双歧杆菌分泌型粘附素体外调节肠上皮细胞生物学功能的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双歧杆菌是人体肠道中一种最重要的生理菌,对人体健康具有重要意义,已有大量有关双歧杆菌抗肠道致病菌感染的报道。但双歧杆菌活菌制剂在应用于肠屏障功能障碍时也存在几个问题:一是该活菌制剂在制造与保存方面尚有一定难度,二是活菌在肠屏障功能障碍病人肠道可能由于局部气体和生长底物的不足而难以足量繁殖。近年来,有国外学者报道:双歧杆菌对肠上皮细胞的粘附可能有蛋白质样物质参与,还有人从长双歧杆菌SBT2928培养上清中分离出一种蛋白质成分,该种蛋白质成分能抑制ETEC对其糖脂结合受体(GA1)的粘附,同时也能抑制其对肠上皮细胞HCT-8的粘附且呈剂量依赖效应。由此提示双歧杆菌可能存在分泌型粘附素成分。1999年,我室也从青春型双歧杆菌1027耗尽培养上清液中提取纯化出一种分子量为16KDa的蛋白质,但未对其生理作用进行进一步研究。本研究的目的是:(1)通过化学层析等方法较大量地制备双歧杆菌分泌型粘附素成分,体外观察其对双歧杆菌粘附肠上皮细胞的介导作用;(2)评价其体外对ETEC、EPEC和艰难梭菌等致病菌粘附肠上皮细胞的竞争性抑制作用;(3)评价其对肠上皮细胞系增殖/凋亡活性及上皮细胞形态学变化的影响;(4)探讨其对上皮细胞内转录因子NF-kappaB活性的影响,以评价其生物调节活性,并从分子水平初步探讨其作用机理。
     一、双歧杆菌分泌型粘附素的分离纯化及其对双歧杆菌粘附肠上皮细胞的介导作用 采用硫酸铵沉淀、Superdex 75凝胶过滤和Q-Sepharose
     FF离子交换色谱法对双歧杆菌分泌型粘附素进行分离纯化,并经
    
    SDS一PAGE鉴定,获得一分子量大约为1 6Kda的蛋白质;为研究其对双
    歧杆菌粘附肠上皮细胞的介导作用,采用粘附试验进行观察。结果表明:
    粘附素介导的双歧杆菌对体外培养肠上皮细胞的粘附具有浓度和时间依
    赖性,当其浓度为30 p g/ml、时间为3小时时,粘附达到饱和状态;粘
    附素悬浮的双歧杆菌对Lovo细胞的粘附能力与耗尽培养上清悬浮的双
    歧杆菌的粘附能力无显著性差别(分别为18.28士6.55和19.90土6.07,
    P>0.05),但明显强于用PBS悬浮的双歧杆菌(8.50士3.30,尸<0.01),细
    菌呈线性粘附于细胞周围。上述结果表明,本实验成功分离纯化了双歧
    杆菌分泌型粘附素,其分子量大约为16KDa;粘附素能特异性地介导双
    歧杆菌粘附于肠上皮细胞周围,并且具有浓度和时间依赖性。
     二、双歧杆菌分泌型粘附素对致病菌粘附肠上皮细胞的竟争抑制作
    用Lovo细胞预先与不同浓度的双歧杆菌分泌型粘附素孵育30分钟后,
    再与ETEC、EPEC和艰难梭菌进行粘附试验,结果发现,除粘附素浓度
    为1林留ml和5林g/m1时不能明显抑制病原菌对Lov。细胞的粘附外,
    10林留ml,20林g/ml,30林g/m1浓度组均能明显抑制病原菌对Lovo细胞的
    粘附,且随浓度的逐渐增加,这种抑制作用也逐渐增强。粘附素浓度为
    30“留ml时,对ETEC、EPEC或艰难梭菌粘附Lovo细胞的抑制作用与
    双歧杆菌+ETEC、双歧杆菌+EPEC或双歧杆菌+艰难梭菌组相比无显著
    差异(P>0.05)。ETEC和EPEC呈线状粘附于细胞周围,而艰难梭菌
    簇状粘附于细胞周围。粘附素浓度为1“g/ml和5林g/m1时,ETEC、EPEC
    和艰难梭菌粘附肠上皮细胞的平均荧光强度与无粘附素时相比无显著差
    别;而10林留ml,20林g/m1,30林留ml浓度组的平均荧光强度均显著低于
    ETEC、EPEC或艰难梭菌单独作用组(尸<0.01),且随浓度的逐渐增加,
    荧光强度也逐渐减弱。其中30林g/ml浓度组的平均荧光强度与双歧杆菌
    +ETEC、EPEC或艰难梭菌组相比无显著差别(P>O.05)。上述结果提示,
    在体外实验中,青春型双歧杆菌1027的纯化粘附素能有效地抑制ETEC、
    EPEC和艰难梭菌对肠上皮Lovo细胞的粘附且呈剂量依赖效应。
     三、双歧杆菌分泌型粘附素对脂多糖和H202调节肠上皮细胞增殖
    和凋亡的影响采用3H一TdR掺入法测定细胞增殖的结果表明,100雌/L
    LPS能显著促进肠上皮细胞的增殖,而双歧杆菌分泌型粘附素则能抑制
    LPS对肠上皮细胞的促增殖作用,且随粘附素浓度的升高,抑制作用有
     4
    
    逐渐增强的趋势(P<0.01一0.05)。而200林mol几玩O:对肠上皮细胞有明
    显的抑制增殖作用(P    种抑制增殖作用(尸<0.01一0.05)。流式细胞仪检测细胞凋亡发现,对照
    组细胞凋亡率为(4.40士0.52)%,LPS处理组细胞凋亡率为(14.63士0.57)
    %,加入双歧杆菌分泌型粘附素后,细胞凋亡率逐渐下降,随着粘附素
    浓度的逐渐升高,这种作用更为明显(P<0.01一0.05)。而HZo:处理组,
    其细胞凋亡率达(23.28士0.68)%,双歧杆菌分泌型粘附素处理后,细
    胞凋亡率也逐渐下降,而且随着粘附素浓度的逐渐升高,这种抑制作用
    也更为明显(p<0 .01一0.05)。丫淀橙染色、电镜下观察细胞形态学变化发
    现,LPS和玩02处理组可见较多凋亡细胞,核浓缩,聚集于核周边或裂
    解成碎片;而先经粘附素处理后,凋亡细胞数则明显减少。光镜下观察
    见LPS或H20:处理组细胞变小、变圆,胞浆颗粒明显增多,部分细胞
    脱落漂浮于培养基中;细胞先经粘附素处理后,变小、变圆,胞浆颗粒
    增多的细胞较单独LPS或HZ
Bifidobacteria, the predominant bacteria in the human intestinal microflora, are considered to be microorganisms with a great influence on human health. There have been many studies demonstrating that strains of bifidobacteria have anti-infectious properties against enteropathogenic bacteria. However, there existed a few flaws when live bifidobacteria agents was used in gut barrier dysfunction: live bifidobacteria agents were difficult to produce and preserve, and also difficult to breed sufficiently due to lack of local gas and growth substrate. In recent years, it was reported the occurrence of bifidobacteria adhering to the human intestinal cells by a mechanism of adhesion which involves a proteinaceous component. It was observed that SBT2928 produced a proteinaceous factor, binding inhibitory factor (BIF), which prevented the binding of the ETEC to GAl in vitro, and the binding of ETEC to the human intestinal epithelial cell line HCT-8 was reduced by BIF treatment in a dose-dependent manner. These result
    s showed there was adhesin component in bifidobacteria. In 1999, we extracted and purified a protein with a molecular weight of 16 KDa from spent culture supernatant of bifidobacterium adolescentis 1027 (B. ado 1027), but it's physiological functions was not studied. In the present study, our aims were: (1) To produce mass bifidobacterial secretion adhesin by chemistry chromatography, and observe the role of adhesion of human bifidobacterial strain to cultured human intestinal epithelial cells mediated by it in vitro. (2) To evaluate
    7
    
    
    competitive inhibition of adherence of enterotoxigenic Escherichia coli, enteropathogenic Escherichia coli and Clostridium difficile to intestinal epithelial cells by adhesin in vitro. (3) To study the effect of adhesin on proliferation, apoptosis and morphology of intestinal epithelial cells. (4) To detect the effect of adhesin on expression of NF- K B activity, which could regulate expression of cytokines, and hope to investigate the mechanism of adhesin in molecular levels.
    Isolation and purification of bifidobacterial secretion adhesin and its role on adhesion of human bifidobacterial strain to cultured human intestinal epithelial cells The adhesin of bifidobacterium was isolated and purified by ammonium sulfate deposition, Superdex 75 gel filtration and Q-Sepharose FF ion exchange chromatography, and the adhesin was analyzed by SDS-PAGE. A protein with a molecular weight of 16 KDa was obtained. Adhesion test was used to study the adhesion of human bifidobacterial strain to cultured human intestinal epithelial cells. Results showed that the adhesion was time and dose-dependent, and adhesiveness achieved saturation when adhesin in the concentration of 30ug/ml, and lasting 3 hours. The adhesion of bifidobacteria to Lovo cell was no significantly difference between pretreatment of adhesin and spent culture supernatant (18.28 + 6.55 and 19.90 ?.07, respectively. P>0.05), but the adhesion was significantly stronger than that of by the pretreatment of PBS(8.50?.30, P.01). The adhesion of bifidobacteria to intestinal epithelial cell was linear. These results suggested a 16KDa protein was purified and identified as the adhesin of bifidobacterium. The binding of human bifidobacterial strains to human intestinal epithelial cells mediated by the adhesin appeared to be specific, time and dose-dependent.
    Competitive inhibition of adherence of enteropathogens to intestinal epithelial cells by bifidobacterial secretion adhesin The number of adhesion of ETEC, EPEC and Clostridium difficile to Lovo cells was counted and the results were analyzed by comparison after 30 min of incubation in
    different concentration of adhesin. Results showed the adhesin at the
    g
    
    concentration of 10 ug/ml, 20 ug/ml and 30 ug/ml except at 1 ug/ml and 5 ug/ml could significantly inhibit the adhesion of ETEC, EPEC and clostridium difficile to intestinal epithelial cell line Lovo. Moreover, we observed that the ability of inhibition was enhanced with increase in the concentration of adhesin. Inhibition of
引文
1. Yu P, Martin CM. Increased gut permeability and bacterial translocation in Pseudomonas pneumonia-induced sepsis. Crit Care Med. 2000; 28(7): 2573-2577.
    2. Lau LL, Halliday MI, Lee B, et al. Intestinal manipulation during elective aortic aneurysm surgery leads to portal endotoxaemia and mucosal barrier dysfunction. Eur J Vase Endovasc Surg 2000; 19(6):619-624.
    3. J Macfie, O'Boyie C, Mitchell CJ, et al. Gut origin of sepsis: a Prospective study investigating associations between bacterial translocation, gastric microflora, and septic morbidity. Gut. 1999; 45(2): 223-228.
    4.黎介寿.加强对肠屏障功能障碍的研究.中华医学杂志 1998;79(8):581-582.
    5.熊德鑫 主编 现代微生态学,北京:中国科学技术出版社,2000年3月.
    6. Bernet M F, Brassart D, Neeser JR, et al. Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions. Appl Euviron Microbiol. 1993; 59(12): 4124-4128.
    7. Ouwehand-Ac, Isolauri-E, et al. The mucus binding of Bifidobacterium lactis Bbl2 is enhanced in the presence of Lactobacillus GG and Lact. delbrueckii subsp bulagaricus. Lett Appl Microbiol. 2000; 30(1): 10-13.
    8. Ouwehand-Ac, Tolkko-S, et al. Adhesion of inactived probiotic stains to intestinal mucus. Lett Appl Microbiol. 2000; 30(1): 82-86.
    ,-Io
    
    
    9. Op den Camp HJ M, O'osterhof A, Veerkamp JH, et al. Interaction of bifidobacterial lipoteichoic acid with haman intestinal epithelial cells. Infect Immun. 1985; 47(1): 332-334.
    10.郑跃杰,潘令嘉,王立生等.双歧杆菌粘附素的提纯.中华微生物学和免疫学杂志.1999:19(3):196.
    11. Fujiwara S, Hashiba H, Hirota T, et al. Protcinaceous factor(s) in culture supcmataut fluids of bifidobacteria which prevents the binding of entcrotoxigeuic Eschcdchia Coli to ganglitetaosy L ceramidc. Appl-Environ-Microbiol. 1997; 63(2): 506-512.
    12. Fujiwara S, Hashiba H, Hirota T, et al. Purification and characterization of a novel Pro tein produced by Bifidobacterium Longum SBT 2928 that inhibits the binding of enterotoxigenic Escherichia coli Pb176 (CFA/Ⅱ) to gangliotetraosyⅠceramide. J-Appl-Microbiol. 1999; 86(4): 615-621.
    13.郑跃杰,潘令嘉,叶桂安等.由蛋白质介导的双歧杆菌对体外培养肠上皮细胞的粘附.中国微生态学杂志,1997,9(1):4-7.
    14.郭立安.高效液相色谱法纯化蛋白质理论与技术.西安:陕西科学技术出版社:1993,57-130.
    15.吉昌华,陈南春,杨安钢.生物化学及分子生物学实验与技术.西安:陕西科学技术出版社.1994,11-30.
    16. Sambrook J, Fritsch EF, Maniatis T.著.金冬雁译,分子克隆实验指南(第二版).北京:科学出版社.1992,880-887.
    17. Matsumoto M, Tani H, Ono H, et al. Adhesive property of bifidobacterium lactis LKM512 and predominant bacteria of intestinal microflora to human intestinal mucin. Curr Microbiol. 2002; 44(3): 212-215.
    
    
    18. Fujiwara S, Hashiba H, Hirota T, et al. Inhibition of the binding of enterotoxigenic Escherichia coli Pb176 to human intestinal epithelial cell line HCT-8 by an extracellular protein fraction containing BIF of bifidobacterium longum SBT2928: suggestive evidence of blocking of the binding receptor gangliotetraosylcerarnide on the cell surface. Int J Food Microbiol. 2001; 67(1-2): 97-106.
    19.郑跃杰,潘令嘉,叶桂安等.双歧杆菌对肠上皮细胞粘附的研究.中华微生物和免疫学杂志.1997;17(2):85-87.
    20. Kim SH, Yang SJ, Koo HC, et al. Inhibitory activity of bifidobacterium longum HY8001 against vero cytotoxin of Escherichia coli O157:H7. J Food Prot. 2001; 6.4(11): 1667-1673.
    21. Kelly CP, Lamont JT. Clostridium difficile infection. Annu Rev Med 1998; 49: 375-90.
    22. Kagnoff MF, Eckmann L. Epithelial cells as sensors for microbial infection. J Clin Invest 1997; 100: 6-10.
    23. Raupach B, Mecsas J, Heczko U, Falkow S, Finlay BB. Bacterial epithelial cell cross talk. Curr Top Microbiol Immunol 1999; 236: 137-161.
    24. Eckmann L, Kagnoff MF, Fierer J. Intestinal epithelial cells as watchdogs for the natural immune system. Trends Microbiol 1995; 3: 118-120.
    25. Alander M, Satokari R, Korpela R. Persistence of colonization of human colonic mucus by a probiotic strain, Lactobacillus rhamnosus GG after oral consumption. Appl Environ Microbiol 1999; 65:351-354.
    26. Coconnier MH, Bernet MF, Chauviere G, Servin AL. Adhering heat-killed human Lactobacillus acidophilus strain LB, inhibits the
    
    process of pathogenically of diarrhoeagenic bacteria in culture human intestinal cells. J Diarrhoeal Dis Res 1993; 11: 235-242.
    27. Coconnier MH, Bernet MF, Kernis S, Chauviere G; Fourniat J, Servin AL. Inhibition of adhesion of enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decrease bacterial invasion. FEMS Microbiol Lett 1993; 110: 299-306.
    28. Schiffrin EJ, Brassart D, Servin AL, Rochat F, Donnet-Hughes A. Immune modulation of blood leukocytes in human by lactic acid bacteria: criteria for strain selection. Am J Clin Nutr 1997; 66: 515S-529S.
    29. Salminen S, Laine M, von Wright A, Vuopio-Varkila J, Korhonen T, Mattila-Sandholm T. Development of selection criteria for probiotic strains to access their potential in functional foods. A Nordic and European approach. Biosci Microflora 1996; 2: 23-28.
    30. Kirjavainen PV, Ouwehand AC, Isolauri E, Salminen S. The ability of probiotic bacteria to bind to human intestinal mucus. FEMS Microbiol Lett 1998; 167: 185-189.
    31. He F, Ouwehand AC, Isolauri E, Hashimoto H, Benno Y, Salminen S. Comparison of mucosal adhesion of bifidobacteria isolated from healthy and allergic infants. FEMS Immunol Med Microbiol 2001; 30:43-47.
    32. Bernet MF, Brassart D, Neeser JR, et al. Lactobacillus acidophilus LA I binds to cultured human intestinal cell lines and inhibits cell attachment and cell invasion by enterovirulent bacteria. Gut, 1994, 35(4): 483-489.
    33.郑跃杰,潘令嘉,叶桂安,等.双歧杆菌对EPEC和ETEC粘附的竞争抑制作用.中国微生态学杂志,1999,11(6):329-31.
    
    
    34. Gopal PK, Prasad J, Smart J, et al. In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an entertoxigenic Escherichia coli. Int J Food Microbiol, 2001, 67(3): 207-216.
    35. Matsumoto M, Tani H, Ono H, et al. Adhesive property of bifidobacterium lactis LKM512 and predominant bacteria of intestinal microflora to human intestinal mucin. Curr Microbiol, 2002; 44: 212-215.
    36. Lee YJ, Yu WK, Heo TR, et al. Identification and screening for antimicrobial activity against Clostridium difficile of Bifidobacterium and Lactobacillus species isolated from healthy infant faeces. Int J Antimicrob Agent.s, 2003; 21: 340-346.
    37. Setoyama H, Imaoka A, Ishikawa H, et al. Prevention of gut inflammation by bifidobactedum in dextran sulfate-treated gnotobiotic mice associated with bacteroides strains isolated from ulcerative colitis patients. Microbes Infect, 2003; 5:115-122.
    38. Cotter PA, Miller JF. Triggering bacterial virulence. Science 1996; 273(5279): 1183-4.
    39. Vaughan E E, Mollet B. Probiotics in the new millennium. Nahrung,1999, 43(3): 148-53.
    40. Urao M, Fujimoto T, Lane GJ, et al. Dose probiotics administration decrease serum endotoxin levels in infants. J Pediatr Surg, 1999,34(2): 273-76.
    41. Shu Q, Gill HS. A dietary probiotic (Bifidobacterium lactis HNO19) reduces the severity of Eschedchia coli O157:H7 infection in mice. Med Microbiol Immunol 2001; 189(3): 147-152.
    
    
    42. Madsen K, Cornish A, Soper P, Mckaigney C, Jijon H, Yachimec C, Doyle J, Jewell L, Simone CD. Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 2001; 121: 580-591.
    43. Bai AP, Ouyang Q, Zhang W, et al. Probiotics inhibit TNF-αinduced interleukin-8 secretion of HT-29 cells. World J Gastroenterol 2004; 10: 455-457.
    44. Clyne M, Drumm B. Adherence of Helicobacter pylori to the gastric mucosa. Can J Gastroenterol 1997; 11: 43-48.
    45. Drudy D, O'donoghue DP, Baird A, Fenelon L, O'farrelly C. Flow cytometric analysis of Clostridium difficile adherence to human intestinal epithelial cells. J Med Microbiol 2001; 50: 526-534.
    46. Nagayama K, Ogvchi T, Arita M, et al. Purification and characterization of a cell-associated hemagglutinin of vibrio parahaemolyticus. Infect Immun, 1995, 63(5): 1987-92.
    47. Deanystron E, Samuel JE. Age-related resistance to 987P fimbria-mediated colonization correlates with specific glycolipid receptors in intestinal mucus in swine. Infect Immun, 1994, 62(1): 4789-94.
    48.王云.细菌粘附与基因调控.国外医学·微生物学分册,1991,15(5):254-57.
    49. Eveillard M, Fourel V, Barc MC, et al. Identification and characterization of adhesive factors of Clostridium difficile involved in adhesion to human colonic enterocyte-like Caco-2 and mucus-secreting HT29 cells in culture. Mol Mierobiol, 1993, 7(3):371-381.
    50.姜泊,张亚历,周殿元主编.分子生物学常用实验方法.第1版.北
    
    京:人民军医出版社,1996.174.
    51.吴承堂,黎沾良,熊德鑫.急性坏死性胰腺炎肠通透性及病理改变实验观察.第一军医大学学报,1999,19(1):28-30.
    52.吴承堂,黎沾良,黄祥成等.急性坏死性胰腺炎早期肠源性感染的实验研究.第一军医大学学报,1999,19(2):104-107.
    53.吴承堂,黄祥成,齐德林等.急性坏死性胰腺炎早期内毒素血症及其防治.第一军医大学学报,1999,19(5):402-404.
    54. Shah KA, Shurey S, Green CJ. Apoptosis after intestinal ischemia-reperfusion injury—a morphological study. Transplantation, 1997, 64: 1393-1397.
    55. Wolf SE, Ikeda H, Matin S, et al. Cutaneous burn increases apoptosis in the gut epithelium of mice. J Am Coll Surg, 1999, 188: 10-16.
    56.沈淳,郑珊,肖现民.大鼠肠缺血.再灌注后肠粘膜细胞凋亡和内源性一氧化氮的观察.中华小儿外科杂志,2003,24(1):63-64.
    57.尚占民,王宝恩,张淑文.细胞凋亡在急性重症胰腺炎肠道粘膜屏障功能障碍中的意义.中国危重病急救医学,2000,12(7):394-396.
    58. Xu DZ, Lu Q, Deitch EA. Nitric oxide directly impairs intestinal barrier function. Shock, 2002, 17(2): 139-145.
    59. Ruemmele FM, Beaulieu JF, Dionne S, et al. Lipopolysaccharide modulation of normal enterocyte turnover by toll-like receptors is mediated by endogenously produced tumor necrosis factor alpha. Gut, 2002, 51 (6): 842-848.
    60. Forsythe RM, Xu DZ, Lu Q, et al. Lipopolysaccharide-induced enterocyte-derived nitric oxide induces intestinal monolayer permeability in an autocrine fashion. Shock, 2002, 17(3): 180-184.
    61. Olaya J, Neopikhanov V, Uribe A. Lipopolysaccharide of Escherichia
    
    coli, polyamines and acetic acid stimulate cell proliferation in intestinal epithelial cells. In Vitro Cell Dev Biol-Animal. 1999, 34(1): 43-48.
    62. Olaya J, Neopikhanov V, Soderman C, et al. Bacterial wall components such as lipothecoid acid, peptidoglycan, liposaccharide and lipid A stimulate cell proliferation in intestinal epithelial cells. Microb Ecol Health Dis. 2001, 13(2): 124-128.
    63.杨瑞华,海春旭,李瑞珍等.过氧化氢与细胞生长状态的剂量反应关系研究.癌变·畸变·突变,1997,9(2):92-99.
    64. Banan A, Fitzpatrick L, Zhang Y, et al. OPC-compounds prevent oxidant-induced carbonylation and depolymerization of the F-actin cytoskeleton and intestinal barrier hyperpermeability. Free Radic Biol Med. 2001, 30(3): 287-298.
    65. Kumar S, Bharti A, Mishra NC, et al. Targeting of the c-Abl tyrosine kinase to mitochondria in the necrotic cell death response to oxidative stress. J Biol Chem. 2001, 276(20): 17281-17285.
    66. Green DR, Reed JC. Mitoehondria and apoptosis. Science. 1998, 281(28): 1309-1312.
    67. Lin HL, Lin TY, Wu CW, et al. 2-Methoxyestradial-induced caspase-3 activation and apoptosis occurs through G(2)/M arrest dependent and independent pathways in gastric carcinoma cells. Cancer. 2001, 92(3): 500-509.
    68. Chen M, Quintans J, Fuks Z, et al. Suppression of Bcl-2 messenger RNA production may mediate apoptosis after ionizing radiation, tumor necrosis factor alpha, and ceramide. Cancer Res, 1995, 55(5): 991-994.
    69. Buchi ER, Bernauer W, Daicker B. Cell death and disposal in retinoblastoma: An electron microscopic study. Graefe's Arch Clim
    
    Exp Ophthalmol, 1994, 232: 635-645.
    70. Xu L, Fidler IJ. Acidic pH-induced elevation in interleukin 8 expression by human ovarian carcinoma cells.Cancer Res. 2000; 60:4610-4616.
    71. Haller D, Bode C, Hammes WP, et al. Non-pathogenic bacteria elicit a differential cytokine response by intestinal epithelial cell/leucocyte co-cultures. Gut. 2000; 47: 79-87.
    72. Todt J, Sonstein J, Polak T, et al. Repeated intratracheal challenge with particulate antigen modulates murine lung cytokines. J Immunol. 2000; 164: 4037-4047.
    73. Grimm S, Baeuerle PA. The inducible transcription factor NF-κB: structure function relationship of its protein subunits. Biochem J. 1993; 290: 297-308.
    74. Baeuerle PA. The inducible transcription activator NF-κB: regulation by distinct protein subunits. Biochimica et Biophysica Acta. 1991; 1072: 63-80.
    75.刘浩,刘志红,章精,等.雷公藤内酯醇降低T淋巴细胞核因子.κB的活性.肾脏病与透析肾移植杂志.1998;7(4):312-315.
    76. Saemarm MD, Bohmig GA, Zlabinger GJ. Short-chain fatty acids: bacterial mediators of a balanced host-microbial relationship in the human gut. Wien Klin Wochenschr. 2002; 114(8-9): 289-300.
    77. Gionchetti P, Rizzello F, Venturi A, et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology. 2000; 119(2): 305-309.
    78. Shen B. Diagnosis and treatment of patients with pouchitis. Drugs. 2003; 63(5): 453-461.
    
    
    79. Pena JA, Versalovic J. Lactobacillus rhamnosus GG decreases TNF-alpha production in lipopolysaccharide-activated murine macrophages by a contact-independent mechanism. Cell Microbiol. 2003; 5(4): 277-285.
    80. He F, Morita H, Ouwehand AC, et al. Stimulation of the secretion of pro-inflammatory cytokines by Bifidobacterium strains. Microbiol Immunol 2002; 46: 781-785.
    81. Wang W, Smaid N, Wang P, et al. Increased gut permeability after hemorrhage is associated with up-regulation of local and systemic IL-6. J Surg Res 1998; 79: 39-46.
    82. Sugi K, Musch MW, Field M, et al. Inhibition of Na+,K+-ATPase by interferon gamma down-regulates intestinal epithelial transport and barrier function. Gastroenterology 2001; 120: 1393-1403.
    83. Xu DZ, Lu Q, Deitch EA. Nitric oxide directly impairs intestinal barrier function. Shock 2002; 17: 139-145.
    84. Bruewer M, Luegering A, Kucharzik T, et al. Proinflammatory cytokines disrupt epithelial barrier function by apoptosis-independent mechanisms. J Immunol 2003; 171: 6164-6172.
    85.郭海建,邓长生,夏冰.溃疡性结肠炎患者肿瘤坏死因子α与T细胞亚群的变化及其相关性研究.中国病理生理杂志.2001;17(12):1252-1253.
    86. Hechtman DH, Cybulsky MI, Fuchs HJ, et al. Intravascular IL-8. Inhibitor of polymorphonuclear leukocyte accumulation at sites of acute inflammation. J Immunol. 1991; 147(3): 883-892.
    87. Morita H, He F, Fuse T, et al. Adhesion of lactic acid bacteria to Caco-2 cells and their effect on cytokine secretion. Microbiol Immunol. 2002;
    
    46: 293-297.
    88. Lammers KM, Helwig U, Swennen E, et al. Effect of probiotic strains on interleukin 8 production by HT29/19A cells. Am J Gastroenterol. 2002; 97: 1182-1186.
    89. Ma TY, Iwamoto GK, Hoa NT, et al. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol. 2004; 286(3): G367-76.
    90. Timothy S, Blackwell, Christman JW. The role of nuclear factor-K B in cytokin gene regulation. Am J Respir Cell Mol Biol. 1997; 17:3-9.
    91. Mukaida N, Mahe Y, Matsushima K. Cooperative interaction of nuclear factor-kappa B and cis-regulatory enhance binding protein-like factor binding elements in activating the interleukin-8 gene by pro-inflammatory cytokines. J Biol Chem. 1990; 265:21128-21133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700