二维水果形状检测与分类算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在水果品质检测和分级中,形状是一个非常重要的指标,在国家标准中有严格的规定。本文在大量实验研究的基础上,通过对多种算法的对比分析,设计了具有统一架构的水果形状检测算法;从数学角度提出了形状的定义,并针对正常果形、轻度畸形、严重畸形三种类别研究了不同的形状描述方法;讨论了常用的分类器对形状分类结果的影响;最后针对基于形状描述的分类精度不是很高的情况,定义了新的测度并建立了基于配准技术的形状分类框架,达到了预期的研究目标。主要研究内容和研究结果如下:
     1.解决了如何从众多的去噪方法中选择适合水果形状检测的方法的难题。对于高斯噪声和随机噪声类型图像,在原始图像信噪比大于8时,选择全变差(Total Variation,TV)方法恢复可以达到最好效果;信噪比小于8时,选择维纳滤波才可以达到最好的恢复效果;而对于椒盐噪声类型图像,选用中值滤波时恢复效果最好。
     2.提出了运用矩阵广义逆和奇异值分解的方法恢复运动模糊图像,并用已知大小的标准球做实验,检测恢复后图像中球的大小,实验结果表明,提出的方法恢复后的图像质量要高于传统的盲去卷积等方法,速度要比差分递推法快6倍,比投影迭代方法快60倍。
     3.提出了多尺度水平集形状检测方法,解决了传统的方法无论是检测算子还是梯度向量流无法检测表面含有丰富颜色特征的水果形状的问题。实验结果表明该方法具有一系列的优点:无需任何形状预处理操作;具有一定的光照适应性;能够平滑地检测表面含有丰富颜色特征的水果,非常适合水果形状检测。
     4.提出了多尺度能量分布形状描述方法,将形状轮廓序列看作一周期信号,从多分辨率分析角度来说,代表形状全局信息的主要能量分布在粗尺度上,而表示形状局部信息的次要能量分布在细尺度上,该方法对严重畸形的水果分类比较有效,实验结果表明其分类精度可以达到81.20%。该方法中基于最大期望方法确定起始点的方法,可以唯一确定起始点,这对解决形状描述中旋转不变性问题非常有效。
     5.系统地分析和比较了目前常用形状描述方法,提出了将小波矩方法用于水果形状描述,得出结论:在水果形状分类中,用具有对称性的小波基(如Morlet小波)和最近邻法分类准则时,正常果形、轻度畸形及严重畸形的分类准确率可以达到69.42%、80.47%及72.62%。
     6.分析了分类器对水果形状分类结果的影响,集中研究了线性判别函数、聚类分析、BP神经网络和支持向量机等四种分类器分别对三种不同的输入特征模式(傅立叶描述子特征、Zernike矩特征和小波矩特征)时的分类性能。得出结论:无论用什么分类器,小波矩特征模式作为输入模式时,都能得到最好的分类结果;其次对小波矩特征模式而言,三个聚类中心的聚类分析方法和支持向量机作为分类器都能得到尚为满意的分类精度。采用三个聚类中心的聚类分析方法时,正常果形、轻度畸形及严重畸形的分类正确率为86.21%、65.78%和85.71%;而采用支持向量机作为分类器时,分类正确率分别为:70%、83.56%和75%。
     7.建立了基于配准技术的水果形状分类框架。定义了新的测度,该测度基于面积差水平集表示原理,将待分类的形状与已知类别的形状进行配准以使得它们的不重合面积最小。并从基于最小测度配准和运动估计配准两个方面进行实验,实验结果表明基于配准的方法能达到更高的分类精度和令人满意的结果,正常果形的分类正确率91.20%,轻度畸形的分类正确率为85.88%,严重畸形分类正确率为83.34%。
In the process of fruit quality inspection and fruit sorting, shape is a very important index, which isprescribed by national Standard. Based on the comparison analysis of different algorithms and a numberof experiments, a united framework algorithm for shape detection was developed; the concept of shapewas defined from the mathematic view; and difference shape descriptors were analyzed for normalshape, slight abnormal shape and serious abnormal shape respectively, the effects of differenct classifierto class result were discussed; At last, for correction ration of the classification by shape descriptors wasnot satisfied with request, a new metric was designed and a new shape classification framework basedon registration technique wasconstructed, and expected research object was achieved. Main contentsand results were listed as follows:
     1. A difficult problem of how to select appropriate method for fruit shape detection from many imagedenoise techniques was solved. When the noise type was "Guassian" or "Random", and SNR wasover 8, TV method can achieve the best resume result, when SNR was under 8, Winner filter canachieve the best resume result; when the noise type was "salt&pepper", median filter can achievethe best resume result.
     2. A method based on General Matrix Inverse (GMI) and Singular Value Decomposition (SVD) wasdeveloped. Some standard balls were used for the experiments to detect the size of balls in theresumed image. The results showed that the new method was superior to the traditional blindconvolution and the speed is faster than difference successive 6 times and than project iteration 60times.
     3. Multi-scale level set algorithm for shape detection was developed, and resolved the problem thatfruit shape fruit shape which surface contain rich color features could not be detected by traditionalalgorithms not only detection operator but also Gradient Vector Flow. The experiment resultdemonstrated that this algorithm has many virtues: no need of any shape preprocess; is illuminationadaptive; can smoothly detect fruit shape which surface contain rich color features, So it is very fitfor fruit shape detection.
     4. A shape descriptors based on multi-scale energy distribution was proposed. The main idea was thatshape contour series could be viewed as one periodic signal, and from the view of multi-resolutionanalysis, the main energies representing global shape information were distributed at coarse scale,while the subordinate energies representing local shape information were distributed at fine scale.This method was effective for the classification serious abnormal fruit and experiment resultdemonstrated that the correct ratio can achieve 81.20%, the method for selection start point whichwas base on maximum expectation in this algorithm, could determine only start point, with wasvery effective to solute the invariant of rotation for shape description.
     5. The shape descriptors currently used were system analyzed, and wavelet moment was proposed forfruit shape description, and some conclusions were concluded that when wavelet base which is symmetry (e.g. Morlet) and nearest neighbor were used for fruit shape classification, the correctratio of normal shape, slight abnormal and serious abnormal can arrived at 69.42%, 80.47%and72.62%respectively.
     6. The influence of different classifiers on fruit shade classification was analyzed, especially on theinfluence of four classifiers (linear discrimination function, cluster analysis, back propagationneural network and support vector machine) combined with three feature patterns (Fourierdescriptor feature patterns, Zernike moment feature patterns and wavelet moment feature patterns).The conclusions were listed as follows: 1) best results were obtained by the wavelet featurepatterns combined with each classifier; 2) for wavelet moment feature patterns, good precision ofclassification were obtained by the classifier of cluster analysis (three cluster centre) and supportvector machine. The correction ration of normal shape, slight abnormality and serious abnormalitywas 86.21%, 65.78%and 85.71%when cluster analysis (three cluster center) was used. Whensupport vector machine was used as classifier, the correction ration of normal shape, slightabnormality and serious abnormality was 70%, 83.56%and 75%, respectively.
     7. A new method for shape classification based on registration was developed. In this method, a newmetric based on the principle of level set representation of difference area was designed. Minimalmetric registration and motion estimating registration were analyzed, the normal classificationcorrection ratio is 91.20%, slight abnormal classification correction ratio is 85.88%and seriousabnormal classification correction ratio was 83.34%. The result demonstrated that this methodbased on registration could obtain better classification correction ration than the traditional methodbased on shape description.
引文
[1] 汪懋华.精细农业的实践与农业科技创新.中国软件学,4:21-25,1999.
    [2] 中国农业年鉴编辑委员会.中国统计年鉴,北京,中国农业出版社,2005.
    [3] 黄永林,应义斌.用于水果实时分级系统的同步跟踪自动控制装置的研究.农业工程学报,18(4):163-166,2002.
    [4] 汪懋华.“精细农作”技术发展与农业装备技术创业系列讲座.农业机械学报 2-10,1999.
    [5] 付峰.球体图像的灰度变换与颜色变换模型及其在柑橘图像校正中的应用研究.[硕士学位论文],浙江大学,2003.3.
    [6] 周水琴.机器视觉系统的色度校正模型及其在西柚分级中的应用.[硕士学位论文],浙江大学,2004.3.
    [7] 叶煜程,应义斌.水果品质检测与分级技术.农机化研究,1:58-59,2003.
    [8] 庞江伟.基于计算机视觉的脐橙表面常见缺陷种类识别的研究.[硕士学位论文],浙江大学,2006.3.
    [9] 黄险峰,瞿磊.基于数字轮廓图像的水果体积估计.广东自动化与信息工程,24(3):14-17,2003.
    [10] Tao Y, Heinemann P H, et al. Machine vision for color inspection of potatoes and apples. Transaction of the ASAE, 38(5): 1555-1561,1995.
    [11] 杨秀坤,陈晓光等.用遗传神经网络方法进行苹果颜色自动检测的研究,1997(6):173-176
    [12] 何东健,杨青,薛少平,耿楠.果实表面颜色计算机视觉分级技术研究.农业工程学报,14(3):202-205,1998.
    [13] 李庆中,张漫,汪懋华.基于遗传神经网络的苹果颜色实时分级方法.中国图像图形学报,5(9):779-784,2000.
    [14] 冯斌,汪懋华.基于颜色分形的水果计算机视觉分级技术.农业工程学报,18(2):141-144,2002.
    [15] 章文英,应义斌.苹果图像的低层处理及尺寸检测.浙江农业学报,13(4):214-217,2001.
    [16] 冯斌,汪懋华.基于计算机视觉的水果大小检测方法.农业机械学报,34(1):73-75,2003.
    [17] 饶秀勤,应义斌.基于机器视觉的水果尺寸检测误差分析.农业工程学报,19(1):24-26,2003.
    [18] 庞江伟,应义斌.机器视觉在水果缺陷检测中的研究现状.农机化研究,9:47-49,2006.
    [19] 应义斌,成芳,马俊福.基于最小矩形法的柑桔横径实时检测方法研究.生物数学学报,19(3):352-256,2004.
    [20] 中国国门时报,2006-7-14.
    [21] Tadhg Brosnan, Da-Wen Sun. Computer Vision Application in Agriculture. International Conference on Agriculture Science and Technology, Session 6-153-161,2001.
    [22] Umetani, J., and K.Taguchi. Discrimination of general shapes by psychological feature properties. In Proceeding 1 st International Conference on Robot Vision and Sensory Controls, 135-147. Stratford-upon-Avon, U.K.:IFS, Ltd.
    [23] Pavlidis, T. Algorithms for graphics and image processing. Computer Science, Press.Rockville,Md, 1982.
    [24] Sarkar N., R. R. Wolfe. Computer Vision Based System for Quality Separation of Fresh Market Tomatoes, Transactions of the ASAE, 28(5), 1714-1718,1985.
    [25] Sarkar N., R.R.Wolfe. Feature extraction techniques for sorting tomatoes by computer vision. Transactions of the ASAE, 28(3): 970-974,1985.
    [26] Guyer D E, Miles G E, Schreiber M M. Machine vision and image processing for plant identification. Transactions of the ASAE, 29(6): 1500-1507, 1986.
    [27] Wolfe, R.R. and M.Swaminathan. Determining orientation and shape of bell peppers by machine vision. Transactions of the ASAE, 30(6): 1853-1856,1987.
    [28] Varghese, Z., C.T. Morrow, P.H. Heinemann, H.J. Sommer Ⅲ, Y. Tao, and R.M. Crassweller. Automated Inspection of Golden Delicious Apples using Color Computer Vision, ASAE Paper 91-7002, 1991.
    [29] Howarth M. S., Brandon, J.R., Searcy, S.W., N Kehtarnavaz. Estimation of tip shape for carrot classification by machine vision. Journal of Agricultural Engineering research, 53(22), 123-139, 1992.
    [30] Van DE Vooren, J. G., G Polder, Gwam Van Der Heijden. Transactions of the ASAE 35(1): 347-350,1992.
    [31] Guyer D E, Miles G E, Gaultney L D. Application of machine vision to shape analysis in leaf and plant identification. Transactions of the ASAE, 36(1): 163-171,1993.
    [32] Heinemarm, P.H., Hughes, R., Morrow, C.T., Sommer, H. J., Beelman, R.B., Wuest, P. J. Grading of mushrooms using a machine vision system. Transactions of the ASAE, 37(5): 1671-1677,1994.
    [33] Singh, N. and MJ Delwiche. Machine vision methods for defect sorting stone fruit. Trans ASAE 37(6): 1989-1997,1994.
    [34] Ding K., S.Gunasekaran. Shape feature extraction and classification of food material using Computer Vision System. Transactions of the ASAE, 37(5): 1537-1545,1994.
    [35] Heinemann, P.H., Varghese, Z. A., Morrow, C.T., H.J.,Sommer Ⅲ, R.M., Crassweller. Machine vision inspection of Golden Delicious apples. Transactions of the ASAE, 11 (6): 901-906,1995.
    [36] Tao Y., C.T.Morrow, P.H.Heinemann,H.J.Sommer Ⅲ. Fourier-based separation technique for shape grading of potatoes using machine vision. Transactions of the ASAE, 38(3): 949-957,1995.
    [37] Yonekawa S, Sakain, Kitanio. Identification of idealized leaf types using simple dimensionless shape factors by image analysis. Transactions of ASAE, 39(4): 1525-1533,1996.
    [38] Ni, B., M. R. Paulsen and J. F. Reid. Corn kernel crown shape identification using image processing. Transactions of the ASAE, 40(3): 833-838,1997.
    [39] Leemans V., Magein H, Destain MF. Apple Shape Inspection with Computer Vision. Proceedings from the sensors for Nondestructive Testing lnternationa I Conference,Orlando Florida, 316-327,1997.
    [40] van Eck J.W.; van der Heijden G.W.A.M.; Polder G. Accurate measurement of size and shape of cucumber fruits with image analysis. Journal of Agricultural Engineering Research, 70(4): 335-353,1998.
    [41] Suranjan Panigrahi, Manjit K.Misra, Stephen Willson. Evaluations of fractal geometry and invariant moments for shape classification of corn germplasm. Computers and Electronics in Agriculture, 20(11): 1-20,1998.
    [42] Nagata, M., Cao, Q.X. Study on Grade Judgment of Fruit Vegetables Using Machine Vision. Japan Agricultural Research Quarterly, 32(4): 257-265,1998.
    [43] Cao, Q.X., Nagata, M., Wang,H.Y., Bato,P.M.. Orientation and shape extraction of strawberry by colour image processing. ASAE Annual International Meeting, Paper No.993161, 1999.
    [44] Ingrid Paulus, Eddie Schrevens. Shape Characterization of New Apple Cultivars by Fourier Expansion of Digitized Images. Journal of Agriculture Engineering Research. 72:113-118,1999.
    [45] Morimoto, T., Takeuchi, T., Miyata, H., Hashimoto, Y. Pattern recognition of fruit shape based on the concept of chaos and neural networks. Computers and Electronics in Agriculture, 26:171-186, 2000.
    [46] Majumdar S, Jayasd S. Classification of cereal Grains using machine vision:Ⅱ color models. Trasactions of the ASAE, 43(6): 1677-1680,2000b.
    [47] Currie, A. J., S. Ganeshanandam, D.A., Noiton, D. Garrick, C.J.A., Shelbourne&N. Oraguzie. Quantitative evaluation of apple fruit shape by principal component analysis of Fourier descriptors. Euphytica, 111:219-227,2000.
    [48] Mad Oide, Seshi Ninomiya. Discrimination of soybean leaflet shape by neural networks with image input. Computers and electronics in Agriculture, 29(1): 59-72,2000.
    [49] Perez A.J., Lopez F., Benlloeh J.V., Christensen S. Colour and shape analysis techniques for weed detection in cereal fields. Computers and electronics in Agriculture,25(3): 197-212,2000.
    [50] Wei Ding, Hirohisa Nesumi, Yasushi Takano&yasuo Ukai. Quantitative evaluation of the three-dimensional fruit shape and size of Citrus species based on spherical harmonic descriptors. Euphytica, 114:103-115,2000.
    [51] Shouche, S.P., Rastogi, R., Bhagwat, S. G., Jayashree Krishna Sainis. Shape analysis of grains of Indian wheat varieties. Computer and Electronics in Agriculture.33:55-76,2001.
    [52] Manh G, Rabatel G. In field classification of weed leaves by machine vision using deformable templates. Third European Conference on Precision Agriculture, Montpellier, France, 599-604,2001.
    [53] Gerhard Jahs, Henrik Moiler Nielsen,Wolfgang Paul. Measuring image analysis attributes and modeling fuzzy consumer aspects for tomato quality grading. Computer and Electronics in Agriculture, 31(1): 17-29,2001.
    [54] Laykin, S., V. Alchanatis, E.Fallik, Y. Edan. Image-Processing Algorithm for Tomato Classification. Transactions of the ASAE, 45(3): 851-858,2002.
    [55] Beyer, M., Hahn, R., Peschel, S., Harz, M., Knoche, M. Analysing fruit shape in sweet cherry. Scientia Horticulturae,96(12): 139-150,2002.
    [56] Katayama, T., K.Imou,T.Okamoto, Y. Kaizu, and K.Tsukano. Discrimination of strawberry class using 3D image processing. Journal of Japanese Society of Agricultural Machinery, 65(2), 71-76, 2003.
    [57] Yasuo Saito, Toshiharu Hatanaka, Katsuji Uosaki, Hidekazu Shigeto. Neural Network Application to Eggplant Classification. KES 2003, LNAI 2774, 933-940,2003.
    [58] Yoshioka Y, Iwata H, Ohsawa R, N inomiya S. Analysis of petal shape variation of Primula sieboldii by elliptic Fourier descriptors and principal componem analysis. Annales Botanici Fennici, 94:1-8,2004.
    [59] Susumu Goto, Hiroyoshi lwata, Shinsaku Shibano, Kazumi Ohya etc. Fruit shape variation in Fraxinus mandshurica vat. japonica characterized using elliptic Fourier descriptors and the effect on flight duration. Ecological research,20:733-738, 2005.
    [60] Sogaard, H.T. Weed classification by Active shape models. Biosystems Engineering, 91 (3), 271-281,2005.
    [61] Abdullah, M.Z., Fathinul, A.S., Mohd—Azemi, B.M.N. Transactions of the Institute of Measurement and Control, 27(2): 65-87,2005.
    [62] K.Imou, Y. Kaizu, M.Morita, S.Yokoyama. Three-dimensional shape measurement of strawberries by volume Intersection method. Transacations of the ASABE, 49(2): 449-456,2006.
    [63] Shahin, M A, Symons, S J., Schepdael L V, Tahir A R. Three Dimensional Seed shape and size Measurement with orthogonal Cameras. ASABE Meeting, Paper Number:063079, 2006.
    [64] 刘禾,汪懋华.水果果形判别人工神经网络专家系统的研究.农业工程学报,12(1):171-176,1996.
    [65] 刘禾,周茵.基于神经网络的果形对称判别系统.无锡轻工大学学报,15(4):341-344,1996.
    [66] 陈晓光,杨秀坤.果型综合评价系统中的退火演化和神经网络融合方法研究.农业工程学报,13(4):161-165,1997.
    [67] 应义斌,景寒松.黄花梨果形的机器视觉识别方法研究.农业工程学报,15(1):192-196,1999.
    [68] 应义斌.水果形状的傅里叶描述子研究.生物数学学报,16(2):234-240,2001.
    [69] Yibing, Y., Jing, H.: Detecting Stem and Shape of Pear with ANN and Fourier Transformation. Transactions of the ASAE. 46: 157-162, 2003.
    [70] 李庆中.苹果自动分级中计算机视觉信息快速获取与处理技术的研究.[博士学位论文],中国农业大学,2000.6.
    [71] 周文,韩力群,李锐.计算机图像处理技术在烤烟烟叶形状特征提取中的应用.烟草科技,1:12-14,2000.
    [72] 周维忠,冯心海,孙国基.种蛋外形的计算机视觉识别研究.农业工程学报,16(6):126-130,2000.
    [73] 潘伟.计算机视觉在农产品自动检测与分级中的研究——番茄的自动检测与分级.[硕士学位论文],东北农业大学,2000.6.
    [74] 张嘏伟.计算机视觉系统在番茄品质识别与分类中的研究.[硕士学位论文],河北农业大学,2005.7.
    [75] 赵静,何东健.果实形状的计算识别方法研究.农业工程学报,17(2):165-167,2001.
    [76] 宁纪锋,何东健,张海亮,龙满生.基于图像形态学的球形果实品质检测研究.农机化研究.3:28-30,2001.
    [77] 冯斌.计算机视觉信息处理方法与水果分级检测技术研究.[博士学位论文],中国农业大学,2002.5.
    [78] 沈明霞,姬长英,李秀智.基于遗传BP神经网络的苹果形状识别.粮油加工与食品机械,12:64-66,2003.
    [79] 李秀智.基于机器视觉的苹果形状分级系统研究.[硕士学位论文],南京农业大学,2003.7
    [80] 向光蓉.基于图像识别的苹果分级研究.[硕士学位论文],大连海事大学,2003.7.
    [81] 柴玉华,潘伟.基于番茄外部形状判别番茄空洞果的研究.农机化研究,3:85-86,2003.
    [82] 高华,王雅琴.基于计算机视觉的农产品形状分级研究.计算机工程与应用,14:227-229,2004.
    [83] 黄星弈,李剑,姜松.基于计算机视觉的稻种品种识别技术研究.江苏大学学报(自然科学版),25(2):102-104,2004.
    [84] 袁金丽.计算机视觉在苹果外部品质检测与分级方面的应用研究.[硕士学位论文],中国农业大学,2005.7.
    [85] 齐晓娜.鸭梨品质检测与分级计算机视觉系统的研究.[硕士学位论文],河北农业大学,2005.7.
    [86] 管庶安,周红,刘光蓉.基于Zernike矩的米粒形状模糊分类.河南工业大学学报(自然科学版),26(1):23-25,2005.
    [87] 杨蜀秦.大米外观品质计算机视觉检测的研究.[硕士学位论文],西北农林科技大学,2005.6.
    [88] 林开颜,吴军辉,徐立鸿.基于计算机视觉技术的水果形状分级方法.农业机械学报,36(6):71-74,2005.
    [89] 张聪,管庶安.基于图像分析的大米形状识别.粮食与饲料工业,6:5-7,2006.
    [90] 蔡健荣,许月明.基于主动形状模型的苹果果形分级研究.农业工程学报,22(6):123-126,2006.
    [91] 黄星弈,魏海丽,赵杰文.实时在线检测苹果果形的一种计算方法.食品与机械 22(1):27-29,2006.
    [92] 白菲.基于机器视觉的柑橘水果外形识别方法研究.[硕士学位论文],中国农业大学,2006.
    [93] 郑秀莲.基于计算机视觉的柑橘无损检测和分级技术研究.[硕士学位论文],浙江工业大学,2005.7.
    [94] 徐长发.偏微分方程数值解法.华中理工大学出版社,2000.
    [95] 陆金甫.偏微分方程数值解法.清华大学出版社,2004.
    [96] Gilles Aubert, Pierre Komprobst. Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations. Springer, Newyork, 2002.
    [97] 欧维义.数学物理方程.吉林大学出版社,长春,1991.
    [98] 康盛亮,桂子鹏.数学物理方程近代方法.同济大学出版社,上海,1995.
    [99] 洪正平.变分法在光学中的应用,烟台师范学院学报(自然科学版),12(1):69-73,1996.
    [100] 徐长发,闵志方,张锴.一种基于PDE提高信噪比的图像处理算法.华中科技大学学报(自然科学版),34(2):14-16,2006.
    [101] 付树军,阮秋琦,王文洽.偏微分方程(PDEs)模型在图像处理中的若干应用.计算机工程与应用,2:33-35,2005.
    [102] Caselle V, Morel J M, Sapiro G et al. Introduction to the special issue on partial differential Equations and geometry-driven diffusion in image processing and analysis. IEEE Trans on Image Processing, 7(3): 269-272,1998.
    [103] Stanley Osher, Ronald Fedkiw. Level set Methods and Dynamic Implicit Surfaces.Springer, Newyork, 2003.
    [104] 蒋欣.水平集方法及其在图像分割上的应用.上海生物医学工程,25(3):29-32,2004.
    [105] Daubechies I. Where do wavelet come from?—A personal point of view. Proceedings of IEEE, 84(5), 510-513,1996.
    [106] 杨福生.小波变换的工程分析与应用.科学出版社,北京,1999.
    [107] 陈武凡,杨丰,江贵平等.小波分析及其在图像处理中的应用.科学出版社,北京,2002.
    [108] Pearcon K. On lines and planes of closest fit to systems of points in space. Philos Mng, 6(2): 559-572,1901.
    [109] Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24:417-441,498-520, 1933.
    [110] 许禄,邵学广.化学计量学方法.科学出版社,北京,130-131,2004.
    [111] Rafael C.Gonzalez,阮秋琦等译.数字图像处理,电子工业出版社,北京,2003.
    [112] Kenneth.R.Castieman,朱志刚等译.数字图像处理,北京,电子工业出版社,1998.
    [113] 章毓晋.图像处理与分析,清华大学出版社,北京,1999.
    [114] Osher S.,Rudin L., Feature-Oriented Image enhancement using Shock Filters, SIAM J. Numer. Anal. 27:919-940, 1990.
    [115] Guy Gilboa, Nir A. Sochen, Yehoshua Y.Zeevi. Image Enhancement and denoising by Complex Diffusion Process. IEEE Transaction on Image Processing, 11 (7): 689-703,2002.
    [116] Alvarez L., Mazorra L. Signal and image restoration using shock filters and anisotropic diffusion. SIAM J. Numer. Anal., 31 (2):590-605,1994.
    [117] Guy Gilboa, Nir A. Sochen, Yehoshua Y.Zeevi. Regularized shock filters and complex diffusion. LNCS, 2350:399-313,2002.
    [118] Rudin L, Osher S, Fatemi E. Nonlinear Total Variation Based Noise Removal Algorithms. Physica D, 60:259-268,1992.
    [119] Chan T, Strong D. Spatially and scale adaptive total variation based regularization and anisotropic diffusion in image processing. UCLA CAM Report 96-46, November 1996.
    [120] You Y., Kaveh M. A Regularization approach to joint blur identification and image restoration. IEEE Transaction on Image Processing, 5(3): 416-428,1996.
    [121] 于大勇,袁祥岩,高万荣,陶纯堪.频域迭代盲解卷积图像恢复方法及其算法实现.中国激光,29(12):1101-1104,2002.
    [122] 贺健峰,肖楠楠.运动图像的模糊与恢复.昆明理工大学学报,1997-22(2):132-136.
    [123] 桂江生,应义斌,饶秀勤.基于矩阵广义逆的运动水果模糊图像恢复.生物数学学报.21(3),448-452,2006.
    [124] 蒋正新,施国梁.矩阵理论及其应用[M],北京,北京航空学院出版社,1988.3:117-124.
    [125] 北大数学系几何与代数教研室代数小组.高等代数(第2版)[M],北京,高等教育出版社,1988.10:197-199.
    [126] 舒昌献.基于软化形态学的边缘检测.中国图像图形学报,2:139-142,1999.
    [127] Canny J. A Computational Approach to Edge Detection. IEEE Transactions On Pattern Analysis and Machine Intelligent, 8(6): 679-698,1986.
    [128] Jiangsheng Gui, Yibin Ying, Xiuqin Rao. Fruit shape detection based on gradient vector flow. Proceedings of SPIE-The international Society for Optical Engineering. V6381, 2006.
    [129] Chenyan, X., Jerry, L. P.: Snakes, shapes, and gradient vector flow. IEEE Transaction on Image Processing, 7:359-369, 1998.
    [130] Osher, S., Sethian, J. A. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. Journal of Computational Physics, 79(1): 12-49, 1988.
    [131] Guillermo Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge university press, Cambridge, UK,74-76,2001.
    [132] Sethian J. Level set Methods and Fast Marching Methods. Cambridge university press, Cambridge, UK, 44-59,1999.
    [133] Liu, J. C., Hwang, W. L. Active contour model using wavelet modulus for object segmentation and tracking in video sequences. International Journal of Wavelets, Multiresolution and Information Processing, 1(1): 93-113, 2002.
    [134] Malladi R., Sethian J., Vemuri B. Shape modeling with front propagation: a level set approach, IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(2): 158-175,1995.
    [135] Caselles, V., Kimmel, R., Sapiro, G. Geodesic active contours. International Journal of Computer Vision, 22(1): 61-79, 1997.
    [136] Tony, F. Chan., Sandberg, B.Y., Luminta, A.Vese. Active contours without edges for vector-valued Images. Journal of Visual Communication and Image Representation, 11(2): 130—141,2000
    [137] Tony, F. C., Luminta, A.Vese. Active contours with out edges. IEEE Transactions on Image Processing, 10 (2): 266-277,2001.
    [138] Mumford D., Shah J. Optimal approximations by piecewise smooth functions and associated variational problems. Communications in Pure and Applied Mathematics, 42:577-685,1989.
    [139] David Marr. Vision—A computational investigation into the Human Representation and Processing of visual information. Freeman, San Francisco, 1982.
    [140] Lindeberg T. Scale-Space Theory in Computer vision. The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, 1994.
    [141] Mallat S.G. Scale change versus scale representation. ICCV, 592-596,1989.
    [142] Dryden, I. L., Mardia, K.V. Statistical Shape Analysis. John Wiley and Sons, New York, 1998.
    [143] Small, C. G. The Statistical Theory of Shape. Springer Verlag, Berlin, 1996.
    [144] Milan sonka,艾海舟等译,图像分析与机器视觉(第二版),人民邮电出版社,北京,2003.
    [145] Blume, H. A transformation for extracting new descriptors of shape. In models for the perception of speech and visual form, Wathen-Dunn, W. (ed.), MIT Press, Cambridge, Massachusetts.
    [146] Pavlidis T. Algorithms for Graphics and Image Processing. Computer Science Press, 1980.
    [147] Ballard D H, Brown C M. Computer Vision, Prentice-Hall, 1982.
    [148] Drolon, H., Druaux, F., Faure, A. Particles shape analysis and classification using the wavelet transform. Pattern Recognition Letters, 21(6-7): 473-482,2000.
    [149] Li, Jin, Kuo, C-C. J. Automatic target shape recognition via deformable wavelet templates. Proceedings of SPIE, Vol. 2756:2-13,1996.
    [150] Hu, M. K. Visual pattern recognition by moment invariants. IEEE Transactions Information Theory, 8(2): 179-187,1962.
    [151] Fiusser, J., Suk, T. Pattern recognition by affine moment invariants. Pattern Recognition, 26(1): 167-174,1993.
    [152] Louj, A. C. P., Venetsanopoulos, A. N., Smith, K. C. Two-dimensional shape representation using morphological correlation functions. International Conference on Acoustics, Speech, and Signal Processing, M7(12):2165-2168,1990.
    [153] Gupta, L.,Sayeh, M. R., Tammana, R. Neural network approach to robust shape classification. Pattern Recognition, 23(6): 563-568,1990.
    [154] Malladi, R., Sethian, J. A. A Unified Approach for Shape Segmentation, Representation, and Recognition. Center for Pure and Applied Mathematics, Report 614, University of California, Berkeley, 1994.
    [155] Kasyap, R. L., Chellappa R. Stochastic models for closed boundary analysis: Representation and reconstruction. IEEE Transactions on Information Theory, 27(5):627-637,1981.
    [156] Taylor, R. I, Lewis, P. H. 2D shape signature based on fractal measurements. IEEE Proceedings-Vision, Image and Signal Processing, 141:422-430,1994.
    [157] MeKenzie, D. S., Protheroe, S. R. Curve description using the inverse Hough transform. Pattern Recognition, 23(3-4): 283-290,1990.
    [158] 赵莹,高隽,汪荣贵等.一种新的广义最近邻方法研究.电子学报,32(12A):196-198,2004.
    [159] 李兰芳,刘开培,罗欢.近邻模式识别法在车载FSK信号检测中的应用.仪器仪表学报,24(4):389-390,2003.
    [160] Dubois S R., Glanz F H. An autoregressive model approach to two-dimensional shape Classification. IEEE Transaction on PAMI,8(1): 55-66,1986.
    [161] Sekita I, Kurita T, Otsu N. Complex autoregressive model for shape classification. IEEE Transaction on PAMI, 14(4); 489-496,1992.
    [162] 张涛,平西建,邵美珍.自回归模型在平面曲线识别中的应用.计算机研究与发展,37(8):942-947,2000.
    [163] 李介谷.计算机视觉的理论和实践.上海交通大学出版社,上海,pp:59-73,1999.
    [164] Haralick R. M., Watson L. T. A facet model for image data, Computation Graphics Image Processing, 1981,15:113-129.
    [165] Haraliek R. M., Watson L. T., Laffery T. J. The Topographic Primal Sketch. The international Journal of Robotics Research, 2(1): 195-217,1983.
    [166] 应义斌,桂江生,饶秀勤.基于Zernike矩的水果形状分类.江苏大学学报(自然科学版),28(1),1-4,2007.
    [167] Cho, H., Roland, T. Chin. On image analysis by the method of moments. IEEE Transactions On Pattern Analysis and Machine Intelligence, 10(4): 496-513,1988.
    [168] Khotanzad, A., Hong, Y. H. Invariant image recognition by Zernike moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(5): 489-497, 1990.
    [169] Dinggang S., Horace H S I. Discriminative wavelet shape descriptor for recognition of 2D Patterns. Pattern recognition, 32(2): 151-165,1999.
    [170] 徐旭东,周源华.基于小波矩不变量的模式识别方法.红外与毫米波学报,19(3):215-218,2000.
    [171] 金琪,戴汝为.基于矩表示的小波不变量.模式识别与人工智能,8(3):179-187,1995.
    [172] 潘泓,夏良正.基于多尺度分析的小波不变矩.电路与系统学报,11(1):55-59,2006.
    [173] 边肇祺,张学工.模式识别.清华大学出版社,北京,2000.
    [174] 孙即祥等.现代模式识别.国防科技大学出版社,长沙,2002.
    [175] 张明立.人工神经网络模型及其应用.复旦大学出版社,上海,1993.
    [176] Martin T.Hagan,戴葵译.Neural Network Design.机械工业出版社,北京,2005.
    [177] 张学工.关于统计学习理论与支持向量机.自动化学报.26(1):1-4,2000.
    [178] Vapnik, V. The nature of statistical learning theory. NewYork: Springer, 138-170, 1995.
    [179] Cosimo D., Nicola A., Pietro S.. Support vector machines for olfactory signals recognition. Sensors and Actuators B, 88:30-39, 2003.
    [180] Drezet, P. M.L, Harrison, R.F. A new method for sparsest control in support vector Classification and regression. Pattern Recognition, 34(1): 111-125, 2001.
    [181] Bookstein F.L. Landmark methods for forms without landmarks: Loealising group differences in outline shape. Medical Image Analysis, 1(3): 225-244, 1997
    [182] Angelopoulou A., Psarrou A., Garcia J., Kenneth R. Automatic landmarking of 2d medical shapes using the growing neural gas network. Proc. IEEE ICCV Workshop on Computer Vision for Biomedical Image Applications, CVBIA 2005, LNCS 3765, pp.210-219, 2005.
    [183] Fatemizadeh E., Lucas C., Soltania-Zadeh H. Automatic landmark extraction from image data Using modified growing neural gas network. IEEE Transaction of Information Technology Biomedical, 7(2): 77-85, 2003.
    [184] Choi H C, Kim S D. Boundary extraction .using statistical shape descriptor. Electronics Letters, 10: 1330- 1332,2002.
    [185] Hill A, Taylor C. Automatic landmark generation for point distribution models. In Proceedings of British Machine Vision Conference, 428-438, 1994.
    [186] Parker A D, Hill A, Talyor C J, et al. Application of point distribution models to the automated analysis of echocardiograms. IEEE Computers in Cardiology, 2:25-28,1994.
    [187] Cootes T.F.and Tayor C.J. Statistical models of appearance for computer Vision. Draft report, Wolfson Image Analysis Unit, University of Mancheehester, December 2000, http://www.isbe.man.ae.uk/~bim/.
    [188] Bookstein F. L. Morphometric tools for landmark data, Cambridge University Press, Cambridge, 1991.
    [189] Rangarajan A., Chui H., Bookstein F. L. The softassign procrustes matching algorithm. In J Duncan and G Gindi, editors, Information Processing In Medical Imaging, pages 29-42, Springer Verlag, Berlin, New York, 1997.
    [190] Cootes T. E, Cooper D. H., Taylor C.J., Graham J. Trainable method of parametric shape description. Image and vision computing, 10(5): 289-294, 1992.
    [191] Cootes T. E, Taylor C. J., Cooper D. H., Graham J. Active shape models—Their training and Application. Computer vision and image understanding, 61(1): 38-59,1995.
    [192] Cootes T. E, Taylor C.J., Lanitis A. Active shape models: Evaluation of a multi-resolution Method for improving Image search. Proceedings of British Machine vision Conference, 1:327-226,1994.
    [193] Cootes T. E, Taylor C.J. Using Grey-level models to improve Active shape model Search. Proceedings of the 12th IAPR International Conference on Computer Vision & Image Processing, 63-67, 1994.
    [194] Del Bimbo, A., Pala, P., Visual image retrieval by elastic matching of user sketches. IEEE Transaction of PAMI, 19(2), 121-132, 1997.
    [195] Cohen, I., Ayache, N., Sulger, P., Tracking points on deformable objects using curvature information. ECCV, 58-466, 1992.
    [196] Basri, R., Costa, L., Geiger, D., Jacobs, D., Determing the similarity of deformable shapes. IEEE Workshop: Physics Based Modeling in Compute Vision., 135-143, 1995.
    [197] Yunmei Chen, Hemant D. Tagare. Using Prior Shapes in Gemetric Active Contours in a Variational Framework, International Journal of Computer Vision, 50 (3): 315-328, 2002.
    [198] Frederik Maes, Andre Collignon. Multimodality image registration by maximization of mutual information. IEEE Transaction on Medical Imaging, 16(2): 187-198, 2000.
    [199] Black M. J., Anandan P. The robust estimation of multiple motions: parametirc and piecewise-smooth flow fields. Computer Vision and Image Understanding, 63:75-104,1996.
    [200] Wang J.Y.A, Adelson E.H. Representing moving images with layers. IEEE Transaction on Image Processing, 3:625-638,1994.
    [201] Heeger D. J. Model for the extraction of image flow. Journal of the Optical Society of America A, 4:1445-1471, 1987.
    [202] Nagel H.H. On the estimation of optical flow; relations between different approaches and some new results. Artificial Intelligence, 33:299-324,1987.
    [203] Heager D.J., Jepson A. D. Subspace methods for recovering rigid motion Ⅰ: Algorithm and implementation. International Journal of Computer Vision, 7:95-117,1992.
    [204] Ju S.X., Black M. J., Jepson A. D. Skin and bones:multi-layer, locally affine, optical flow and regularization with transparency. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco,CA, USA, 307-314,1996.
    [205] Heeger D. J. Notes on Motion Estimation. Psych 267/CS 348D/EE365. Stanford University TR. 1996.
    [206] 张志涌等.精通Matlab6.5版.北京航空航天大学出版社,2003.
    [207] Baloch, S. H., Krim, H. Flexible Skew-Symmetric Shape Model for Shape Representation, Classification, and Sampling. IEEE Transactions on Image Processing, 16(2): 317-328,2007.
    [208] Xu J. Morphological Decomposition of 2-D Binary Shapes Into Modestly Overlapped Octagonal And Disk Components. IEEE Transactions on Image Processing, 16(2): 337-348,2007.
    [209] Haibin Ling, Jacobs, D.W. Shape Classification Using the Inner-Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(2): 286-299,2007.
    [210] Seema H. Jadhav, B.S. Tarle, L.M. Waghmare. Polygonal Approximation of 2-D Binary Images. Fourth international Conference on Information Technology, 219-223, Apri, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700