Klebsiella Oxytoca XCH-1菌的筛选及其胞外多糖的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文所研究的产酸克雷伯式菌(Klebsiella oxytoca XCH-1)是从青岛海藻化工厂海带浸泡液中筛。该菌在其生长过程中产生大量粘性的胞外多糖,为了进一步开发利用Klebsiella oxytoca XCH-1胞外多糖,本文对Klebsiella oxytoca XCH-1胞外多糖做了比较详细的研究。包括发酵,理化特性,结构及生物活性等。
     本文采用发酵法制备Klebsiella oxytoca XCH-1胞外多糖。Klebsiella oxytoca
     XCH-1菌发酵产生胞外多糖受多种因素的影响,如通气量、培养基的起始pH以及培养基的营养成分。实验结果表明,对于Klebsiella oxytoca XCH-1菌产胞外多糖的发酵,甘露醇为最佳碳源,硫酸铵为最佳氮源。采用均匀设计方法对发酵条件进行了研究,结论为甘露醇初始浓度为1%,C:N为50:1,温度为23℃,初始pH为8.18,接种量为9%。Klebsiella oxytoca XCH-1胞外多糖的产量为5.93mg/g。
     首先发酵Klebsiella oxytoca XCH-1,并用乙醇沉淀的方法得到Klebsiella
     oxytoca XCH-1胞外多糖粗品,利用Q—Sepharose FF阴离子交换树脂进行分级纯化,得到主要组分,并对其理化性质进行了全面的分析。Klebsiella oxytoca XCH-1胞外多糖为白色粉末,溶于水,并可溶于酸性、碱性溶液中。不溶于有机溶剂。Klebsiella oxytoca XCH-1胞外多糖的水溶液呈半透明粘稠状。用Sephaeryl S-300HR凝胶过滤色谱法测得分子量为156000左右。Klebsiella oxytoca XCH-1胞外多糖中硫酸基、蛋白质的含量为零。总糖含量为66.45%,糖醛酸含为15.89%。以0.1mol/L NaCl为溶剂配制0.5%的Klebsiella oxytoca XCH-1胞外多糖溶液,特性粘度为6.77。
     Klebsiella oxytoca XCH-1胞外多糖具有较高的粘度,对热具有相当大的稳定性,短时间内,耐受100℃高温。pH4—8范围内,相对粘度基本不变。电解质对胞外多糖的相对粘度有一定的影响,随着NaCl、CaCl_2、Na_2B_4O_7浓度加大,相对粘度逐渐降低,当NaCl、CaCl_2、Na_2B_4O_7的浓度分别达到并超过3%、1%、1.5
    
    尤才ebslella呷toca xcH一l菌的筛选及其胞外多糖的研究
    %时,KlebsiellaO砂toca xcH一1胞外多糖溶液的相对粘度基本保持不变,表现出
    一定的抗盐性。
    犷飞本文研究了刀e五siella oxrtoca xeH一1胞外多糖对Pb(11)、ed(Ix)、er(vl)、
    呵ll))的脱除能力。探讨了反应时间、重金属溶液浓度·溶液的pH值等因素对
    丫少‘
    ,尹召bsiellao砂Ioca XCH一1胞外多糖脱除重金属能力的影响。结果表明Klebsiella
     口习尸toca XCH一1胞外多糖对以上几种重金属离子有良好的脱除作用。刀e加i心lIa
     口划toca XCH一1胞外多糖吸附重金属离子的能力顺序为F叹m)>Pb(n)>Cd(旦)
     >cr(vi)。强酸性条件不利于KlebsiellaO划toca xcH一1胞外多糖对重金属离子豹
     吸附,在弱酸性或接近中性时有利于吸附。
     根据《食品安全性毒理学评价程序和方法》中急性经口毒性(LDs。)分级耘
     准,通过小鼠急性经口毒性实验确定Klebsiella oxytoca xCH一1胞外多糖和磷貌
    刀云bstellao大ytoca xCH一1胞外多糖可能为实际无毒物质。
     本文将刀召bsiella口习尸toca XCH一1胞外多糖进行化学修饰,得到磺化刀‘bsi公fIa
    。划犷口ca xcH一1胞外多糖,并用红外光谱验证了一05伪一取代的情况。对移蓦七
    灯‘bsiellao荞Ftoca XCH一1胞外多糖的抗凝血活性进行了研究。实验表明,磺化
    尤2云bsisllao砂toca xCH-1胞外多糖具有一定的抗凝血活性。
     利用MTT法进行了淋巴细胞毒性实验、用ELIsA法测定了I刚一Y、IL一2、
     IL一10、IL一12含量,实验表明刀‘bsiellao砂toca XCH一1胞外多糖及水解后豹
    Klebsiella山卿toca xcH一1胞外多糖均有明显的免疫增强活性。有促进T、B细胸豹
     增殖反应,虽然对T细胞直接活化所致的IFN一丫和IL一2的产生未见明显的影响葬
     用,但对抗原提呈细胞活化所致的诱导IFN一Y产生有非常明显的增强作用。一
     本文利用温和的酸水解得到低分子量的Klebsiella似叫oca xcH一1胞外多糖,
    并对其进行了结构的分析,主要使用了高效凝胶过滤色谱、红外光谱、酸水解气
    气相色谱、甲基化反应、气一质联用色谱和核磁共振等方法。
    用HPSEC法测定其分子量为40200左右。用GC分析低分子刀‘bsiella
    XCH一1胞外多糖,其主要单糖组成为鼠李糖、半乳糖、葡萄糖。利用核磁共振普
    谱法对低分子的人介bsiella oxytoca xcH一1胞外多糖进行结构分析,结合甲基化豹
    
    Klebsiellaa习户toca xcH一l菌的筛选及其胞外多糖的研究
    结果,证明主链结构中:鼠李糖有a、p两种构型,葡萄糖主要有p构型,半乳
    糖主要有Q构型。支链葡萄糖与主链鼠李糖以1一2连接,其构型也为p构型。
The bacterium Klebsiella oxytoca XCH-1 strain studied in this thesis was isolated and obtained from the water extract of Laminaria Japonica in Qingdao Algae Chemical Plant. It produces a large quantity of viscous exopolysaccharide while growing. For further study and exploitation of the exopolysaccharide, intensive analyses on it have been made and depicted in this paper.
    In this study, exopolysaccharide was prepared by fermentation of K .oxytoca XCH-1 strain.Many factors, such as, aeration, initial pH of cultivating substrate and nutritional composition of the substrate, can affect the yield of exopolysaccharide by fermentation of K. oxytoca XCH-1 strain. Experiment results show that as to fermentation of AT. oxytoca XCH-1 strain for producing exopolysaccharide, mannite is the best carbon source, and (NH4)SO4 is the best nitrogen source. Fermentation conditions have been studied by Uniform Design Test. The conclusion is that the yield of exopolysaccharide from K. oxytoca XCH-1 is 5.93 mg/g on the condition of initial mannite concentration as 1%, C : N as 50 : 1, temperature as 23 C, initial pH value as 8.18, inoculation quantum as 9%.
    After fermentation of K.oxytoca XCH-1 strain, crude exopolysaccharide was then obtained by precipitating it in ethanol. The crude product was purified in gradation by anion-exchange ( Q-Sepharose FF ), thus the main fraction of it was obtained. The purified product was thoroughly analyzed for its physical and chemical properties. The exopolysaccharide is a white powder, soluble in water, and can be dissolved into acid or alkaline solution, but shows no solubility in organic solvent. The exopolysaccharide water solution is viscous and translucent. Its average molecular weight is examined as 156000 or so by gel filtration chromatography with Sephaeryl S-300HR column. The exopolysaccharide is free from sulphate group and protein, and with 66.45% of total carbohydrates, 15.89% of uronic acids, so it presents acidic polyssacharide characteristic. With 0.1mol/l of NaCl solution as solvent, 0.5% of the exopolysaccharide solution was prepared, its intrinsic viscosity tested as 6.77 at 25C. The exopolysaccharide is o
    f high viscosity and of significant toleraice to heat. It can stand the temperature of 100C for a short time. The relative viscosity is constant in the range of pH 4-8. Electrolytes have impact on the exopolysaccharide to some extent. The relative viscosity of the exopolysaccharide solution is declining as concentration of NaCl or CaCl2 or Na2B4O7 increases. When concentration of the above electrolytes respectively exceed 3%, 1%, 1.5%, the relative viscosity of the exopolysaccharide solution basically keep unchanged, hence shows some tolerance to electrolytes.
    In this thesis, removal effect of the exopolysaccharide for lead (PbII), cadmium (CdII), chromium (CrVI), iron (FeIII), as well as the effect of reaction time, concentrations of
    
    
    
    heavy metal solutions, pH value of the solutions on its removal capability for these heavy metals have been studied.The results show excellent removal effect of the exopolysaccharide for those heavy metals. The sequence from high to low for capability of binding heavy metals of the exopolysaccharide is Fe(III)>Pb(II)> Cd(II)>Cr(VI). Weak acid or neutral condition is more favorable for heavy metal binding than strong acid condition.
    According to graded standards of acute oral toxicity ( LD50 ) regulated by "Toxicological evaluation procedure and method for food safety", the exopolysaccharide and its sulphatised products were tested of no toxicity by acute oral toxicity test in mice and they are most probably toxic free substance. The exopolysaccharide in this study was modified by sulphatizing and the sulphatised exopolysaccharide was then tested for the successful substitution of -OSO3- by infrared spectroscopy and also studied for its anticoagulant activity. The experiment reveals that the sulphatised exopolysaccharide have significant anticoagulant activity. The acute toxicological test for lymphocyte was carried out by MTT method, aad conte
引文
[1] 浜天信威.微生物产生的胞外多糖(Ⅰ).应用微生物.1982,(1):19~24
    [2] 魏培莲.微生物胞外多糖研究进展.浙江科技学院学报.2002,14(2):8~12
    [3] 张惟杰 主编.糖复合物生化研究技术.第一版.杭州:浙江大学出版社,1994.447
    [4] 浜天信威.微生物生产的多糖.应用微生物.1982,1:19~24
    [5] 张明,陆杨森,闫新萍.假单胞菌胞外多糖发酵条件的研究.微生物学杂志.1996,(5):20~22
    [6] Eveleigh. D.E:Handbook of Microbiology. 1978, Vol. Ⅱ :39
    [7] 淡家林.工业用微生物多糖的发展前景.微生物学通报.1988,15(1):35~37
    [8] 淡家林.工业用微生物多糖的发展前景.微生物学通报.1988,15(1):35~37
    [9] 陈光,张真妮.淀粉发酵生产微生物多糖的研究现状.吉林农业大学学报.2001,(1):42~46
    [10] 浜天信威.微生物生产的多糖(Ⅰ).应用微生物.1982,1:19~24
    [11] 吴文礼.食品微生物学进展.第一版.北京:中国农业科学技术出版社,2002.147~175
    [12] 吴文礼.食品微生物学进展.第一版.北京:中国农业科学技术出版社,2002.147~175
    [13] 淡家林.工业用微生物多糖的发展前景.微生物通报.1988,15(1):35~37
    [14] W Wigandi H ,Glycolipids, Amsterdam: Elsevier Sci Publishers, 1985
    [15] Sutherland IW. Biotechnology of Microbial Polysaccharides. London: Cambridgge University press, 1990
    [16] 邱慧霞,赵谋明.一种新型微生物胶凝剂—凝结多糖.食品与发酵工业.1998,24(6).66~69
    [17] 艾志录.凝结多糖及其在食品工业中的应用.食品科技.1998,4:25—27
    [18] 吴文礼.食品微生物学进展.北京:中国农业科学技术出版社,2002.147—175
    [19] Wu TCM, Park JT. Chemical characterisation of a new surface antigenic polysacchafide from a mutant of Staphylococcus aureus. Journal of Bacteriology.1971, 108: 874—884
    [20] Forsen R, Niskasaari K, Niemitalo S. lmmunochemical characterisation of lipoteiehoic acid as
    
    a surface-exposed plasma membrane antigen of slime-forming, encapsulated Streptococcus cremoris from the fermented milk product. FEMS MicrobiologyLetters. 1985, 26: 249~253.
    [21] Ophir T, Gutnick DL. A role for exopolysaccharides in the protection of microorganisms from dessication. Applied and Environmental Microbiology. 1994, 60:740—745
    [22] Pasquier C, Marty N, Dournes JL, ChabanonG, Pipy B. Implication of neutral polysaccharides associated to alginate in inhibition of murine macrophage response to Pseudomonas aeruginosa. FEMS Microbiology Lette. (1997).147, 195-202. 807~813.
    [23] Oda M, Hasegawa H, Komatsu K, Tsuchiya F. Antitumour polysaceharide from Lactobacillus spp. Agricultural and Biological Chemistry. 1983, 47: 1623—1625.
    [24] Sutherland, IW. Biotechnology of microbial exopolysaecharides. New York, USA: Cambddge University Press, 1990, 163
    [25] Sutherland IW. Novel and established applications of microbial polysaecharides. Trends in Biotechnology. 1998,16:41-46
    [26] Wood PJ. Oats as a functional food for health-the role of hglucan.. Canadian Chemistry News. 1997, Nov./Dec: 17-19
    [27] Hosono A, Lee J, Ametani A, Natsume M, Hirayama M, Adaehi T, Kaminogawa S. Characterization of a water-soluble polysaccharide fraction with immunopotentiating activity from Bi ? dobacterium adolescentis M101-4. Biosci Biotechno Biochem. 1997, 61:312-316
    [28] Kitazawa H, Toba T, Itoh T, Kumano, N, Adachi S, Yamaguchi T. Antitumoral activity of slime-forming, encapsulated Lactococcus lactis subsp, cremoris isolated from Scandinavian ropy sour mick, 'viili. Anim. Sci. Technol. 1991, 62:277-283
    [29] Nakajima H, Suzuki Y, Kaizu H, Hirota T. Cholesterol lowering activity of ropy fermented milk. J. Food Sci. 1992, 57:1327-1329
    [30] Cohen R, Persky L, Hadar Y. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl Microbiol Biotechno. 2002, 58:582-94
    [31] Franz G. Polysaccharides in pharmacy: current applications and future concepts. Planta Med. 1989, 55: 493-7
    
    
    [32] Ooi V, Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein comlplexes. Curr Med Chem. 2000, 7:715-29.
    [33] Tabata K, Itoh W, Kojima T, Kawabate S, Misaki K. Ultrasonic degradation of schizophylian, an antitumor polysaccharide produced by Schizophyllum commune FRIES. Carbohydr Res .1981, 89:121-35
    [34] Tsukagoshi S, Ohashi F. Protein-bound polysaccharide preparation, PS-K, effective against mouse sarcoma 180 and rat ascites hepatoma AH-13 by oral use. Gann .1974, 65:557-8
    [35] Weiner R, Langitle S, Quintero E Structure, function and immunochemistry of bacterial exopolysaccharides, Ind Microbiol. 1995, 15:339-346
    [36] Okutani K. Antitumor and immunostimulant activities of polysaceharide produced by a marine bacterium of the genus Vibrio. Bull. Jpn. Soc. Sci. Fish. 1983, 50(6):1035-1037
    [37] Marsuda M, Worawattanamateekul W, Okutani K. Simultaneous production of muco and sulfated polysaccharides by marine. Pseudomonus.Nippon Susian Gukkaishi, 1992, 58(9): 1735-1741
    [38] 王利平.活性多糖增强免疫调节功能的研究进展.食品研究与开发.2001,22(B 12):23-25
    [39] 周靓,蒙义文.多糖及其衍生物抗病毒作用研究进展.应用与环境生物学报.1997,3(1):82-90
    [40] 刁虎欣,周与良.细菌胞外多糖的生物合成.微生物学杂志.1990,10(4):64-71,80
    [41] 周晓兰,施碧红,吴松刚.啤酒酵母胞外多糖发酵条件的研究.工业微生物.2003,33(1):34-36
    [42] 吴文礼.食品微生物学进展.北京:中国农业科学技术出版社,2002.147-175
    [43] 聂凌鸿,彭华松.微生物胞外多糖—结冷胶的生产与应用前景.生命的化学.2002,22(2):178-182
    [44] 周晓兰,施碧红,吴松刚.啤酒酵母胞外多糖发酵条件的研究.工业微生物.2003,33(1):34-36
    [45] 周德庆.微生物学教程.北京:高等教育出版社,1993.100
    [46] 魏培莲.微生物胞外多糖研究进展.浙江科技学院学报.2002,14(2):8-12
    [47] 周德庆.微生物学教程.北京:高等教育出版社,1993.101
    
    
    [48] Bart Degeest, Luc de Vuyst. J of Applied and Envir Micro. 1999, 7 : 2863-2870
    [49] 李全阳,夏文水.乳酸菌胞外多糖的研究.食品与发酵工业.2002,29(5):86-90
    [50] 周德庆.微生物学教程,北京:高等教育出版社,1993.102
    [51] 浜天信威.微生物生产的多糖(Ⅱ).应用微生物.1982,2:17-21
    [52] 周德庆.微生物学教程.北京:高等教育出版社,1993.104-106
    [53] Wernau W C. Fermentation methods for the production of polysaccharides. De?elopments in Indian Microbiology. 1985, 26: 263-269.
    [54] Wecker A, OnkenV. Influence of dissolved oxygen concentration and shear rate on the production of pullulan by Aureobasidium pullulans. Biotechnology Letters. 1991, 13: 155-160.
    [55] Peter HV, Herbst H, Hesselink PG M, Lunsdorf H, Schumpe A, Deckwer WD.The influence of agitation rate on xanthan production by Xanthamonas campestris. Biotechnology and Bioengineering. 1989, 34:1391-1397.
    [56] Cuezennec P. Pignet Y, Lijour E, Gentrie, et al. Sulfation and depolymerization of a bacterial exopolysaccharide of hydrothermal origin. Carbohydrate Polymers.1998, 37:19-24
    [57] Ian W,Suthedand. Novel and established applications of microbial polysaccharides. TIBTECH. 1998, 16(1): 41-46
    [58] K pavlova, D Grigorova. Production and properties of exopolysaccharide by Rhodotorula acheniorum MC. Food Research Internation. 1999, 32:473-477
    [59] Margaritis A, Pace GW. Microbial polysaccharides. Comprehensive biotechnology. Pergamon Press Oxford, 1985.3:1005~10041
    [60] Paul F, Morin P, Monsan P. Microbial polysaccharides with actual potential industrial applications. Biotechnology Advance. 1986, 4: 245-259.
    [61] Shimada A, Nanata H, Nakamura I. Acidic exopolysaccharide produced by Enterobaeter SP. Journal of Fermentation and Bioengineering. 1997, 84:113~118.
    [62] Suthedand I W. Novel and established applications of microbial polysaccharides. Trends in Biotechnology. 1998, 16: 41~45
    [63] Miroslav Stredansky, Elena Conti, Luciano Navarini, Claudia Bertocchi. Production of bacterial
    
    exopolysaccharides by solid substrate fermentation. Prodess Biochemistry. 1999, 34:11-16
    [64] RC McKellar, J van Geest, W Cui. Influence of culture and environmental conditions on the composition of exopolysaccharide produced by Agrobacterium radiobacter. Food Hydrocolloids. 2003, 17: 429-437
    [65] 金世琳.中国乳品工业. 1998, 26(2): 14-168
    [66] Sutherland IW. Novel and established applications of microbial polysaccharides. Trends in Biotechnology. 1998,16:41- 46
    [67] Donald E.Pszczola. Geilan gum wins IFT's food technology industrial achievement award Food Technology. 1993, 47(9): 94-96
    [68] Sandford PA. Food Hycrocololloids. CRC Press, 1994. (1): 167-199
    [69] GB20.000, INS418
    [70] 刘志皋.食品添加剂手册.北京:中国轻工业出版社,1996.285
    [71] 文一,赵国华.一种新型的微生物胞外多糖——结冷胶.中国食品添加剂.2003,3:49-52
    [72] Moorhouse R, Yalpani M. Genetic Engineering, Structure/Property relations and Application. Amsterdam the Netherlands: Elservier Science Publisher, 1987.187—206
    [73] Rawsaom H L, Marshall V M. International J. of Food Sci and Tech, 1997,32:213-220
    [74] Anonymous. Xanthan gum: Natural biogum for scientific water control. San Diego, CA: Kelco Division of Merck and Co. 1988
    [75] Banik R M, Kanari B, Upadhyay S N. Exopolysaccharide of the gellan family: prospects and potential. World Journal of Microbiology and Biotechnology. 2000.16:407-414
    [76] Jezequel V. Curdlan: a new functional b-glucan. Cereal Foods World. 1998, 43: 361-364.
    [77] 杨新亭,张良.黄原胶的性能及其应用.河南农业大学学报.1999,(33卷增刊):137-139
    [78] Shiomi M, Sasakik K, Murofusi M et al. Japanese J. of Medical Sci. and Biology.1982, 35:75~80
    [79] Gabrielam P, Juan CV, Mirta R, J. of Dairy Res. 1998, 65:129-138
    [80] Patricia, Ruas-Madie do. International Dairy Journal. 2002,12:163-171
    [81] 顾瑞霞等.食品科学.2000,(8):18-22
    
    
    [82] 李全阳,夏文水.乳酸菌胞外多糖的研究.食品与发酵工业.2002,29(5):86-90
    [83] Jong S C, Birmingham J M. Advances in Applied Mirobiology. 1992, 37: 101-134.
    [84] 陈国良,陈晓清.中国食用菌.1995,14(4):7-8.
    [85] 李平作.灵芝深层发酵生产生物活性物质的研究.无锡:无锡轻工业大学,1997
    [86] Miyazakl T, Nishijima M, Structures and antitumor activities of the polysaccharides isolated from the fruiting body of Ganoderma lucidum. Chem Pharma Bull. 1982, 29:3611-3614
    [87] 李平作,章克昌.灵芝胞外多糖的分离纯化及生物活性.微生物学报.2000,40(2):217-220
    [88] FujiiT, MaedaH, SuzukiF, etal. Characterization of a New Antitumor Polysaccharide, KS-2, Extraced from Culture Mycelia of Lentinus Edodes.The Journal of Antibiotics, 1978, 31(11): 1079-1090.
    [89] Saito H, YoshiokaY, UeharaN, etal. Relationship Between Glucansin the Activation of Factor G from Limulus Amebocyte Lysateand Host-mediated Antitumor Activity .Carbohydrate Research.1991, 217:181-190
    [90] 郑建仙.功能性食品.北京:中国轻工业出版社,1995.85-102.
    [91] 石军,张云刚,曾新福.微生物多糖在水产养殖中的应用.水产养殖.2002,1:33-34
    [92] 小田宗宏.Xanthan Gum 抗肿疡活性.药理治疗.1985,13:285-292
    [93] Ishizaks S, Sugawara I, Hasuma T, Morisawa S, Moller G. Immune responses to Xanthan Gum I.The characteristics of lymphocyte activation by Xanthan Gum. Eur- J Immunol. 1983, 13: 225~231
    [94] Shimada K, Fujikawa K, Yahara K, Nakamura T. Antioxidative Properties of Xanthan on the Autoxidation of Soybean Oil in Cyclodextrin Emulsion. J Agric Food Chem. 1992, 40:945-948
    [95] 李信,许雷.黄原胶(Xanthan Gum)的主要理化性能及其抗氧化特性的初步研究.生物技术通报.1997.(4):33-37
    [96] 李信,许雷,刘四朝.黄原胶(Xanthan Gum)对小鼠的免疫功能的影响.微生物学杂志.1999,19(1):16-18
    [97] 吴林森,蔡顺养.黄单胞杆菌多糖胶(Xanthan gum)的生产和应用.应用微生物.1986,4:9-17
    
    
    [98] 王学艳,赵振宇,寇欣,刘程,张红星.黄原胶的性质及在制剂中的应用.中国药学杂志1996,31(10):581~583
    [99] Carlfors J et al. J Pharma Sci, 1998, 6 (2): 113-119
    [100] Vincenzini M, De Philippis R, Sill C, Materassi D. In: Dawes EA, editor. Novel biodegradable microbial polymers. Dordrecht: Kluwer Academic Publishers, 1990:2-95-310.
    [101] Joung Han Yim, Sung Jin Kim, Se Hoon Ahn, Hong Kum Lee, Optimal conditions for the production of sulfated polysaccharide by marine microalga Gyrodinium impudicum strain KG03. Biomolecular Engineering. 2003, 20:273-280
    [102] Gerber P, Dutcher D, Adams V, Shermann H. Proc Soc Exp Biol Med 1958.99:590-593
    [103] Lau F, Siedlecki J, Anleitner J, Patterson L, Caplan P, Moore E. PIant Med. 1993, 59: 148-51
    [104] Minkova K, Michailov Y, Toncheva S, Panova T, Houbavenska N. Pharmazie. 1996, 51: 3-7
    [105] McLeilan S, Jurd M. Blood Coagul Fibrinolysis. 1992, 3:69-77
    [106] Batinic D, Robey FA. J Biol Chem. 1992, 267:6664 -6671
    [107] Bourgougnon N, Lahaye M, Chermann C, Kornprobst M. Med Chem Lett. 1993, 3:1141-1146.
    [108] Hasui M, Matuda M, Okutani K, Shigeta S. Int J Biol Macromol. 1995, 17:293-297
    [109] Andrew T K, Extracellular Microbial Polysaccharide, ACS symposium series.1977, (45): 231
    [110] 刘洪灿.微生物多糖在农业上的应用.河北农业技术师范学院学报.1995,9(2):63-68
    [111] 门大鹏.微生物与生物工业.北京:科学出版社,1989
    [112] J Wells. Extracellular Microbial Polysaccharides. 1977, (45): 299-313
    [113] 彭珍荣.现代微生物学进展,武昌:武汉大学出版社,1995
    [114] 日本发酵学会编.微生物工程的基础和应用.北京:轻工业出版社,1988
    [115] De Vuyst L, Degeest B. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews. 1999, 23:153-177
    [116] van GeelSchutten, GH, Flesch, F, ten Brink B, Smith M R, Dijkhuizen L. Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharide. Applied Microbiology and Biotechnology. 1998, 505:697-703
    [117] Ludbrook K A, Russell C M, Greig RI. Exopolysacchride production from lactic acid bacteria
    
    isolated from fermented foods. Journal of Food Science. 1997, 62:597-600
    [118] Marshall VM, Laws AP, Gu Y, Levander F, Radstrom P, De Vuyst L, Degeest B, Vaningelgem F, Dunn H, Elvin M. Exopolysaccharide-produeing strains of thermophilic lactic acid bacteria cluster into groups according to their EPS structure. Letters in Applied Microbiology. 2001, 32:433-437
    [119] Fishman M L, Cescutti P, Fett W F, Osman S F. Hoagland P D, Chau H K. Screening the physical properties of novel Pseudomonas exopolysaccharides by HPSEC with multi-angle light scattering and viscosity detection. Carbohydrate Polymers. 1997, 32,: 213-221
    [120] Lawford, H. G., & Phillips, K. R. (1982). A two stage continuous process for the production of thermogelable curdlan-type exopolysaccharide. Biotechnology Letters, 4, 689-694.
    [121] Lee JY, Seo WT, Kim GJ, Kim M K, Park C S, Park YH. Production of curdlan using sucrose or sugar cane molasses by two-step fed-batch cultivation of Agrobacterium species. Journal of Industrial Microbiology and Biotechnology. 1997a, 18:255-259
    [122] Phillips R K, Lawford HG, Lavers B, Kligerman A, Lawford,GR. Production of a curdlan-type polysaccharide by Alcaligenes faecalis in batch and continuous culture. Canadian Journal of Microbiology. 1983, 29:1331-1338
    [123] Hisamatsu M, Amemura A, Harada T, Matsuo T, Matsuda H, Harada T. Cyclic (1b2)-β-D-glucan and the octasaccharide repeating-unit of succinoglycan produced by Agrobacterium. Journal of General Microbiology. 1982, 128:1873-1879
    [124] Hisamatsu M, Amemura A, Harada T, Nakanishi I, Kimura K. Change in ability of Agrobacterium to produce water-soluble and water-insoluble beta-glucans. Journal of General Microbiology. 1977, 103: 375-379.
    [125] Hisamatsu M, Sano K, Amemura A, Harada T. Acid polysaccharides containing succinic acid in various strains of Agrobacterium. Carbohydrate Research. 1978, 61: 89-96.
    [126] Amemura A. Synthesis of (1→2)-β-D-glucan by cell-free extracts of Agrobacterium radiobacter IFO 12665b1 and Rhizobium phaseoli AHU 1133. Agricultural and Biological Chemistry. 1984, 48: 1809-1817.
    
    
    [127] Lee J W, Yeomans WG, Allen A L, Gross R A, Kaplan DL. Microbial production of water-soluble non curdlan type exopolymer-B with controlled composition by Agrobacterium sp. Biotechnology Letters. 1997b, 19:1217-1221
    [128] Lee J W, Yeomans W G, Allen A L, Kaplan D L, Deng F, Gross R A. Exopolymers from curdlan production: incorporation of glucose-related sugars by Agrobacterium sp. Strain ATCC31749. Canadian Journal of Microbiology. 1997c, 43:149-156
    [129] Triveni R, Shamala T R, Rastogi N K. Optimised production and utilisation of exopolysaccharide from Agrobacterium radiobacter. Process Biochemistry.2001, 36:787-795.
    [130] Hams T, Harada A. Curdlan and succinoglycan. In S. Dumitriu (Ed.), Polysaccharides in medicinal applications. New York: Marcel Dekker. 1996
    [131] Drews G, Weckesser J. Function structure and composition of cell walls and external layers. The Biology of Cyanobacteria. Blackwell, Oxford: 1982, 333-357
    [132] 黄泽波,刘永定.蓝细菌多糖及其应用研究概况.生物技术通报.1997,4:26-31
    [133] Panoff J, Sulphated exopolysaccharides produced by two unicellular strains of cyanobacteria, Synechocystis PCC6803 and 6714. Arch. Microbial, 1988, 150:558-563
    [134] Lapasin R,Rheology of culture broths and exopolysaccharide of Cyanospira capsulata at different stages of growth. Carbohydr. Polym. 1992, 17:1~10
    [135] Bertocchi C et al., Polysaccharides from cyanobacteria. Carbohydr. Polym. 1990, 12:127-153
    [136] Ana Otero, Massimo Vincenzini, Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. Journal of Biotechnology. 2003,102: 143-152
    [137] De Philippis R, Vincenzini M, Exocellular polysaccharides from cyanobacteria and their possible applications. FEMS Microbiol. Rev. 1998,22:151-175
    [138] Itoh H, Noda H, Amano H, Zhuaug C, Mizuno T, Ito H. Antitumor activity and immunological properties of marine algal polysaccharides, specially fucoidan, prepared from Sargassum thunbergii of Phaeophyceae. Anticancer Res. 1993, 13: 2045-2052
    [139] Huheihel M, Ishanu V, Tal J, Arad A. Activity of Porphyridium sp. polysaccharides against
    
    Herpex simplex viruses in vitro and in vivo. J. Biochem. Biophys. Methods. 2001,50:189- 200
    [140] Shah V, Ray A, Garg N, Madamwar D. Characterization of the extracellular polysaccharide produced by a marine cyanobacterium, Cyanothece sp. ATCC 51142, and its exploitation toward metal removal from solutions. Curr.Microbiol. 2000,40: 274- 278
    [141] Pollock TJ. J Gene Microbiol. 1993, 139:1939-1945
    [142] 李桂杰,朱瑞良,徐刚.克雷伯式菌的研究现状综述.山东畜牧兽医.1997,2:36-37
    [143] 李树品,蒋千里,楚杰,刘纪联,张大伟.产酸克雷伯式菌 (Klebsiella oxytoca)的分离及其特性的研究.山东科学.1991,4(3):19-25
    [144] Ryosuke Sugihara, Masayasu Yoshimura, Masaharu Mori, Naoki Kanayama, Masaki Hikida, Hitoshi Ohmori, Prevention of collagen-induced arthritis in DBA/1 mice by oral administration of AZ-9, a bacterial polysaccharide from Klebsielta Oxytoca. Immunopharmaeology. 2000, 49:325-333
    [145] Courtenay JS, Dallman MJ, Dayan AD, Martin A, Mosedale B. Immunization against arthritis in mice. Nature. 1980, 283:666-668
    [146] Stuart JM, Dixon FJ, Serum transfer of collagen-induced arthritis in mice. J. Exp. Med.1983, 158:378-392
    [147] Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev. Immunol. 1996, 14:397-440
    [148] Seki N, Sudo Y, Yoshioka T, Sugihara S, FujitsuT, Sakuma S, Ogawa T, Hamaoka T, Senoh H, Fujiwara H. Type Ⅱ collagen-induced murine arthritis: Ⅰ. Induction and perturbation of arthritis require synergy between humoral and cell-mediated immunity. J. Immunol. 1988, 140:1477~1484
    [149] Feldmann M, Brennan FM, Maini RN. Rheumatoid arthritis. Cell. 1996, 85:307-310
    [150] Joosten LAB, Helsen MMA, Saxne T, van de Loo FAJ, Heinegard D, van den Berg WB, IL-1αβblockade prevents cartilage and bone destruction in murine type Ⅱ collagen-induced arthritis, whereas TNF-α blockade only ameliorates joint inflammation. J. Immunol. 1999, 163:5049-5055
    
    
    [151] Thorbecke GJ, Shah R, Leu CH, Kuruviila AP, Hardison AM, Palladino MA. Involvement of endogenous tumor necrosis factor alpha and transforming growth factor beta during induction of collagen type Ⅱ arthritis in mice. Proc. Natl. Acad. Sci. U. S. A. 1992, 89: 7375-7379
    [152] Williams RO, Mason LJ, Feldmann M, Maini RN.. Synergy between anti-CD4 and anti- TNF in the amelioration of established collagen-induced arthritis. Proc. Natl. Acad. Sci. U. S. A. 1994, 2762-2766
    [153] Elliott M J, Maini RN, Feldmann M, KaldenJR, Antoni C, Smolen JS, Leeb B, Breedveid FC Macfarlane JD, Biji H, Woody JN. Randomized double blind comparison of a chimeric monoclonal antibody to tumor necrosis factor α(cA2) versus placebo in rheumatoid arthritis. Lancet 1994,344: 1105-1110
    [154] Franco Baldi, Andrea Minacci, Milva Pepi, Andrea Scozzafava, Gel sequestration of heavy metals by Klebsiella Oxytoca isolated from iron mat. FEMS Microbiology Ecology 2002.36:169-174
    [155] Galassi M.(thesis)Identifcazione molecolare con tecniche ARDRA,sequenziamento 16S rDNA e caratterizzazione fsiologica di due ceppi batterici isolati da acque di searico di una miniera di pirite. Corsodi Laurea in Scienze Biologiche, Universita? degli Studi di Siena, Anno Accademico 1997-1998.
    [156] Bott M. Anaerobic citrate metabolism and its regulation in enterobacteria. Arch. Microbiol. 1997,167: 78-88.
    [157] Bott M, Dimroth P. Klebsiella pneumoniae genes for citrate lyase and citrate lyase ligase: localization, sequencing, and expression. Mol. Microbiol. 1994,14:347-356
    [158] Rao CP, Geetha K, Raghavan MMS, Sreedhara A, Tokunaga K, Yamaguehi T, Jadhav V, Ganesh KN, Krishnamoorthy T, Ramaiah KVA, Bhattacharyya RK. Transition metal saccharide chemistry and biology: syntheses, characterization, solution stability and putatve bio-relevant studies of iron-saccharide complexes. Inorg. Chim. Acta. 2000, 297:373-382
    [159] Hegetschweiler K, Primo LH, Koppenol WH, Gramlich V, Odia L, Meyer W, Winkkler H.
    
    Trautwein AX.) A novel hexanuclear Fe(Ⅲ)-cis-inositolato complex as a model for Fe(Ⅲ)^polyoi interactions in aqueous solutions. Angew. Chem. Int. Ed. Engl. 1995, 34: 2242-2243.
    [160] Geesy GG, Jang L. Interactions between metal ions and capsular polymers. In: Metal Ions and Bacteria (Beveridge, T.J. and Doyle, R.J., Eds.). 1989.325-357
    [161] Aislabie J, Loutit MW. Accumulation of Cr(Ⅲ) by bacteria isolated from polluted sediments. Mar. Environ. Res. 1986, 20:221-232
    [162] Gadd GM. Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biochemical processes. Adv. Microb. Physiol. 1999, 41:47—92
    [163] Rauser WE. Structure and function of metal chelators produced by plants—the case of organic acids, amino acids, phytin and metallothioneins. Cell Biochem. Biophys. 1999,31;19—48
    [164] Harris JA. Birch P. Soil microbial activity in opencast coal mine restoration. Soil Use Land Manage. 1989, 5: 155-160
    [165] Williamson JC, Johnson DB. Microbiology of soils at opencast coal sites. Ⅱ. Population transformations occurring following land restoration and the infuence of ryegrass/fertiliser amendments. J. Soil Sci. 1991, 42: 9—15
    [166] Fini, Kristen M. Studies on the lead and cadmium binging capacity of native and modified polysaccharide from Klebsiella Oxytoca .(博士论文). State University of New York College of Environmental Science and Forestry. 1999
    [167] 范秀容,李光武,沈萍编,微生物学实验.(第二版).北京:高等教育出版社,1989.260-261
    [168] 赵斌,何绍江编.微生物学实验.北京:科学出版社,2000.255
    [169] 范秀容,李光武,沈萍编.微生物学实验.(第二版).北京:高等教育出版社,1989.60
    [169] 范秀容,李光武,沈萍编.微生物学实验.(第二版).北京:高等教育出版社,1989.117-119
    [171] 东秀珠,蔡妙英等编著.常见菌种系统鉴定手册.北京:科学出版社,2001
    [172] 魏培莲.微生物胞外多糖研究进展.浙江科技学院学报.2002,14(2):8-12
    [173] 浜天信威.微生物生产的多糖.应用微生物.1982,1:19-24
    
    
    [174] 张明,陆杨森,闫新萍等.假单胞菌胞外多糖发酵条件的研究.微生物学杂志.1996,(5):20-22
    [175] Eveleigh DE. Handbook of Microbiology, 1978,Vol. Ⅱ:39
    [176] 淡家林.工业微生物多糖的发展前景.微生物学通报.1988,15(1):35-37
    [177] Ryosuke Sugihara, Masayasu Yoshimura, Masaharu Mori, Naoki Kanayama, Masaki Hikida, Hitoshi Ohmori, Prevention of collagen-induced arthritis in DBA/1 mice by oral administration of AZ-9, a bacterial polysaccharide from Klebsiella oxytoca, Immunopharmacology. 2000, 49: 325-333
    [178] Franco Baldi, Andrea Minacci, Milva Pepi, Andrea Scozzafava. Gel sequestration of heavy metals by metals by Klebsiella oxytoca isolated from iron mat. FEMS Microbiology Ecology. 2001, 36:169-174
    [179] Weidong Cui, Studies on characterization of polysaccharide from Klebsiella oxytoca and enzymatic modification of selected polysaccharides[A thesis submitted in partial fulfillment of the resquirements for the Doctor of Philosophy Degree]. State University of New York.
    [180] 范晓,严晓军主编.海藻化学分析分法.北京:学苑出版社,1996.59-62
    [181] 朱圣东,黄原胶发酵工艺条件研究.精细石油化工进展.2002,3(2):41-43
    [182] 曾嵋涓,章克昌.营养因子对鸡腿蘑分泌胞外多糖的影响.无锡轻工业大学学报.2002,21(2):135-139
    [183] 刘如林.微生物多糖的深层发酵.应用微生物.1988,5:1-8
    [184] 吴林森,蔡顺养.黄单胞杆菌多糖胶(xanthan gum)的生产和应用.应用微生物.1986,(4):9-17
    [185] Mian FA., et al.. J.bacterial. 1978, 134 : 418-422
    [186] Williams AG, et al.. J. Gen. Microbiol. 1978, 104:47-57
    [187] Symes KC. Food Chem. 1980, 6:63-76
    [188] Wernau W C. Fermentation methods for the production of polysaccharides. De?elopments in Indian Microbiology. 1985, 26:263-269
    [189] Wecker A, Onken, V. Influence of dissolved oxygen concentration and shear rate on the
    
    production of pullulan by Aureobasidium pullulans. Biotechnology Letters. 1991, 13: 155-160
    [190] Peter H V, Herbst H, Hesselink P G M, Lunsdorf H, Schumpe A, Deckwer W D.The influence of agitation rate on xanthan production by Xanthamonas campestris. Biotechnology and Bioengineering. 1989, 34:1391-1397
    [191] 方开泰著.均匀试验设计.北京:科学出版社,1994
    [192] 张惟杰糖.复合物生化技术.杭州:浙江大学出版社,1994
    [193] 阮国瑞,范子文,张雪萍细.菌荚膜多糖的纯化、分析及免疫原性的研究现状.南京铁道医学院学报.1997,16(30):216-218
    [194] 邵德益.微生物胞外多糖的提取.化工时刊.1995,8:25-26
    [195] 刘如林,赵大建.微生物多糖的产品回收.食品与发酵工业.1990,(60):58-63
    [196] 阮国瑞,范子文,张雪萍.一种测定艰难梭菌荚膜多糖分子量的简便方法.微生物学报.1994,21(5):316-318
    [197] 江洁.裙带菜岩藻聚糖硫酸酯的结构研究.中国海洋大学硕士学位论文.2002
    [198] Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and substances. Anal. Chem. 1956, 28:350-356
    [199] Dubois M, Gilles KA, Hamilton JK, et al. A Colorimetric Method for the determination of sugars. Nature. 1951, 168:176
    [200] Dodgson KS, Price RG. A note on the determination of the ester sulfate content of sulfated polysaccharides. Biochem. J. 1962, 84:106-110
    [201] Bitter T, Muir HM. A modified uronic carbazole reaction. Anal. Chem.,1962, 237: 75-80
    [202] 李建武,余瑞元,袁秀明,陈丽蓉,陈雅蕙,陈来同.生物化学实验原理和方法.第一版.北京:北京大学出版社,1994,168-170
    [203] 张维杰主编.糖复合物生化研究技术.第一版.杭州:浙江大学出版社,1994.63
    [204] 范晓,严小军,韩丽君.海藻化学分析方法.学苑出版社,16-20
    [205] 刘洪灿,任永娥,陈吉棣等.齐整小核菌胞外多糖的研究.微生物学通报.1993,20(3):147-149
    [206] Medcall DG, Scott JR., Brannon.JH, etal. Some Structural features and viscomefrie Properties
    
    of the extracelluar polysccaharide from porphyridium .cruentum . Carbobydr Res.1975,44: 87-96
    [207] Ryosuke Sugihara, Masayasu Yoshimura, Masaharu Mori, Naoki Kanayama, Masaki Hikida, Hitoshi Ohmori, Prevention of collagen-induced arthritis in DBA/1 mice by oral administration of AZ-9, a bacterial polysaccharide from Klebsiella Oxytoca. Immunopharmacology.2000, 49:325-333
    [208] 栗克喜等.天然产物研究与开发.2001,13(3):23-25
    [209] 张维杰主编.糖复合物生化研究技术.第一版.杭州:浙江大学出版社,1994.:273-279
    [210] 张金池,严逸伦,曾锋.重金属对森林生态系统效应的研究进展.南京林业大学学报(自然科学版).2001,25(5):51-56
    [211] 杨洁彬,王晶等.食品安全性.北京:中国轻工业出版社,1999.121
    [212] 王绍文,姜风有.重金属废水治理技术.北京:冶金工业出版社,1993
    [213] 丁明,曾桓兴.铁氧体工艺处理含重金属污水研究现状及展望.环境科学.1992,13(2):59
    [214] 刘森,董德明.光催化法处理电镀台镐废水的研究.吉林大学自然科学学报.1998,33(4):98—102.
    [215] 陈红,叶兆杰,方土.不同状态MnO_2对废水中As3~+的吸附性能研究[J].中国环境科学.1998,18(2):126-130
    [216] 费维扬.面向21世纪的溶剂萃取技术.化工进展.2000,(1):11-13
    [217] 杨骏,秦涨峰,陈戊英.活性碳吸附水中铅离子的动态研究[J].环境科学,1997,16(5):423—427.
    [218] 高效江,戊秋涛.麦饭石对金属的吸附作用研究.环境污染与防治,1997,19(4):4-8
    [219] 杨智宽.用蛇纹石处理含钢废水的研究.环境科学技术.1997,10(2):15-17.
    [220] 周勤俭,李先伯,杨静,朱惠英.大洋多金属结核吸附重金属离子的研究.湿法冶金.1999,69(1):51-55
    [221] 朱利中.酸性膨润上处理含重金属废水初探.环境污染与防治.1993,15(1):34
    [222] 郑礼胜,王士龙,张虹,王友.用沸石处理含镍废水.材料保护.1998,31(7):24-25
    
    
    [223] S K Ouki, Roger Perry. Journal Chemi. Tech. Biotechnol. 1994, 59(1): 121
    [224] 程树培,催益斌,杨柳燕.高絮凝性微生物育种生物技术研究与应用进展.环境科学进展.1995,12(1):65-69
    [225] 马士军.微生物絮凝剂的开发及应用.工业处理.1997,12(1):7-10
    [226] 辛宝平,庄源溢,李彤等.生物絮凝剂的研究和应用.环境科学进展.1998,6(5):57-62
    [227] Yin Pinghe et al. Biosorption removal of cadmium from aqueous solution by using pretreated fungal biomass cultured from starch waste water. War Res. 1999,33(8): 1960-1963
    [228] Yu Qiming et al. Heavy metal uptake capacities of common marine macro algal biomass,Wat Res. 1999, 33(6): 1534-1537
    [229] 尹平河等.海藻生物材料吸附废水中铅、铜和镉的研究.海洋环境科学.2000,19(3):11-15
    [230] Fisher NS et al. Accumulation and toxicity of Cd, Zn, Ag and Hg in four marine phytoplankters. Mar Ecol Prog Set. 1984, 18:201-203
    [231] Auderson D M. Turning Back the Harmful Res ti'de Nature. 1999, 388: 513-514
    [232] 尹平河等.缓释铜离子法去除海洋原甲藻赤潮生物的研究.环境科学.2000,21(5):12-16
    [233] 彭清涛.植物在环境污染治理中的应用.环境保护.1998,(2):24-27
    [234] Kakuvai, Toshio. Chitosan derivatives. JP Patent 85233102
    [235] 崔小明.净水技术.1997,59(1):43
    [236] Muzzarelli RAA. Tubertini O. Mikrochim. Acta.1970, 5:892
    [237] 粟田惠辅.化学领域,1981,3:929
    [238] 王民生. 海带(Laminaria Japonica Aresch)中的褐藻聚糖(Fueoidan)及其保健功能.现代渔业信息.2002,17(1):13-14
    [239] Guven Ozdemir, Tansel Ozturk, Nur Ceyhan, Rahim Isler, Tamer Cosar. Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge. Bioresource Technology 2003, 90:71-74
    [240] H?l?ne Rougeaux, Jean Guezennec, Russell W. Carlson, Nelly kervarec, Roger Pichon, Philippe Talaga. Structural determination of the exopolysaccharide of
    
    Pseudoalteromonas strain HYD 721 isolated from a deep-sea hydrothermal vent. Carbohydrate Research. 1999, 315:273-285
    [241] 宁正祥.食品成分分析手册.北京:中国轻工业出版社,1998.622
    [242] 宁正祥.食品成分分析手册.北京:中国轻工业出版社,1998.610-618
    [243] 王中柱,崔仙舟,陈淑珠等.分析化学实验.青岛:青岛大学出版社,1990.167-173
    [244] 方波,江体乾.新型类肝素物质的研究(Ⅰ)—磺化羟丙基壳聚糖凝胶的制备.功能高子学报:1997,10:527-531
    [245] GB15193-94
    [246] Harris P, Henry R, Blakeney AB, Stone BA. An improved procedure for the methylation analysis of oligosaccharides. Carbohydr. Res. 1984, 127:59-73
    [247] A Dell, AJ Reason, KH Khoo, M Panico, RA McDowell, HR Morris, Mass Spectrometry of Carcohydrate-Containing Biopolymers. Methods Enzymol. 1994, 230:108-132
    [248] Chizhov AO, Dell A, Morris HR, Haslam SM, McDowell RA, Shaskov AS, Nifant'ev NE, Khatuntseva EA, Usov AI. A study of fucoidan from the brown seaweed Chorda filum. Carbohydr Res. 1999, 320:108-119
    [249] 徐 杰.羊栖菜岩藻聚糖硫酸酯的结构研究.中国海养大学硕士学位论文.2003
    [250] 张惟杰主编.糖复合物生化研究技术.第一版.杭州:浙江大学出版社,1994.63
    [251] 魏远安等.高效液相色谱法测定多糖纯度及分子量.药学学报.1998,24:532
    [252] Needs PW. Selvendram RR. Avoiding oxidative degradation during sodium hydroxide/methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide. Carbohydr. Res. 1993, 245:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700