丁酸梭菌培养与发酵动力学以及调节腹泻小鼠肠道菌群平衡的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文从丁酸梭菌的菌体形态、生理生化和16S rRNA序列分析菌种鉴定开始,在此基础上,系统研究了丁酸梭菌培养条件的优化,并建立了丁酸梭菌分批发酵和补料分批发酵的动力学模型;另外,在体外研究了丁酸梭菌的耐酸、耐胆汁特性,并在体内研究了丁酸梭菌和青春双歧杆菌、粪肠球菌混菌调节抗生素引起的腹泻小鼠肠道菌群平衡的作用。论文的主要研究结果如下:
     利用伯杰氏细菌分类鉴定系统和16S rRNA序列分析的鉴定方法对实验室保存的丁酸梭菌进行鉴定,通过设计引物并将扩增出的16S rRNA序列在National Center Biotechnology Information(NCBI)上使用BLASTN程序进行比对,尝试了一种丁酸梭菌分子鉴定的快速、准确方法:
     研究了丁酸梭菌的耐酸、耐胆汁特性,通过和其它几种常用益生菌体外实验的比较,证明丁酸梭菌比乳杆菌、肠球菌、双歧杆菌更耐酸、更耐胆汁浓度,这个结论表明了丁酸梭菌更能耐受肠道环境、能在肠道停留更长时间,具有很好的应用价值;
     利用响应面实验设计的科学方法对丁酸梭菌的培养条件进行系统优化,最终确定培养丁酸梭菌的种子培养基为:2.44%葡萄糖(w/v),2.08%酵母浸膏(w/v),1%胰蛋白胨(w/v),0.1%(NH_4)_2SO_4(w/v),0.1%NaHCO_3(w/v),0.02%MnSO_4·H_2O(w/v),0.02%MgSO_4·7H_2O(w/v),0.002%CaCl_2(w/v)和2%琼脂(w/v)(配固体培养基时用),初始pH为8.55,丁酸梭菌在此培养基中厌氧培养24小时后活菌数可达1.03×10~9 CFU/mL:培养丁酸梭菌的发酵培养基为:2%葡萄糖(w/v),3.98%豆饼粉提取液,0.1%(NH_4)_2SO_4(w/v),0.124%NaHCO_3(w/v),0.37%玉米浆(w/v),0.02%MnSO_4·H_2O(w/v),0.02%MgSO_4·7H_2O(w/v),0.002%CaCl_2(w/v)和2%琼脂(w/v)(配固体培养基时用),初始pH为7.5,丁酸梭菌在此培养基中厌氧培养24小时后活菌数可达7.1×10~8CFU/mL,筛选出合适的培养基配方,为下步的研究以及今后大规模的生产提供依据;
     首次考察了丁酸梭菌在5 L发酵罐中自然分批发酵动力学过程,并建立了相关模型,实验中采用Logistic方程描述了菌体生长的动力学过程,采用Leudeking-Piret方程描述了产物合成的动力学过程,用Leudeking-Piret-Like方程描述了底物消耗的动力学过程,从检验结果可知,模型可以较好的(尤其在发酵的前20小时内)解释实际发酵中细胞生长、底物利用和产物合成的动力学规律。所得模型方程如下:
     细胞生长模型:(dx)/(dt)=0.1812(1-x/1.64)x
     底物消耗模型:-(dS)/(dt)=9.0603(dx)/(dt)+0.00967x
     产物合成模型:(dP)/(dt)=3.17(dx)/(dt)+0.00175x;
Firstly, the strain of Clostridium butyricum used in this research was identified by Bergey's Manual of Systematic Bacteriology and the method of sequencing PCR-amplified 16S ribosomal DNA. And then the cultivation process and technology of this strain were fully discussed. The kinetic models of batch process and fed-batch process were also determined. Furthermore, this research studied the tolerance against low pH and bile concentrations of this strain comparing with some other probiotic strains in vitro. Finally, this study was designed to evaluate the safety of mixture of C. butyricum, Bifldobacterium adolescentis and Enterococcus faecalis by using acute toxicity test and Ames test, and evaluated the modulation effect on gastrointestinal microflora of the mixture in antibiotic-associated diarrheic mice. The primary results of this research were as follows:This strain of C. butyricum was identified by Bergey's Manual of Systematic Bacteriology and the method of sequencing PCR-amplified 16S ribosomal DNA. According to comparing the sequence in National Center Biotechnology Information (NCBI) using the programme of BLASTN, this research established a fast and precise method of molecular identification to identify the species of C. butyricum.The present study described the tolerance of acid and bile concentrations of C. butyricum, Lactobacillus, Bifldobacterium and Enterococcus strains. Comparison of data in this research showed C. butyricum not only can survive lower pH, but also higher bile condition than other probiotics.. In order to exert health-promoting probiotic effects, it is important for the bacterial strain to survive the inhospitable environment of the human gastrointestinal tract, so this property of C butyricum may provide an advantage in vivo over other probiotics.The cultivation conditions and medium compositions were optimized with response surface methodology (RSM). These experimental results showed that the optimum seed medium for incubating C. butyricum was composed of 2.44% (w/v) glucose, 2.08% yeast extract (w/v), 1% tryptone (w/v), 0.1% (NH_4)_2SO_4(w/v), 0.1% NaHCO_3(w/v), 0.02% MnSO_4 ? H_2O (w/v), 0.02% MgSO_4 ? 7H_2O (w/v), 0.002% CaCl_2 (w/v) and 2% agar (w/v) (if necessary) at pH 8.55, after incubation for 24 hrs in the optimum seed medium, the populations of the viable organisms could reach 1.03×10~9CFU/mL. And the optimum fermentation medium for incubating C. butyricum was composed of 2% glucose (w/v), 3.98% soybean cake extract, 0.1% (NH_4)_2SO_4 (w/v), 0.124% NaHCO_3(w/v), 0.37% corn steep flour (w/v), 0.02% MnSO_4 ? H_2O (w/v), 0.02% MgSO_4 ? 7H_2O (w/v) and 0.002% CaCl_2(w/v) at pH 7.5, after incubating 24 hrs in the optimum fermentation medium, the populations of the viable organisms could reach 7.1 ×10~8CFU/mL.This research discussed the microbial growth, product formation and substrate consumption kinetic models of C. butyricum in batch cultivation too. A simple model was proposed using Logistic equation for growth, the Luedeking-Piret equation for butyric acid production and Luedeking-Piret-like equation for glucose consumption. These models could suitably predict the batch fermentation progress,
    especially between 0 hr and 20 hr. The models were as follows:dx xMicrobial growth model: ~T = 0.1812(1 — )xat 1.64Glucose consumption model: ~ ~T " 9-0603 — + 0.00967*at atProduct formation model: ~~7~ = 3.17 —— + 0.00175x .at atThis research also discussed the microbial growth, product formation and substrate consumption kinetic models of C. butyricum in fed-batch cultivation. These models could also suitably predict the fed-batch fermentation progress. The models were as follows:AYMicrobial growth model: ~T~ = (M ~ 0.0083)XatGlucose consumption model: — = 0.0083(17.94 - S) - -dt 0.2701Product formation model: ~T —     Consumption of mixture of C. butyricum, Bif. adolescentis and Ent. faecalis at the dose of 5X 105 CFU/kg body weight to 5x106 CFU/kg body weight per day was already beneficial to the ecosystem of the intestinal tract by increasing the populations of good bacteria and reducing the populations of unwanted bacteria, the quantity of consumed probiotics was much lower than the findings of other researchers using one probiotic strain alone. So this mixture of probiotics showed good potential using in food and feed industry.
引文
[1] Bennett J. W. and Chung K. T. Alexander Fleming and the discovery of penicillin. Advances in Applied Microbiology, 2001, 49: 163~184.
    [2] Clarke T. Penicillin paper restores Fleming's healthy reputation. Nature, 2002, 419 (6910): 867~867.
    [3] Goldsworthy P. D. and McFarlane A. C. Howard Florey, Alexander Fleming and the fairy tale of penicillin. Medical Journal of Australia, 2002, 176 (4): 176~178.
    [4] Lockwood N. A. and Mayo K. H. The future for antibiotics: bacterial membrane disintegrators. Drugs of the Future, 2003, 28 (9): 911~923.
    [5] 石现瑞,高峰.抗生素添加剂的负面效应及其代替品的研究.饲料博览,2000,3:24~26.
    [6] Levy S. B. Antibiotic resistance: consequences of inaction. Clinical Infectious Diseases, 2001, 33(Suppl. 3): S124~S129.
    [7] Witte W. Medical consequences of antibiotic use in agriculture. Science, 1998, 279 (5353): 996~997.
    [8] European Commission. Commission Regulation of Amending Council Directive 70/524/DEC Concerning Additives in Feedingstuffs as Regards Withdrawal of Authorization of Certain Antibiotics. No Ⅵ/7767/98. Brussels, Belgium. 1998.
    [9] WHO. WHO Global Strategy for Containment of Antibiotic Resistance.[Online]http://www.who.int/emc/amrpdfs/WHO_Global_Strategy_English.pdf. 2001.
    [10] Copenhagen Recommendations. Report from the European Union Conference on 'The Microbial Threat', Copenhagen, Denmark, 9-10 September 1998. Ministry of Health and Ministry of Food, Agriculture and Fisheries, Denmark.
    [11] European Commission Directorate General ⅩⅪⅤ Directorate B. Opinion of the Scientific Steering Committee on Antimicrobial Resistance, 28 May 1999.[Online.]http://europa.eu.intlcomm/food/fs/sc/ssc/out50_en.pdf.
    [12] 梁荣.动物微生态学理论与应用.动物医学进展,1997,18(1):38~41.
    [13] 刘燕,王静慧.微生态学理论和我国动物微生态制剂研究现状.中国兽药杂志,2002,36(8):35~38.
    [14] 康白.微生态学原理.大连:大连出版社.1996.
    [15] 杨景云.肠道菌群与健康.哈尔滨:黑龙江科学技术出版社.1991.
    [16] 代群威,董发勤,邓建军.正常菌群与菌群失调.生物磁学,2005,5(1):32~34.
    [17] 叶嗣颖.医学微生物学中的微生态学问题.中国微生态学杂志,1998,10(4):253~255.
    [18] Gibson G. R. and Fuller R. Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use. Journal of Nutrition, 2000, 130 (Suppl. 2): S391-S395.
    [19] 李兰娟主编.感染微生态学.北京:人民卫生出版社.2002.
    [20] Hooper L. V., Wong M. H., Thelin A., Hansson L., Falk P. G. and Gordon J. I. Molecular analysis of commensal host-microbial relationships in the intestine. Science, 2001, 291 (5505): 881~884.
    [21] Hooper L. V., Bry L., Falk P. G. and Gordon J. I. Host-microbial symbiosis in the mammalian intestine: exploring an internal ecosystem. BioEssays, 1998, 20: 336~343.
    [22] Hooper L. V., Falk P. G. and Gordon J. I. Analyzing the molecular foundations of commensalisms in the mouse intestine. Current Opinion in Microbiology, 2000, 3: 79~85.
    [23] 康白.微生态学.大连:大连出版社.1988.
    [24] 何明清.动物微生态学.北京:中国农业出版社.1994。
    [25] Par A. Gastrointestinal tract as a part of immune defence. Acta Physiologica Hungarica, 2000, 87(4): 291~304.
    [26] 康白.正常微生物群是一个新的人体生理学系统.中国微生态学杂志,2003,15(2):63~65.
    [27] 杨景云.医用微生态学.北京:中国医药科技出版社.1997.
    [28] 郭兴华.益生菌基础与应用.北京:北京科学技术出版社.2002.
    [29] Fuller R. Probiotics in human medicine. Gut, 1991, 32: 439~442.
    [30] 沈通一.益生菌对肠微生物生态学影响的研究进展.肠外与肠内营养,2004,11(4):242~246.
    [31] Eizaguirre I., Urkia N. G., Asensio A. B., Zubillaga I., Zubillaga P., Vidales C., Garcia-Arenzana J. M. and Aldazabal P. Probiotic supplementation reduces the risk of bacterial translocation in experimental short bowel syndrome. Journal of Pediatric Surgery, 2002, 37 (5): 699~702.
    [32] 任安芝,高玉葆.植物内生菌—一类应用前景广阔的资源微生物.微生物学通报,2001,28(6):90~93.
    [33] 徐伟敏,梅汝鸿.益微系统工程.中国微生态学杂志,1997,9(1):54~55.
    [34] Sturz A. V., Christie B. R., and Nowak J. Bacterial endophytes: Potential role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences, 2000, 19 (1): 1~30.
    [35] 饶正华.一种高效安全的饲料添加剂—细菌素.兽药与饲料添加剂,2001,6(5):21~21.
    [36] Liu W. and Hansen J. N. Some chemical and physical properties of nisin, a small protein antibiotic produced by Lactococcus lactis. Applied and Environmental Microbiology, 1990, 56 (8): 2551~2558.
    [37] Delves-Broughton J. Nisin as a food preservative. Food Australia, 2005, 57 (12): 525~527.
    [38] 杨洁彬,郭兴华,张篪,凌代文,颜方贵,傅晓丽.乳酸菌—生物学基础及应用.北京:中国轻工业出版社.1996.
    [39] Alander M., Satokari R., Korpela R., Saxelin M., Vilpponen-Salmela T., Mattila-Sandholm T. and von Wright A. Persistence of colonization of human colonic mucosa by a probiotic strain, Lactobacillus rhamnosus GG, after oral consumption. Applied and Environmental Microbiology, 1999, 65 (1): 351~354.
    [40] Saarela M., Mogensen G., Fonden R., Maettoe J. and Mattila-Sandholm T. Probiotic bacteria: safety, functional and technological properties. Journal of B iotechnology, 2000, 84: 197~215.
    [41] Coconnier M. H., Bernet M. F., Kemeis S., Chauviere G., Fourniat J. and Servin A. L. Inhibition of adhesion on enteroinvasive pathogens to human intestinal Caco-2 cells by Lactobacillus acidophilus strain LB decreases bacterial invasion. FEMS Microbiology Letters, 1993, 110 (3): 299~305.
    [42] Bernet M. F., Brassart D., Neeser J. R. and Servin A. L. Lactobacillus acidophilus LA 1 binds to human intestinal cell lines and inhibits cell attachment and cell invasion by enteroverulent bacteria. Gut, 1994, 35 (4): 483~489.
    [43] Ouwehand A., Isolauri E. and Salminen S. The role of the intestinal microfiora for the development of the immune system in early childhood. European Joumal of Nutrition, 2002, 41 (Suppl. 1): S32~S37.
    [44] 陆扬,姚文,朱伟云.益生菌—新型免疫调节剂.微生物学通报,2005,32(4):144~148.
    [45] Groenlund M. M., Arvilommi H., Kero P., Lehtonen O. P. and Isolauri E. Importance of intestinal colonisation in the maturation of humoral immunity in early infancy: a prospective follow up study of healthy infants aged 0-6 months. Arhieves of Disease in Childhood, 2000, 83: 186~192.
    [46] 蓝景刚,胡宏.双歧杆菌的免疫调节作用研究进展(下).中国微生态学杂志,2002,14(3):181~185.
    [47] Isolauri E., Sutas Y., Kankaanpaa P., Arvilommi H. and Salminen S. Probiotics: effects on immunity. American Journal of Clinical Nutrition, 2001, 73 (suppl. 2): S444~S450.
    [48] Wagner R. D., Warner T., Roberts L. Farmer J. and Balish E. Colonization of congenitally immunodificient mice with probiotic bacteria. Infection and Immunity, 1997, 65 (8): 3345~3351
    [49] Picard C., Fioramonti J., Francois A., Robinson T., Neant F. and Matuchansky C. Review article: bifidobacteria as probiotic agents-physiological effects and clinical benefits. Alimentary Pharmacology and Therapeutics, 2005, 22 (6): 495~512.
    [50] Mattila-Sandholm T., Maettoe J. and Saarela M. Lactic acid bacteria with health claims-interactions and interference with gastrointestinal flora. International Dairy Journal, 9 (1): 25~35.
    [51] Rartanen T., Isolauri E., Salo E. and Vesikari T. Management of acute diarrhoea with low osmolarity oral rehydration solutions and Lactobacillus strain GG. Archives of Disease in Childhood, 1998, 79 (2): 157~160.
    [52] Kullisaar T., Zilmer M., Mikelsaar M., Vihalemm T., Annuk H., Kairane C. and Kilk A. Two antioxidative lactobacilli strains as promising probiotics. International Journal of Food Microbiology, 2002, 72 (3): 215~224.
    [53] 舒娜,芮汉明.益生菌的作用机理、存在的问题及其对策.广州食品工业科技,2003,19(增刊):67~70.
    [54] Aso Y., Akaza H., Kotake T., Tsukamoto T., Imai K. and Naito S. Preventive effect of a Lactobacillus casei preparation on the recurrence of superficial bladder cancer in a double-blind trial. European Urology, 1995, 27 (2): 104~109.
    [55] Shortt C. The probiotic century: historical and current perspectives. Trends in Food Science & Technology, 1999, 10: 411~417.
    [56] Carr F. J., Chill D. and Maida N. The lactic acid bacteria: A literature survey. Critical reviews in Microbiology, 2002, 28 (4): 281~370.
    [57] Spanhaak S., Havenaar R. and Schaafsma G. The effect of consumption of milk fermented by Lactobacillus casei strain Shirota on the intestinal microflora and immune parameters in humans. European Journal of Clinical Nutrition, 1998, 52 (12): 899~907.
    [58] Tuohy K. M., Rrobert H. M., Smejkal C. W. and Gibson G. R. Using probiotics and prebiotics to improve gut health. Drug Discovery Today, 2003, 8 (15): 692~700.
    [59] Sanders M. E. Overview of functional foods: Emphasis on probiotic bacteria. International Dairy Journal, 1998, 8: 341~347.
    [60] Ziemer C. J., and Gibson G. R. An overview of probiotics, prebiotics and synbiotics in the functional food concept: perspectives and future strategies. International Dairy Journal, 1998, 8: 473~479.
    [61] Salminen S., von Wright A., Morelli L., et al. Demonstration of safety, of probiotics-a review. International Journal of Food Science, 1998, 44: 93~106.
    [62] Fuller R. Probiotics in man and animals. Journal of Applied Bacteriology, 1989, 66: 365~378.
    [63] Sanders M. E. Probiotics: considerations for human health. Nutrition Reviews, 2003, 61: 91~99.
    [64] 凌代文,东秀珠.乳酸细菌分类鉴定及实验方法.北京:中国轻工业出版社.1999.
    [65] 张文治.新编食品微生物学.北京:中国轻工业出版社.1995.
    [66] 袁杰利.肠球菌及有关微生态调节剂.中国微生态学杂志,1998,10(1):59~61.
    [67] 贾士芳,郭兴华.活菌制剂的现状与未来.生物工程进展,1996,16(2):16~20.
    [68] Murray R. G. E., Brenner D. J., Bryant M. P., Holt J. G., Krieg N. R., Moulder J. W., Pfennig N., Sneath P. H. A., Staley J. T. and Williams S. T. Bergey's Manual of Systematic Bacteriology. Baltimore, U. S. A. Williams & Wilkins, 1984.
    [69] Sander M. E. Considerations for use of probiotic bacteria to modulate human health. Journal of Nutrition. 2000. 130: 384~390.
    [70] 于敏,杨景云.微生态调节剂的作用与发展趋势.中国微生态学杂志,1998,10(2):117~119.
    [71] 王友芳,孙立梅.乳杆菌活菌胶囊制剂对细菌性阴道病临床疗效观察.中国微生态学杂志,1999,11(1):57~58.
    [72] 冉陆.我国微生态保健食品的现状及展望.中国食品卫生杂志,1999,2:32~32.
    [73] 袁佩娜.微生态药品制剂的质量控制.中国食品卫生杂志,1999,2:15~15.
    [74] 何国庆,孔青,丁立孝,阮晖,陈启和.丁酸梭菌的功效及研究进展.广州食品工业科技,2004,20(增刊):52~55.
    [75] 黄俊,韩铭海,余晓斌.一株饲用酪酸菌特性及培养条件的研究.饲料工业,2004,25(2):22~25.
    [76] 朱晓慧,唐宝英,刘佳.酪酸菌制剂活菌检测方法的研究.中国微生态学杂志,2000,12(2):108~109.
    [77] 朱晓慧.丁酸梭菌.酿酒,1996,1:64~66.
    [78] 朱晓慧,唐宝英,刘佳.酪酸菌对肠道有益菌的增殖作用和共生关系研究.中国微生态学杂志,2004,16(4):193~196。
    [79] 张达荣,董晓旭,包幼甫.肠易激综合症患者服用酪酸菌制剂前后肠道菌群状况.中国微生态学杂志,1999,11(3):164~166.
    [80] 赵熙,冉陆,杨宝兰,姚景会,付萍,陈稚峰,李志刚.丁酸梭菌活菌制剂对肠道菌群影响的研究.中国微生态学杂志,1999,11(6):332~333.
    [81] 傅思武,陆俭,肖在滢,吕存女,邝欣,邹开勇,孟筱琦.酪酸梭菌-婴儿型双歧杆菌二联活菌 制剂的研究.中国微生态学杂志,2000,12(1):11~14.
    [82] 唐宝英,朱晓慧,刘佳.酪酸菌对动物肠道致病菌体外拮抗作用的研究.生物技术,2005,15(1):37~39.
    [83] 张雪平,陆俭,傅思武,肖在滢,罗武英,孟筱琦.酪酸梭菌与双歧杆菌对肠道致病菌的体外生物拮抗作用.中国微生态学杂志,2001,13(5):260~262.
    [84] 陆俭,张雪平,孟筱琦.酪酸梭菌和婴儿型双歧杆菌对霍乱弧菌的拮抗试验.微生物学通报,2000,27(5):338~341.
    [85] 吕存女,邝欣,张雪平,邹开勇,孟筱琦.酪酸梭菌与婴儿双歧杆菌对艰难梭菌体外拮抗作用的研究.中国微生态学杂志,2001,13(4):199~201.
    [86] 汤仲英,高怀荃,汪俭,李盛.酪酸菌制剂治疗儿童幽门螺杆菌感染的临床观察.安徽医科大学学报,1999,34(5):371~372.
    [87] 郭继兵,杨蒲芳,汪明涛,陆国义.酪酸菌在幽门螺杆菌治疗中的应用.中华腹部疾病杂志,2004,4(3):163~165.
    [88] Takahashi M., Taguchi H., Yamaguchi H., Osaki T. and Kamiya S. Studies of the effect of Clostridium butyricum on Helicobacter pylori in several test models including gnotobiotic mice. Journal of Medical Microbiology, 2000, 49(7): 635~642.
    [89] Takahashi M., Taguchi H., Yamaguchi H., Osaki T., Komatsu A. and Kamiya S. The effect of probiotic treatment with Clostridium butyricum on enterohemorrhagic Escherichia coli O157: H7 infection in mice. FEMS Immunology and Medical Microbiology, 2004, 41: 219~226.
    [90] Nakanishi S., Kataoka K., Kumahara T. and Ohnishi Y. Effects of high amylase maize starch and Clostridium butyricum on microbiota and formation metabolism in colonic of azoxymethane-induced aberrant crypt foci in the rat colon. Microbiology and Immunology, 2003, 47 (12): 951~958.
    [91] 杨桂平。丁酸梭菌的生物学功能研究.中国微生态学杂志,1998,10(5):306~310.
    [92] 李佳荃,汤展宏,凌鸿英.丁酸梭菌对小鼠移植瘤的抑制作用.广西医科大学学报,2003,20(1):77~79.
    [93] 李继强,张达荣,王友凤,罗鸿予,沈冠凤,萧树东.口服酪酸菌对肝硬化患者免疫紊乱的影响.肝脏,1997,2(2):83~84.
    [94] 唐宝英,朱晓慧,刘佳.新一代微生态制剂-酪酸菌的研究和开发前景.中国微生态学杂志,2000,12(5):297~297.
    [95] 赵恕,赵东卉.丁酸梭菌制剂(米雅BM)治疗小儿腹泻50例.中国微生态学杂志,1998,10(4):226~226.
    [96] 王德颖,谭阳.酪酸菌制剂治疗婴幼儿秋季腹泻30例临床观察.中国微生态学杂志,1999,11(2):95~95.
    [97] 邹玉,王敏,王嫱.酪酸菌治疗霉菌性腹泻28例疗效观察.中国微生态学杂志,2003,15(4):232~232.
    [98] 孙吉萍,王树山,邓莉,马煜,柯斌.微生态制剂“宫入菌”治疗小儿感染性腹泻德临床研究.中国微生态学杂志,1997,9(4):18~19.
    [99] Seki H., Shiohara M., Matsumura T., Miyagawa N., Tanaka M., Komiyama A. and Kurata S. Prevention of antibiotic-associated diarrhea in children by Clostridium butyricum MIYAIRI. Pediatrics International, 2003, 45 (1): 86~90.
    [100] 徐峰,王秉钧,杨希山.奥替溴铵、匹维溴铵、马来酸曲美布汀和酪酸菌治疗肠易激综合征药物经济学研究.胃肠病学和肝病学杂志,2002,11(4):349~351.
    [101] 吴小平,刘德良,凌奇荷.酪酸菌对大鼠右旋葡聚糖硫酸钠结肠炎的治疗作用.中华消化杂志,2003,23(5):305~305.
    [102] 任义先,宛学云,李静美.酪酸菌治疗婴幼儿病毒性肠炎60例.中国新药与临床杂志,1998,17(4):241~242.
    [103] Kamiya S., Taguchi H., Yamaguchi H., Osaki T., Takahashi M. and Nakamura S. Bacterioprophylaxis using Clostridium butyricum for lethal caecitis by Clostridium difficile in gnotobiotic mice. Reviews in Medical Microbiology, 1997, 8 (Suppl. 1): S57~S59.
    [104] Araki Y., Andoh A., Takizawa J., Takizawa W. and Fujiyama Y. Clostridium butyricum, a probiotic derivative, suppresses dextran sulfate sodium-induced experimental colitis in rats. International Journal of Molecular Medicine, 2004, 13 (4): 577~580.
    [105] Okamoto T., Sasaki M., Tsujikawa T., Fujiyama Y., Bamba T. and Kusunoki M. Preventive efficacy of butyrate enemas and oral administration of Clostridium butyricum M588 in dextran sodium sulfate-induced colitis in rats. Journal of Gastroenterology, 2000, 35 (5): 341~346.
    [106] Araki Y., Fujiyama Y., Andoh A., Koyama S., Kanauchi O. and Bamba T. The dietary combination of germinated barley foodstuff plus Clostridium butyricum suppresses the dextran sulfate sodium-induced experimental colitis in rats. Scandinavian Journal of Gastroenterology, 2000, 35 (10): 1060~1067.
    [107] Centeno J. A., Tomillo F. J., Fenandez-Garcia E., Gaya P. and Nunez M. Effect of wild strains of Lactococcus lactis on the volatile profile and the sensory characteristics of Ewes' raw milk cheese. Journal of Dairy Science, 2002, 85: 3164-3172.
    [108] Watson R., Wright C. J., McBurney T., Taylor A. J. and Linforth R. S. T. Influence of harvest data and light integral on the development of strawberry flavor compounds. Journal of Experimental Botany, 2002, 53 (377): 2121-2129.
    [109] Beyer-Sehlmeyer G., Glei M., Hartmann E., Hughes R., Persin C., Bohm V., Rowland I., Schubert R., Jahreis G. and Pool-Zobel B. L. Butyrate is only one of several growth inhibitors produced during gut flora-mediated fermentation of dietary fibre sources. British Journal of Nutrition, 2003, 90: 1057-1070.
    [110] Lupton J. R. Microbial degradation products influence colon cancer risk: the butyrate controversy. Journal of Nutrition, 2004, 134: 479-482.
    [111] Zigova J. and Sturdik E. Advances in biotechnological production of butyric acid. Journal of Industrial Microbiology & Biotechnology, 2000, 24, 153-160.
    [112] Grobben N. C., Eggink G., Cuperus F. P. and Huizing H. J. Production of ABE from potato wastes: fermentation with integrated membrane extraction. Applied and Microbiology Biotechnology, 1993, 39: 494~498.
    [113] Michel-Savin D., Marchal R. and Vandecasteele J. P. Butyric fermentation: metabolic behavior and production performance of C. tyrobutyricum in a continuous culture with cell recycle. Applied Microbiology and Biotechnology, 1990, 34: 172~177.
    [114] Reardon K. F. and Bailey J. E. Activity regeneration in continuous Clostridium acetobutylicum bioconversions of glucose. Biotechnology Progress, 1992, 8: 316~326.
    [115] 郭勇.现代生化技术.北京:科学出版社.2005.
    [116] Freeman A., Woodley J. M. and Lilly M. D. In-situ product removal as a tool for bioprocessing. Biotechnology, 1993, 11: 1007~1012.
    [117] 程可可,孙燕,刘卫斌,刘德华.底物流加策略对发酵法生产1,3-丙二醇的影响.食品与发酵工业,2004,30(4):1~5.
    [118] 徐兆瑜.1,3-丙二醇技术进展和市场.精细化工原料及中间体,2004,2:25~29.
    [119] 王剑锋,刘海军,修志龙,范圣第.生物转化生产1,3-丙二醇的研究进展.化学通报,2001,10:621~625.
    [120] Menzel K., Zeng A. P. and Deckwer W. D. High concentration and productivity of 1, 3-propanediol from continuous fermentation of glycerol by Klebsiella pheumoniae. Enzyme and Microbial Technology, 1997, 20: 82~86.
    [121] 修志龙.微生物发酵法生产1,3-丙二醇的研究进展.微生物通报,2000,27(4):300~302.
    [122] 赵红英,程可可,向波涛,刘德华.微生物发酵法生产1,3-丙二醇.精细与专用化学品,2002,13:21~23.
    [123] 徐兆瑜.1,3-丙二醇生产技术进展.化工中间体,2004,1:13~16.
    [124] Adam M. R. Safety of industrial lactic acid bacteria. Journal of Biotechnology, 1999, 68: 171~178.
    [125] 何国庆,孔青,丁立孝.益生菌的功效与潜在危害.食品科技,2004(1):12~15.
    [126] Lee Y. K. and Salminen S. The coming of age of probiotics. Trends in Food Science & Technology, 1995, 6: 241~245.
    [127] Fooks L. J., Fuller R. and Gibson G. R. Prebiotics, probiotics and human gut microbiology. International Dairy Journal, 1999, 9: 53~61.
    [128] Araki Y., Andoh A., Takizawa J., Takizawa W. and Fujiyama Y. The long-term oral administration of a product derived from a probiotic, Clostridium butyricum induced no pathological effects in rats. International Journal of Molecular Medicine, 2003, 12 (4): 571~575.
    [129] Araki Y., Andoh A., Fujiyama Y., Takizawa J. and Takizawa W. Oral administration of a product derived from Clostridium butyricum in rats. International Journal of Molecular Medicine, 2002, 9 (1): 53~57.
    [130] Reimann A., Abbad-Andaloussi S., Bieble H. and Petitdemange H. 1, 3-Propanediol formation with product-tolerant mutants of Clostridium butyricum DSM 5431 in continuous culture: productivity, carbon and electron flow. Journal of Applied Microbiology, 1998, 84 (6): 1125~1130.
    [131] Papanikolaou S. and Aggelis G. Modelling aspects of the biotechnological valorization of raw glycerol: production of citric acid by Yarrowia lipolytica and 1, 3-propanediol by Clostridium butyricum. Journal of Chemical Technology and Biotechnology, 2003, 78: 542~547.
    [132] Abbad-Andaloussi S., Amine J., Gerard P. and Petitdemange H. Effect of glucose on glycerol metabolism by Clostridium butyricum DSM 5431. Journal of Applied Microbiology, 1998, 84 (4): 515~522.
    [133] Colin T., Bories A., Lavigne C. and Moulin G Effects of acetate and butyrate during glycerol fermentation by Clostridium butyricum. Current Microbiology, 2001, 43 (4): 238~243.
    [134] Papanikolaou S., Ruiz-Sanchez P., Pariset B., Blanchard F. and Fick M. High production of 1, 3-propanediol from industrial glycerol by a newly isolated Clostridium butyricum strain. Journal of Biotechnology, 2000, 77 (2-3): 191~208.
    [135] Malaoui H. and Marczak R. Influence of glucose on glycerol metabolism by wild-type and mutant strains of Clostridium butyricum E5 grown in chemostat culture. Applied Microbiology and Biotechnology, 2001, 55 (2): 226~233.
    [136] Colin T., Bories A. and Moulin G Inhibition of Clostridium butyricura by 1, 3-propanediol and diols during glycerol fermentation. Applied Microbiology and Biotechnology, 2000, 54 (2): 201~205.
    [137] Himmi E. H., Bories A. and Barbirato F. Nutrient requirements for glycerol conversion to 1, 3-propanediol by Clostridium butyricum. Bioresource Technology, 1999, 67 (2): 123~128.
    [138] Reimann A., Biebl H. and Deckwer W. D. Production of 1, 3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Applied Microbiology and Biotechnology, 1998, 49 (4): 359~363.
    [139] Malaoui H. and Marczak R. Purification and characterization of the 1, 3-propanediol dehydrogenase of Clostridium butyricum E5. Enzyme and Microbial Technology, 2000, 27 (6): 399~405.
    [140] Malaoui H. and Marczak R. Separation and characterization of the 1, 3-propanediol and glycerol dehydrogenase activities from Clostridium butyricum E5 wild-type and mutant D. Journal of Applied Microbiology, 2001, 90 (6): 1006~1014.
    [141] Papanikolaou S., Fick M. and Aggelis G. The effect of raw glycerol concentration on the production of 1, 3-propanediol by Clostridium butyricum. Journal of Chemical Technology and Biotechnology, 2004, 79 (11): 1189~1196.
    [142] Gonzalez-Pajuelo M., Andrade J. C., and Vasconcelos I. Production of 1, 3-propanediol by Clostridium butyricum VPI 3266 using a synthetic medium and raw glycerol. Journal of Industrial Microbiology & Biotechnology, 2004, 31 (9): 442~446.
    [143] Gonzalez-Pajuelo M., Andrade J. C. and Vasconcelos I. Production of 1, 3-propanediol by Clostridium butyricum VPI 3266 in continuous cultures with high yield and productivity. Journal of Industrial Microbiology & Biotechnology, 2005, 32 (9): 391~396.
    [144] Gonzalez-Pajuelo M., Meynial-Salles I., Mendes F., Soucaille P. and Vasconcelos I. Microbial conversion of glycerol to 1, 3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DGI (Pspd5). Applied and Environmental Microbiology, 2006, 72 (1): 96~101.
    [145] Zigova J., Sturdik E., Vandak D. and Schlosser S. Butyric acid production by Clostridium butyricum with integrated extraction and pertraction. Process Biochemistry, 1999, 34 (8): 835~843.
    [146] Chen W. M., Tseng Z. J., Lee K. S. and Chang J. S. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sluge. International Journal of Hydrogen Energy, 2005, 30 (10): 1063~1070.
    [147] Yokoi H., Maeda Y., Hirose J., Hayashi S. and Takasaki Y. H_2 production by immobilized cells of Clostridiurn butyricum on porous glass beads. Biotechnology Techniques, 1997, 11 (6): 431~433.
    [148] Yokoi H., Tokushige T., Hirose J., Hayashi S. and Takasaki Y. H_2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnology Letters, 1998, 20 (2): 143~147.
    [149] Yokoi H., Mori S., Hirose J., Hayashi S. and Takasaki Y. H_2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnology Letters, 1998, 20 (9): 895~899.
    [150] O'Brien. J. R., Raynaud C., Croux C., Girbal L., Soucaille P. and Lanzilotta W. N. Insight into the mechanism of the B_(12)-independent glycerol dehydratase from Clostridium butyricum: preliminary biochemical and structural characterization. Biochemistry, 2004, 43 (16): 4635~4645.
    [151] Raynaud C., Sarcabal P., Meynial-Salles I., Croux C. and Soucaille P. Molecular characterization of the 1, 3-propanediol (1, 3 PD) operon of Clostridium butyricum. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100 (9): 5010~5015.
    [152] Gerard P., Amine J., Raval G. and Petitdemange H. Distribution of the rubredoxin gene among the Clostridium butyricum species. Current Microbiology, 1999, 38 (5): 264~267.
    [153] Gerard P., Charpentier B., Young M., Branlant C. and Petitdemange H. Cloning and characterization of the gene encoding Clostridium butyricum rubredoxin. Anaerobe, 2000, 6 (1): 29~37.
    [154] Knabel S., Tatzel R., Ludwig W. and Wallnofer P. R. Identification of Clostridium butyricum, Clostridium sporogenes and Clostridium tybutyricum by hybridization with 16S rRNA-targeted oligonucleotide probes. Systematic and Applied Microbiology, 1997, 20 (1): 85~88.
    [155] Yokota K., Fujinaga Y., Inoue K., Shimazaki S., Seo G, Takeshi K., Nagamachi E. and Oguma K. Classification of Clostridium butyricum based on sodium dodecyl sulfate polyacrylamide gel electrophoresis and pulsedfield gel electrophoresis. Anaerobe, 1998, 4 (4): 177~181.
    [156] Nakanishi S., Kuwahara T., Nakayama H., Tanaka M. and Ohnishi Y. Rapid species identification and partial strain differentiation of Clostridium butyricum by PCR using 16S-23S rDNA intergenic spacer regions. Microbiology and Immunology, 2005, 49 (7): 613~621.
    [157] 袁杰利,赵恕.微生态制剂的应用与展望.沈阳药学院学报,1993,10(4):297~300.
    [158] 史延茂,薛晓梅,李宏,彭玉麟.丁酸梭菌LMG1213、A69及巴氏梭菌LMG3285T在不同碳源上生长产氢的研究.河北科学院学报,1991,4:63~66.
    [159] 彭玉麟,史延茂.磷酸缓冲液对丁酸梭菌A69酶活力及产氢量的影响.微生物学通报,1992,19(4):203~206.
    [160] 薛晓梅,史延茂,李宏,彭玉麟.丁酸梭菌及巴氏梭菌产氢的应用研究.河北科学院学报, 1993,1:43~46.
    [161] 李凤梅,刘长江,郑艳,王希尧.产1,3—丙二醇菌株丁酸梭菌的诱变育种。生物技术,2005,15(1):34~35.
    [162] 施曼呤,戴赟,章玲.丁酸梭菌培养条件的研究.杭州师范学院学报(自然科学版),2001,18(4):38~40.
    [163] 王刚.酪酸梭状芽孢杆菌培养条件的研究.饲料研究,2002,5:8~12.
    [164] 匡群,孙梅,施大林.酪酸梭状芽孢杆菌培养条件的研究.饲料工业,2005,26(10):36~39.
    [165] 东秀珠,蔡妙英.常见细菌系统鉴定手册.北京:科学出版社.2001.
    [166] Arihara K. and Itoh M. UV-induced Lactobacillus gasseri mutants resisting sodium chloride and sodium nitrite for meat fermentation. International Journal of Food Microbiology, 2000, 56, 227~230.
    [167] Daeschel M. A. Antimicrobial substances from lactic acid bacteria for use as food preservatives. Food Technology, 1989, January, 164~166.
    [168] 禹惠明,林勇.益生乳杆菌的筛选及特性研究.微生物学通报,2002,29(1):53~56.
    [169] 田洪涛,张篪,张柏林,贾英民.双歧杆菌在冷冻乳中存活特性的研究.微生物学通报,2002,27(2):115~119.
    [170] Libudzisz z.,张柏林,高莉莉,韩俊华.乳杆菌和双歧杆菌的生理代谢多样性研究.中国乳品工业,2004,32(5):3~7.
    [171] Zubillaga M., Weill R., Postaire E., Goldman C., Caro R. and Boccio J. Effect of probiotics and functional foods and their use in different diseases. Nutrition Research, 2001, 21, 569~579.
    [172] Murayama T., Mira N., Tanaka M., Kitajo T., Asano T., Mizuochi K. and Kaneko K. Effects of orally administered Clostridium butyricum MIYAIRI 588 on mucosal immunity in mice. Veterinary Immunology and Immunopathology, 1995, 48 (3): 333~342.
    [173] Kirjavainen P. V., El-Nezami H. S., Salminen S. J., Ahokas J. T. and Wright P. F. A. The effect of orally administered viable probiotic and dairy lactobacilli on mouse lymphocyte proliferation. FEMS Immunology and Medical Microbiology, 1999, 26: 131~135.
    [174] Prasad J., Gill H., Smart J. and Gopal P. K. Selection and characterization of Lactobacillus and Bifidobacterium strains for use as probiotics. International Dairy Journal, 1998, 8, 993~1002.
    [175] Klaenhammer T. R. Microbiological considerations in selection and preparation of Lactobacillus strains for use as dietary adjuncts. Journal of Dairy Science, 1982, 65: 1339~1349.
    [176] 林稚兰,黄秀梨主编.现代微生物学与实验技术.北京:科学出版社.2000.
    [177] 韦革宏,陈文新,朱铭莪.西北半干旱地区黄芪根瘤菌DNA同源性及16S rDNA全序列分析.中国农业科学,2001,34(4):410~415.
    [178] 周德庆.微生物学实验手册.上海:上海科学技术出版社.1986.
    [179] 陈天寿.微生物培养基的制造与应用.北京:中国农业出版社.1995.
    [180] Min H. Microbial Research Techniques. Beijing, China: Science Press. 1999.
    [181] Chung K. T. and Bryant M. P. Robert E. Hungate: Pioneer of anaerobic microbial ecology. Anaerobe, 1997, 3: 213-217.
    [182] R.E.布坎南,N.E.吉本斯(中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组译,北京 农业大学《伯杰细菌鉴定手册》审校组校).伯杰细菌鉴定手册(第八版).北京:科学出版社.1984.
    [183] 吴拥军,王嘉福,尹崚峰.双歧杆菌的分离与鉴定.西南农业学报,1997,10(3):6~9.
    [184] 张苓花,于湛,王滨蕾,王运吉.双歧杆菌分离、鉴定及其营养的研究.大连轻工业学院学报,1995,14(4):49~53.
    [185] 王建业,王永坤,朱国强,周继宏,庄国宏.猪源双歧杆菌的分离与鉴定.中国微生态学杂志,1999,11(4):205~207.
    [186] 刘伟翌,杜淑芬,孟广涛,王南寿,牟亚男.肠球菌生化鉴定系列培养基及D群诊断血清的研制和应用.中国公共卫生,1998,14(1):42~44.
    [187] Conway P. L., Gorbach S. L. and Goldin B. R. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. Journal of Dairy Science, 1987, 70: 1~12.
    [188] Hood S. K. and Zottola E. A. Effect of low pH on the ability of Lactobacillus acidophilus to survive and adhere to human intestinal cells. Journal of Food Science, 1988, 53: 1514~1516.
    [189] Gilliland S. E., Staley T. E. and Bush L. J. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct. Journal of Dairy Science, 1984, 67: 3045~3051.
    [190] Klaenhammer T. R. and Kleeman E. G. Growth Characteristics, bile sensitivity, and freeze damage in colonial variants of Lactobacillus acidophilus. Applied and Environmental Microbiology, 1981, 41: 1461~1467.
    [191] Chen Q. H., He G. Q. and Ali M. A. M. Optimization of medium composition for the production of elastase by Bacillus sp. EL31410 with response surface methodology. Enzyme and Microbial Technology, 2002, 30: 667~672.
    [192] Myers R. H. and Montgomery D. C. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. New York: Wiley. 1995.
    [193] Box G. E. P., Hunter W. G. and Hunter J. S. Statistics for experimenters. New York: Wiley, 1978.
    [194] Senanayake S. P. J. N. and Shahidi F. Lipase-catalyzed incorporation of docosahexaenoic acid (DHA) into borage oil: optimization using response surface methodology. Food Chemistry, 2002, 77(1): 115~123.
    [195] Roseiro J. C. Medium development for xanthan production. Process Biochemistry, 1992, 27: 167~175.
    [196] Souza M. C. D., Roberto I. C. and Milagres A. M. F. Solid-state fermentation for xylanase production by Thermoascus aurantiacus using response surface methodology. Applied Microbiology and Biotechnology, 1999, 52 (6): 768~772.
    [197] Cockshott A. R. and Sullivan G. R. Improving the fermentation medium for Echinocandin B production. Part Ⅰ: sequential statistical experimental design. Process Biochemistry, 2001, 36: 647~660.
    [198] Saval S., Pablos L. and Cochran W. G., Optimization of a culture medium for streptomycin production using response surface methodology. Bioresource Technology, 1993, 43: 19~25.
    [199] Ma A. Y. M. and Oraikal B. Optimization of enzymatic hydrolysis of canola meal with response surface methodology. Journal of Food Processing and Preservation, 1986, 10: 99~113.
    [200] Kapat A., Rakshit S. K. and Panda T. Parameter optimization of chitin hydrolysis by Trichoderma harzianum chitinase under assay condition. Bioprocess Engineering, 1996a, 14: 275~279.
    [201] King V. A. Studies on the control of the growth of Saccharomyces cerevisiae by using response surface methodology to achieve effective preservation at high water activities. International Journal of Food Science and Technology, 1993, 28: 519~529.
    [202] Rymowiez W., Kautola H., Wojtatowiez M., Linko Y. Y. and Linko P. Studies on citric acid production with immobilized Yarrowia lipolytica in repeated batch and continuous airlift bioreactors. Applied Microbiology and Biotechnology, 1993, 39: 1~4.
    [203] Takamizawa K., Nakashima S., Yahashi Y., Kubata K. B., Suzuki T., Kawai K. and Horitsu H. Optimization of kojic acid production rate using Box-Wilson method. Journal of Fermentation and Bioengineering, 1996, 82 (4): 414~416.
    [204] Kalil S. J., Maugeri F. and Rodrigues M. I. Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochemistry, 2000, 35: 539~550.
    [205] Barbirato F., Himmi E. H., Conte T. and Bories A. 1, 3-propanediol production by fermentation: An interesting way to valorize glycerin from the. ester and ethanol industries. Industrial Crops and Products, 1998, 7, 281~289.
    [206] Butel M. J., Rimbault A., Khelifa N., Campion G, Szylit O. and Rocchiccioli F. Formation of 2-hydroxy-4-methylpentanoic acid from L-leucine by Clostridium butyricum. FEMS Microbiology Letters, 1995, 132, 171~176.
    [207] Hassiba M. and Marczak R. Purification and characterization of the 1-3-propanediol dehydrogenase of Clostridium butyricum E5. Enzyme and Microbial Technology, 2000, 27: 399~405.
    [208] Vermis K., Vandamme P. A. R. and Nelis H. J. Enumeration of viable anaerobic bacteria by solid phase cytometry under aerobic conditions. Journal of Microbiology Methods, 2002, 50: 123~130.
    [209] Li C., Bai J. H., Cai Z. L. and Ouyang F. Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. Journal of Biotechnology, 2002, 93: 27~34.
    [210] Michel-Savin D., Marchal R. and Vandecasteele J. P. Control of the selectivity of butyric acid production of Clostridium tyrobutyricum. Applied Microbiology and Biotechnology, 1990a, 32: 387-392.
    [211] Michel-Savin D., Marchal R. and Vandecasteele, J. P. Butryrate production in continuous culture of Clostridium tyrobutyricum: effect of end-product inhibition. Applied Microbiology and Biotechnology, 1990b, 33: 127-131.
    [212] 戚以政,汪叔雄.生化反应动力学与反应器(第二版).北京:化学工业出版社.1999.
    [213] Kulkarni N., Vaidya A. and Rao M. Extractive cultivation of recombinant Escherichia coli using aqueous two-phase systems for production and separation of extracellular xylanase. Biochemical Biophysical Research Communications, 1999, 255: 274~278.
    [214] Sinha J., Dey P. K. and Panda T. Aqueous two-phase: the system of choice for extractive fermentation. Applied Microbiology and Biotechnology, 2000, 54: 476~486.
    [215] Moser A. and Steiner W. The influence of the term kd for endogenous metabolism on the evaluation of Monod kinetics for biotechnological processes. European Journal of Applied Microbiology, 1975, 1: 281~289.
    [216] Sinclair C. G. and Kristiansen B. Fermentation kinetics and modeling (pp. 156). London: Open Univ. Press. 1987.
    [217] Chen Q. H., He G. Q. and Schwarz P. Studies on cultivation kinetics for elastase production by Bacillus sp EL31410. Journal of Agricultural and Food Chemistry, 2004, 52 (11): 3356~3359.
    [218] Pinches A. and Pallent L. J. Rate and yield relationship in the production of xanthan gum by batch fermentations using complex and chemically defined growth media. Biotechnology and Bioengineering, 1986, 28: 1484~1496.
    [219] Robinson D. K. and Wang D. I. C. A transport controlled bioreactor for the simultaneous production and concentration of xanthan gum. Biotechnology Progress, 1988, 4: 231~241.
    [220] Weiss R. M. and Ollis D. F. Extracellular microbial polysaccharides. I. Substrate, biomass, and product kinetic equations for batch xanthan gum fermentation. Biotechnology and Bioengineering, 1980, 22: 859~873.
    [221] Mulchandani A., Luong J. H. T. and Leduy A. Batch kinetics of microbial polysaccharide biosynthesis. Biotechnology and Bioengineering, 1988, 32: 639~646.
    [222] Luedeking R. and Piret E. L. A kinetic study of the lactic acid fermentation: Batch process at controlled pH. Journal of Biochemical and Microbiological Technology Engineering, 1959, 1: 363~394.
    [223] Miller G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 1959, 31: 426~427.
    [224] 俞俊堂,唐孝宣.生物工艺学(上册).华东理工大学出版社.1992.
    [225] 方宏清,王叙甫,陈明等.MM工程菌的大规模发酵培养工艺研究.生物工程学报,1997,13(3):294~297.
    [226] 伦世仪.生化工程.北京:中国轻工业出版社.1993.
    [227] Vandak D., Zigova J., Sturdik E. and Schlosser S. Evaluation of solvent and pH for extractive fermentation of butyric acid. Process biochemistry, 1997, 32 (3): 245~251.
    [228] 裘娟萍.提高碱性蛋白酶生产效益的措施.氨基酸和生物资源,1996,18(2):32~35.
    [229] 陈士成,曲音波,张岩,高培基.产耐碱性1,4-聚糖酶芽孢杆菌A-30液体发酵研究.生物工程学报,2000,16(4):485~489.
    [230] Berkholz R., Rohlig D. and Guthke R. Data and knowledge based experimental design for fermentation process optimization. Enzyme and Microbial Technology, 2000, 27: 784~788.
    [231] 屈明波,龚建华,黄和容.L-颉氨酸发酵供氧与补料控制的研究.生物工程学报,1992,8(2):184~191.
    [232] 宫衡,伦世仪.赖氨酸流加最优控制的研究.生物工程学报,1996,12(4):482~488.
    [233] 徐志南,岑沛霖,Wong W.K.R.不同流加方式对重组大肠杆菌细胞外hEGF表达水平的影响.生物工程学报,2001,17(5):594~597.
    [234] Lee J., Lee S. Y., Park S. and Anton P. J. M. Control of fed-batch fermentations. Biotechnology Advances, 1999, 17: 29~48.
    [235] 俞俊堂,唐孝宣主编.生物工艺学(下册).华东理工大学出版社.1992.
    [236] Lv W. H., Zhang X. Y. and Cong W. Modelling the production of nisin by Lactococcus lactis in fed-batch culture. Applied Microbiology and Biotechnology, 2005, 68: 322~326.
    [237] Zelic B., Vasic-Racki D., Wandrey C. and Takors R. Modeling of the pyruvate production with Escherichia coli in a fed-batch bioreactor. Bioprocess and Biosystems Engineering, 2004, 26 (4): 249~258.
    [238] 蔡谨,孙章辉,王隽,岑沛霖.补料发酵工艺的应用及其研究进展.工业微生物,2005,35(1):42~48.
    [239] 胡亮.非线性拟合的初值问题.吉首大学学报(自然科学版).2003,24(1):37~39.
    [240] 段明瑞,米钰,范代娣.重组人源型胶原蛋白基因工程菌补料分批发酵过程动力学研究.化学反应工程与工艺,2002,18(3):238~243.
    [241] 潘天玲,张东峰,赵昌盛,李坤平.混菌固态发酵豆渣生产菌体蛋白的研究.化学与生物工程,2004,6:35~41.
    [242] 贺克勇,薛泉宏,司美茹,来航线,岳田利.苹果渣发酵饲料蛋白质含量的影响因素研究.西北农林科技大学学报(自然科学版),2004,32(4):83~87.
    [243] 殷月兰,王永坤,王淑军,朱国强,周继红.微生物共发酵提高三七糠饲用价值的研究.微生物学通报,2000,27(2):119~123.
    [244] 涂璇,薛泉宏,司美茹,龚明福.多元混菌发酵对纤维素酶活性的影响.工业微生物,2004,34(1):30~34.
    [245] 周彬,孟宪军,张忠泽.白菜乳酸菌混菌发酵的研究.微生物学杂志,2002,22(2):12~14.
    [246] 戚薇,乔琳,杜连祥.蜂花粉的固态发酵工艺.食品与发酵工业,2004,30(12):55~59.
    [247] 刘会平,南庆贤.化学中和法制备高效浓缩乳酸菌发酵剂的研究.中国畜产与食品,1998,5(2):50~52.
    [248] 南庆贤,龚海岩,李兴民,高松柏.双歧杆菌发酵乳饮料的研究.北京农业大学学报,1994,20(4):419~422.
    [249] 张龙翔,张庭芳,李令媛.生化实验方法和技术(第二版).北京:高等教育出版社.1997.
    [250] 袁佩娜.微生态制剂的质量控制要求.中国微生态学杂志,2002,4:187~188.
    [251] 卫生部.食品安全性毒理学评价程序和方法.北京:中国标准出版社.1995.
    [252] GB15193.食品安全性评价程序与方法.
    [253] 李奇慧,董兆君.Ames试验检测硫芥的致突变作用.局解手术学杂志,2004,13(4):235~236.
    [254] 林朝晖.Ames试验在水质检测方面的应用.微生物学通报,2002,29(3):66~70.
    [255] 魏曦,康白.正常菌群与健康—人体微生态学.上海:上海科学技术出版社.1985.
    [256] 周正任主编.医学微生物学.人民卫生出版社.2003.
    [257] Zhang Y., Wu X. Q., Ren Y. P., Fu J. Y. and Zhang Y. Safety evaluation of a triterpenoid-rich extract from bamboo shavings. Food and Chemical Toxicology, 2004, 42: 1867~1875.
    [258] Zhou J. S., Shu Q., Rutherfurd K. J., Prasad J., Gopak P. K. and Gill H. S. Acute oral toxicity and bacterial translocation studies on potentially probiotic strains of lactic acid bacteria. Food and Chemical Toxicology, 2000, 38: 153~161.
    [259] Ames B. N., McCann J. and Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian microsome mutagenicity test. Mutation Research, 1975, 31: 347~364.
    [260] Maron D. M. and Ames B. N. Revised methods for the Salmonella mutagenicity test. Mutation Research, 1983, 113: 173~215.
    [261] Flood M. T. and Kondo M. Safety evaluation of lipase produced from Rhizopus oryzae: summary of toxicological data. Regulatory Toxicology and Pharmacology, 2003, 37: 293~304.
    [262] Tannock G. W. Studies of the intestinal microflora: a prerequistite for the development of probiotics. International Dairy Journal, 1998, 8: 527~533.
    [263] Plant L., Lam C., Conway P. L. and O'Riordan K. Gastrointestinal microbial community shifts observed following oral administration of a Lactobacillus fermentum strain to mice. FEMS Microbiology Ecology, 2003, 43: 133~140.
    [264] Wilson K. H. and Blitchington R. B. Human colonic biota studied by ribosomal DNA sequence analysis. Applied and Environmental Microbiology, 1996, 62: 2273~2278.
    [265] Dieleman L. A., Goerres M. S., Arends A., Sprengers D., Torrice C., Hoentjen F., Grenther W. B. and Sartor R. B. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenie rats after antibiotic treatment. Gut, 2003, 52: 370~376.
    [266] Osman N., Adawi D., Ahrne F. S., Jeppsson B. and Molin G. Modulation of the effect of Dextran Sulfate Sodium-Induced acute colitis by the administration of different probiotic strains of Lactobacillus and Bifidobacterium. Digestive Diseases and Sciences, 2004, 49 (2): 320~327.
    [267] Gibson G. R., Beatty F. R., Wang X. and Cummings J. H. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology, 1995, 108: 1~8.
    [268] Ministry of Health PR China. Beijing: Technical standards for testing and assessment of health food. 2003.
    [269] Abrahao C., Carman R. J., Hahn H. and Liesenfeld O. Similar frequency of detection of Clostridium perfringens enterotoxin and Clostridium difficile toxins in patients with antibiotic-associated diarrhea. European Journal of Clinical Microbiology & Infectious Diseases, 2001, 20 (9): 676~677.
    [270] Sparks S. G., Carman R. J., Sarker M. R. and McClane B. A. Genotyping of enterotoxigenic Clostridium perfringens fecal isolates associated with antibiotic-associated diarrhea and food poisoning in North America. Journal of Clinical Microbiology, 2001, 39 (3): 883~888.
    [271] Hogenauer C., Hammer H. F., Krejs G. J. and Reisinger E. C. Mechanisms and management of antibiotic-associated diarrhea. Clinical Infectious Diseases, 1998, 27: 702~710.
    [272] Beniwal R. S., Arena V. C., Thomas L., Narla S., Imperiale T. F., Chaudhry R. A. and Ahmad U. A. Arandomized trial of yogurt for prevention of antibiotic-associated diarrhea. Digestive Diseases and Sciences, 2003, 48 (10): 2077~2082.
    [273] Young V. B. and Schmidt T. M. Antibiotic-associated diarrhea accompanied by large-scale alterations in the composition of the fecal microbiota. Journal of Clinical Microbiology, 2004, 42 (3): 1203~1206.
    [274] Vanderhoof J. A., Whitney D. B., Antonson D. L., Hanner T. L., Lupo J. V. and Young R. J. Lactobacillus GG in the prevention of antibiotic-associated diarrhea in children. Journal of Pediatrics, 1999, 135 (5): 564~568.
    [275] Thomas M. R., Litin S. C., Osmon D. R., Corr A. P., Weaver A. L. and Lohse C. M. Lack of effect of Lactobacillus GG on antibiotic-associated diarrhea: a randomized, placebo-controlled trial. Mayo Clinic Proceedings, 2001, 76: 883~889.
    [276] Brown A. C., Shovic A., Ibranim S. A., Holck P. and Huang A. A non-dairy probiotic's (POI) influence on changing the gastrointestinal tract's microflora environment. Alternative Therapies in Health and Medicine, 2005, 11 (1): 58~64.
    [277] Yoong P., Schuch R., Nelson D. and Fischetti V. A. Identification of a broadly active phage lyric enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. Journal of Bacteriology, 2004, 186 (14): 4808~4812.
    [278] de Roos N. M. and Katan M. B. Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: a review of papers published between 1988 and 1998. American Journal of Clinical Nutrition, 2000, 71: 405~411.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700