei D, Wright M, Dorn T, Guerrini R. Mosaic mutations of theFLN1gene cause a mild phenotype in patients with periventricularheterotopia. Neurogenetics,2004,5(3):191-196.
    [75] Patrosso M C, Repetto M, Villa A, Milanesi L, Frattini A, Faranda S,Mancini M, Maestrini E, Toniolo D, Vezzoni P. The exon-intronorganization of the human X-linked gene (FLN1) encoding actin-bindingprotein280. Genomics,1994,21(1):71-76.
    [76] Lovrecic L, Slavkov I, Dzeroski S, Peterlin B. ADP-ribosylation factorguanine nucleotide-exchange factor2(ARFGEF2): a new potentialbiomarker in Huntington's disease. J Int Med Res,2010,38(5):1653-1662.
    [77] de Wit M C, de Coo I F, Halley D J, Lequin M H, Mancini G M.Movement disorder and neuronal migration disorder due to ARFGEF2mutation. Neurogenetics,2009,10(4):333-336.
    [78] Sheen V L, Ganesh V S, Topcu M, Sebire G, Bodell A, Hill R S, Grant PE, Shugart Y Y, Imitola J, Khoury S J, Guerrini R, Walsh C A. Mutationsin ARFGEF2implicate vesicle trafficking in neural progenitorproliferation and migration in the human cerebral cortex. Nat Genet,2004,36(1):69-76.
    [79] Kerjan G, Gleeson J G. Genetic mechanisms underlying abnormalneuronal migration in classical lissencephaly. Trends Genet,2007,23(12):623-630.
    [80] Wynshaw-Boris A, Pramparo T, Youn Y H, Hirotsune S. Lissencephaly:mechanistic insights from animal models and potential therapeuticstrategies. Semin Cell Dev Biol,2010,21(8):823-830.
    [81] Lecourtois M, Poirier K, Friocourt G, Jaglin X, Goldenberg A,Saugier-Veber P, Chelly J, Laquerriere A. Human lissencephaly withcerebellar hypoplasia due to mutations in TUBA1A: expansion of thefoetal neuropathological phenotype. Acta Neuropathol,2010,119(6):779-789.
    [82] Miyata H, Chute D J, Fink J, Villablanca P, Vinters H V. Lissencephalywith agenesis of corpus callosum and rudimentary dysplastic cerebellum:a subtype of lissencephaly with cerebellar hypoplasia. Acta Neuropathol,2004,107(1):69-81.
    [83] Ross M E, Swanson K, Dobyns W B. Lissencephaly with cerebellarhypoplasia (LCH): a heterogeneous group of cortical malformations.Neuropediatrics,2001,32(5):256-263.
    [84] D'Arcangelo G, Homayouni R, Keshvara L, Rice D S, Sheldon M, CurranT. Reelin is a ligand for lipoprotein receptors. Neuron,1999,24(2):471-479.
    [85] D'Arcangelo G, Miao G G, Chen S C, Soares H D, Morgan J I, Curran T.A protein related to extracellular matrix proteins deleted in the mousemutant reeler. Nature,1995,374(6524):719-723.
    [86] Hertel N, Redies C. Absence of layer-specific cadherin expressionprofiles in the neocortex of the reeler mutant mouse. Cereb Cortex,2011,21(5):1105-1117.
    [87] Britto J M, Tait K J, Johnston L A, Hammond V E, Kalloniatis M, Tan SS. Altered speeds and trajectories of neurons migrating in the ventricularand subventricular zones of the reeler neocortex. Cereb Cortex,2011,21(5):1018-1027.
    [88] Katsuyama Y, Terashima T. Developmental anatomy of reeler mutantmouse. Dev Growth Differ,2009,51(3):271-286.
    [89] Cremer C M, Lubke J H, Palomero-Gallagher N, Zilles K. Laminardistribution of neurotransmitter receptors in different reeler mouse brainregions. Brain Struct Funct,2011,216(3):201-218.
    [90] Kang W Y, Kim S S, Cho S K, Kim S, Suh-Kim H, Lee Y D. Migratorydefect of mesencephalic dopaminergic neurons in developing reeler mice.Anat Cell Biol,2010,43(3):241-251.
    [91] Hong S E, Shugart Y Y, Huang D T, Shahwan S A, Grant P E, HourihaneJ O, Martin N D, Walsh C A. Autosomal recessive lissencephaly withcerebellar hypoplasia is associated with human RELN mutations. NatGenet,2000,26(1):93-96.
    [92] Devisme L, Bouchet C, Gonzales M, Alanio E, Bazin A, Bessieres B,Bigi N, Blanchet P, Bonneau D, Bonnieres M, Bucourt M, Carles D,Clarisse B, Delahaye S, Fallet-Bianco C, Figarella-Branger D, Gaillard D,Gasser B, Delezoide A L, Guimiot F, Joubert M, Laurent N, LaquerriereA, Liprandi A, Loget P, Marcorelles P, Martinovic J, Menez F, Patrier S,Pelluard F, Perez M J, Rouleau C, Triau S, Attie-Bitach T,Vuillaumier-Barrot S, Seta N, Encha-Razavi F. Cobblestonelissencephaly: neuropathological subtypes and correlations with genes ofdystroglycanopathies. Brain,2012,135(Pt2):469-482.
    [93] Niewmierzycka A, Mills J, St-Arnaud R, Dedhar S, Reichardt L F.Integrin-linked kinase deletion from mouse cortex results in corticallamination defects resembling cobblestone lissencephaly. J Neurosci,2005,25(30):7022-7031.
    [94] Chan Y M, Keramaris-Vrantsis E, Lidov H G, Norton J H, Zinchenko N,Gruber H E, Thresher R, Blake D J, Ashar J, Rosenfeld J, Lu Q L.Fukutin-related protein is essential for mouse muscle, brain and eyedevelopment and mutation recapitulates the wide clinical spectrums ofdystroglycanopathies. Hum Mol Genet,2010,19(20):3995-4006.
    [95] Yamamoto T, Shibata N, Saito Y, Osawa M, Kobayashi M. Functions offukutin, a gene responsible for Fukuyama type congenital musculardystrophy, in neuromuscular system and other somatic organs. Cent NervSyst Agents Med Chem,2010,10(2):169-179.
    [96] Hiroi A, Yamamoto T, Shibata N, Osawa M, Kobayashi M. Roles offukutin, the gene responsible for fukuyama-type congenital musculardystrophy, in neurons: possible involvement in synaptic function andneuronal migration. Acta Histochem Cytochem,2011,44(2):91-101.
    [97] Palmini A, Najm I, Avanzini G, Babb T, Guerrini R, Foldvary-Schaefer N,Jackson G, Luders H O, Prayson R, Spreafico R, Vinters H V.Terminology and classification of the cortical dysplasias. Neurology,2004,62(6Suppl3): S2-S8.
    [98] Sisodiya S, Fauser S, Cross J, Thom M. Focal cortical dysplasia type II:biological features and clinical perspectives. Lancet Neurol,2009,8(9):830-843.
    [99] Wong M. Animal models of focal cortical dysplasia and tuberoussclerosis complex: Recent progress toward clinical applications.EPILEPSIA,2009,50:34-44.
    [100] Chang Y C, Huang C C, Huang S C. Long-term neuroplasticity effects offebrile seizures in the developing brain. Chang Gung Med J,2008,31(2):125-135.
    [101] Colciaghi F, Finardi A, Frasca A, Balosso S, Nobili P, Carriero G,Locatelli D, Vezzani A, Battaglia G. Status epilepticus-inducedpathologic plasticity in a rat model of focal cortical dysplasia. Brain,2011,134(Pt10):2828-2843.
    [102]马勋泰,晏勇,王学峰. GABAARα1在弥漫性皮质发育障碍鼠大脑皮质和海马中的表达.重庆医科大学学报,2006,31(6):812-817.
    [103]马勋泰,晏勇,晏宁,等.皮质发育障碍模型鼠脑皮质形态学和致痫机制研究.中国临床解剖学杂志,2006,24(5):541-545.
    [104] Wang X, Fu S, Wang Y, Yu P, Hu J, Gu W, Xu X M, Lu P.Interleukin-1beta mediates proliferation and differentiation of multipotentneural precursor cells through the activation of SAPK/JNK pathway. MolCell Neurosci,2007,36(3):343-354.
    [105] Striedinger K, Scemes E. Interleukin-1beta affects calcium signaling andin vitro cell migration of astrocyte progenitors. J Neuroimmunol,2008,196(1-2):116-123.
    [106] Vela J, Molina-Holgado E, Arévalo-Martín A, Almazán G, Guaza C.Interleukin-1regulates proliferation and differentiation ofoligodendrocyte progenitor cells. Mol Cell Neurosci,2002,20(3):489-502.
    [107] Babb T L, Ying Z, Mikuni N, Nishiyama K, Drazba J, Bingaman W,Wyllie E, Wylie C J, Yacubova K. Brain plasticity and cellularmechanisms of epileptogenesis in human and experimental corticaldysplasia. Epilepsia,2000,41Suppl6: S76-S81.
    [108] Wojtowicz J M, Kee N. BrdU assay for neurogenesis in rodents. NatProtoc,2006,1(3):1399-1405.
    [109] Ravizza T, Boer K, Redeker S, Spliet W, van Rijen P, Troost D, VezzaniA, Aronica E. The IL-1beta system in epilepsy-associated malformationsof cortical development. Neurobiol Dis,2006,24(1):128-143.
    [110] Iyer A, Zurolo E, Spliet W G, van Rijen P C, Baayen J C, Gorter J A,Aronica E. Evaluation of the innate and adaptive immunity in type I andtype II focal cortical dysplasias. Epilepsia,2010,51(9):1763-1773.
    [111] Zurolo E, Iyer A, Maroso M, Carbonell C, Anink J J, Ravizza T, Fluiter K,Spliet W G, van Rijen P C, Vezzani A, Aronica E. Activation of Toll-likereceptor, RAGE and HMGB1signalling in malformations of corticaldevelopment. Brain,2011,134(Pt4):1015-1032.
    [112] Zheng W, Yuan X. Guidance of cortical radial migration by gradient ofdiffusible factors. Cell Adh Migr,2008,2(1):48-50.
    [113] O'Donnell M, Chance R K, Bashaw G J. Axon growth and guidance:receptor regulation and signal transduction. Annu Rev Neurosci,2009,32:383-412.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700