高阻抗磁绝缘线振荡器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁绝缘线振荡器(MILO)是一种性能优异的正交场吉瓦级高功率微波(HPM)源,是当前HPM领域研究的热点之一。MILO阻抗一般比较低(~10),负载电流比较大,而过大的电流容易导致负载区阳极等离子体的产生。为此,希望通过提高MILO的阻抗来降低电流、提高器件效率、改善以及拓宽MILO的应用。本文从理论分析、数值模拟和实验三个方面对高阻MILO进行了较为细致的研究,得到了一些有价值的结果,这为MILO的重频和长脉冲运行奠定了基础。
     理论分析方面。基于顺位流模型得到了磁绝缘电流。为了提高MILO功率效率的上限,需要降低负载电流与总电流比值,可以通过减小同轴二极管阻抗或增大平板二极管阻抗来降低该比值,为了保证磁绝缘,同时还需要相应提高工作电压。利用顺位流理论,得到了MILO的阻抗与阴阳极半径之比及与电压之间的关系,为数值模拟中提高MILO的阻抗提供了指导。
     数值模拟方面。与负载限制型MILO相比,锥形MILO在功率效率方面更有潜力,据此选定锥形MILO作为器件的基本结构。通过冷腔分析得到了MILO谐振模式的场分布、谐振频率和腔体Q值等基本的谐振特性。用PIC方法得到MILO阻抗与阴阳极半径之比及与电压之间的关系。对于给定模型,当阴阳极半径之比在2.1~3.1范围内增大时,MILO阻抗在23.5~32.4范围内相应提高;电压在560~940kV范围内增大时,MILO的阻抗在28.2~30.7范围内缓慢增大。在保证MILO正常工作的前提下,分析并得到了以下结论:频率越低,则阻抗上限越大;阻抗越高,则最优功率效率对应的电压越高。在优化过程中,综合利用以下手段来提高MILO的功率效率:阻抗和频率的选取、磁绝缘状态的调试、电子发射区起点和终点位置的调整,以及微波的提取和反馈的优化。典型模拟结果如下:20的MILO,在675kV、33.4kA条件下,输出微波功率为4.2GW,频率为2.45GHz,功率效率为18.0%;30的MILO,在810kV、26.9kA条件下,输出微波功率为5.5GW,频率为1.74GHz,功率效率为25.3%;45的MILO,在1.16MV、25.8kA条件下,输出微波功率为6.9GW,频率为580MHz,功率效率为23.1%。
     为了验证高阻MILO的可行性,本课题开展了相关的实验研究。基于20MILO的优化结果,设计加工了实验装置。典型实验结果如下:在电压665kV、电流32.3kA条件下,微波辐射功率为1GW,频率为2.59GHz,辐射模式为TM01。最后,分析了实验过程中导致高阻MILO阴极烧蚀、频率漂移、功率偏低的原因和并给出了相应的解决办法
Magnetically insulated transmission line oscillator (MILO) is an excellent crossedfield device designed specifically to generate microwave power at the gigawatt level,which is a major hotspot in the field of high-power microwave (HPM) research at thepresent time. At present, the impedance of MILO is relatively low(~10). As a result,the load current is quite large, which limits the further development and application ofMILO. On one hand, the anode plasma formation in the load region could result in thesevere pulse shortening and electrode erosion. On the other hand, intensive space chargeeffect could result in the relatively lower power conversion efficiency. Based on thisbackground, increasing the impedance of MILO can help to overcome these weaknesses.These research results also found a firm foundation for the design of the long-pulseMILO with repetitive operation. By the use of theoretical analysis, particle simulation,and experimental measurement, the high impedance MILO has been investigatedsystematically. A series of valuable results have been obtained.
     Firstly, according to the parapotential model, the magnetically insulated currentwas obtained. In order to increase the power conversion efficiency of MILO, the ratio ofload current-to-anode current should be decreased. Several methods could be used:increasing the side area of the cathode, decreasing the area of the cathode end,decreasing the distance between the side face of the cathode to the slow wave structure,increasing the distance between the cathode end and the electron collector, andincreasing the diode voltage. Based on the theory of parapotential flow, the influencelaw of both the ratio of cathode radius-to-anode radius and the diode voltage on theMILO impedance were studied, which provides efficient guidance for increasing theMILO impedance.
     Secondly, the tapered MILO was chosen as the basic structure, which could obtainhigher power conversion efficiency by comparison with the load-limited MILO. Thefield distribution of the resonance mode, the resonance frequency, and the quality factorare acquired. By employing a2.5-dimensional PIC code, the relation of MILOimpedance to both the ratio of cathode radius-to-anode radius and the diode voltagewere obtained numerically. It was found that for a given structure, within the range of2.1-3.1, the increase of the ratio of cathode radius-to-anode radius could increase theimpedance of MILO within the range of23.5-32.4; It was also found that theimpedance of MILO increased slowly with the range of28.2-30.7when the diodevoltage increased within the range of560-940kV. It was found that the lower thefrequency of MILO, the greater the upper limit of the MILO impedance. And further,the higher the impedance of MILO, the higher the diode voltage corresponding to themaximal power conversion efficiency. All associated factors were considered to increase the power conversion efficiency of the MILO during the optimizing prose, such as thechoice of impedance and frequency, the adjustment of magnetically insulated state, thechoice of the position of the electron emission area, and the optimization of theextraction and feedback of the microwave. The representative numerical results were asfollows. For the20MILO, the microwave output power was4.2GW with the initialelectron energy of675keV and the electron beam current of23.3kA. The microwavefrequency was2.5GHz. The beam-to-microwave power conversion efficiency was18.0%. For the30MILO, the microwave output power was5.5GW with the initialelectron energy of810keV and the electron beam current of26.9kA. The microwavefrequency was1.7GHz. The beam-to-microwave power conversion efficiency was25.3%. For the44MILO, the microwave output power was6.3GW with the initialelectron energy of1.1MeV and the electron beam current of25.0kA. The microwavefrequency was630MHz. The beam-to-microwave power conversion efficiency was22.7%.
     Finally, correlative experiments were carried out to verify the feasibility of the highimpedance MILO. The experimental study has been performed on the optimized20MILO designed with the help of simulation. The representative experimental resultswere as follows. When the voltage was665kV and the current was32.3kA, amicrowave was generated with power of1GW, mode of TM01and frequency of2.60GHz. Furthermore, the reason for the frequency drift, cathode erosion and lowpower conversion efficiency were investigated experimentally. Based on this, feasiblesolutions are given.
引文
[1] J. Benfrod, J. A. Swegle, E. Schamiloglu. High power microwaves (2nd edition)[M]. New York, London: Taylor&Francis Group,2007.
    [2] Swegle J A and Benford J. High-power microwave at25years: the current stateof development. Proceedings of the12th international conference on high-powerparticle beams. Haifa, Israel,1998, p149.
    [3] Bacon L D and Rinehart L F. A brief technology survey of high-powermicrowave sources. Sandia National Labor atory report, SAND2001-1155.
    [4] Benford J and Swegle J A. High-power microwaves. Norwood, Mass: ArtechHouse,1992,p.1.
    [5] Barker R J and Schamiloglu E. High-power microwave sources and technologies.New York: The Institute of Electrical and Electronics Engineer, Inc.,2001.
    [6] Gold S H and Nusinovich G S. Review of high-power microwave source research.Rev. Sci. Instrum.1997,68(11):3945.
    [7] Schamiloglu E, Schoenbach K H, and Vidmar R. Basic research on pulsed powerfor narrowband high power microwave sources. Proceedings of SPIE, IntenseMicrowave Pulses,2002,4720:1Ⅸ-9.
    [8] Kristiansen M, Schamiloglu E, Gilgenbach R, and Benford J. Final reportMURI Program “High energy microwave device consortium”. Air Force Officeof Scientific Reaserch, Texas Tech University, the University of New Mexico,the University of Michigan, and Microwave Sciences, Inc.2000.
    [9] Benford J N, Cooksey N J, Levine J S, and Smith R R. Techniques for HighPower Microwave Source at High Average Power, IEEE Trans. Plasma Sci.1993,21(4):388.
    [10] Destler W W and Levush B. Introduction to the third special issue onhigh-power microwave generation. IEEE Trans. Plasma Sci.1990,18(3):257.
    [11] McDermott D B, Lin A T, and Chu K R. The ninth special issue on high-powermicrowave generation. IEEE Trans. Plasma Sci.2002,30(3):731.
    [12] Benford J, Swegle J, and Schamiloglu E. High Power Microwaes, Second Edition.New York,2007.
    [13] Benford J N, Ashby S, Smith R R, Aiello N, Cooksey N J, Drury D V, SincemyP, Thompson L, Smith L, Levine J S, Harteneck B, Miller G, and Potter S. Highpower microwave source development, Technical report, Defense NuclearAgency, May1995.
    [14] Dawson J M. One-dimensional Plasma Model. Phys. Fluids.1962,5:445.
    [15] Schamiloglu E, and Y Y Lau. IEEE Trans. Plasma Sci.7th Special Issue on HighPower Microwave Generation.1998,26.
    [16] Antonsen T M, A. A. Mondelli, B Levush, J P Verboncoeur and C K Birdsall.Advances in Modeling and Simulation of Vacuum Electronic Devices. Proc.IEEE.1999,87:804.
    [17] Eastwood J W. Computer Modelling of Microwave Source. Generation andApplication of High Power Microwaves.1997.
    [18] Cuneo M E, P R Menge, D L Hanson, W E Fowler, M A Bernard, G R Ziska, AB Filuk, T D Pointon, R A Vesey, D R Welch, J E Bailey, M P Desjarlais, T RLouckner, T A Melhorn, S A Slutz, and M A Stark. Results of Vacuum CleaningTechniques on the Performance of LiF Field-Threshold Ion Sources onExtraction Applied-B Ion Diodes at1-10TW. IEEE Trans. Plasma Sci.1997,25:229.
    [19] Price D, J S Levine, and J Benford. Diode Plasma Effects on the MicrowavePulse Length from Relativistic Magnetrons. IEEE Trans. Plasma Sci.1998,26:348.
    [20] Korovin S D, G A Mesyats, I V Pegel, S D Polevin, and V P Tarakanov.Mechanism of Microwave Pulse shortening in the Relativistic Backward WaveOscillator. Proceedings12thIEEE International Pulsed Power Conference.1999,p.848.
    [21] Talcott R C. The Effects of Titanium Films on Secondary Electron EmissionPhenomena in Resonant Cavities and at Dielectic Surfaces. IRE Trans. ElectronDevices.1962.9:405.
    [22] Nyaiesh A R, E L Garwin, F K King, and C B Fleddermann. Suppression ofVacuum Breakdown Using Thin-film Coating. J. Vac. Sci. Technol. A.1986.4:2356.
    [23] Mayberry C S, B Wroblewski, E Schamiloglu, and C B Fleddermann.Suppression of Vacuum Breakdown Using Thin-film Coating. J. Appl. Phys.1994.76:4448.
    [24] Adler R J, G F Kiuttu, B E Simpkins, D J Sullivan, and D E Voss. ImprovedElectron Emission by Use of a Cloth Fiber Cathode. Rev. Sci. Instrum.1985.56:766.
    [25] Litz M S, D Judy, G Huttlin, and C Lazard. Gases Evolved from the CommonCold Cathode. Intense Microwave Pulse Ⅳ, Proceedings SPIE.1996.90:2843.
    [26] Garate E, R D McWilliams, D E Voss, A L Lovesee, K J Hendricks, T A Spencer,M C Clark and A Fisher. Novel Cathode for Field-emission Application. Rev. Sci.Instrum.1995.66:2528.
    [27] Herrick R D, A S Kaplan, B K Chinh, M J Shane, M J Sailor, K L Kavanagh R L,McCreery, and J Zhao. Room-temperature Electrosynthesis of CarbonaceousFibers. Adv. Mat.1995.7:398.
    [28] Prohaska R, and A Fisher. Field Emission Cathode using Commercial CarbonFibers. Rev. Sci. Instrum.1982.53:1092.
    [29] Nation J A, L Schachter, F M Mako, L K Len, W Peter, C M Tang and TSrinivasan-Rao. Advances in Cold Cathode Physics and Technology. Proc.IEEE.1999.87:865.
    [30] Jensen K L. Field Emitter Arrays for Plasma and Microwave Source Application.Phys. Plasma.1999.6:2241.
    [31] Hill D N, J D Lee, J K Cochran and A T Chapman. Vapor-deposited ConeFormation during Fabrication of Low-voltage Field Emitter Array Cathodes. J.Mat. Sci.1996.31:1789.
    [32] Garven M, S N Spark, A W Cross, S J Cooke and A D R Phelps. GyrotronExperiments Employing a Field-emission Array Cathode. Phys. Rev. Lett.1996.77:2320.
    [33] Spindt C A, C E Holland, P R Schwoebel, and I Brodie. Field-emitter-arrayDevelopment for Microwave Applications. J. Vac. Sci. Technol. B.1996.13:1986.
    [34] Hill D N, J D Lee, J K Cochran and A T Chapman. Vapor-deposited ConeFormation during Fabrication of Low-voltage Field Emitter Array Cathodes. J.Mat. Sci.1996.31:1789.
    [35] Nakamoto M, T Hasegawa, T One, T Sakai, and N Sakuma. Low OperationVoltage Field Emitter Arrays Using Low Work Function Materials Fabricated byTransfer Mold Technique. Technical Digest, IEEE International Electron DevicesMeeting.1996. p.297.
    [36] Makishima H, H Imura, M Takahashi, H. Fukui and A Okamuoto. RemarkableImprovements of Microwave Electron Tubes through the Development of theCathode Material. Technical Digest, IVMC’97.1997. p.194.
    [37] Gartner G, P Geittner, H Lydtin, and A Ritz. Emission Properties of Top-layerScandate Cathodes Prepared by LAD. Appl. Surf. Sci.1997.111:11.
    [38] Fleddermann C B, and J A Nation. Ferroelectric Sources and Their Applicationto Pulse Power: A Review. IEEE Trans. Plasma Sci.1997.25:212.
    [39] Miller R B. An Introduction to the Physics of intense Charged Particle Beams.New York: Plenum Press,1982, Chap.2.
    [40] Mesyats G A and D I Proskurovsky. Pulsed Electrical Discharge in Vacuum.New York: Springer-Verlag,1989.
    [41] Burt V A, N I Zaitsev, N F Kovalev, I. S. Kovlev, I S Kulagin, A G Nikonov, M IPetelin, I M Roife, Yu M Savel’ev, and V I Engel’ko. Generation ofMicrosecond Microwave Pulses by Relativistic Electron Beams. Sov. Tech. Phys.Lett.1983.9:617.
    [42] Hendricks K J, M D Haworth, T Englert, D Shiffler, G Baca, P D Coleman, LBowers, R W Lemke, T A Spender and M J Arman. Increasing the rf Energy perPulse of an RKO. IEEE Trans. Plasma Sci.1998.26:320.
    [43] Miller R B. Repetitive Pulse Operation of Reltron Tubes.Intense MicrowavePulses V, Proceeding SPIE.1997.2:3158.
    [44] Miller R B. Mechanism of Explosive Electron Emission for DielectricFiber(Velet) Cathodes. J. Appl. Phys.1998.84:739.
    [45] Benford J, D Price, and W DeHope. Lowered Plasma Velocity with CesiumIodide/Carbon Fiber Cathodes at High Electric Fields. Proceedings12thInternational Conference on High Power Particle Beams.1998. Vol.2p.695.
    [46] Balanis C A. Antenna Theory: Analysis and Design,2th ed. New York: VanNostrand.1950.
    [47] M D Haworth, G Baca, J Benford, T Englert, K Hackett, K Hendricks, D Henley,M LaCour, R Lemke, D Price, D Ralph, M Sena, D Shiffler and T Spencer.Significant Pulse-lengthening in a Multigigawatt Magnetically InsulatedTransmission Line Oscillator(MILO). IEEE Trans. Plasma Sci.1998.26:312.
    [48] Friedman M, J Krall, Y Y Lau, and V Serlin. Efficiency Generation of Multi-GWMicrowave Power by a Klystron-like Amplifer. Rev. Sci. Instrum.1990.61:171.
    [49] Friedman M, R Fernsler, S Slinker, R Hubbard and M Lampe. EfficienctConversion of the Energy of Intense Relativistic Electron Beams into rf Waves.Phys. Rev. Lett.1995.75:1214.
    [50] Carlsten B E, R J Faehl, M V Fazio, W B Haynes and R M Stringfield. IntenseSpace Charge Beam Physics Relevant to Relativistic Klystron Amplifiers. IEEETrans. Plasma Sci.1994.22:719.
    [51] Fazio M V, W B Haynes, B E Carlsten, and R M Stringfield. A500MW,1μsPulse Length, High Current Relativistic Klystron. IEEE Trans. Plasma Sci.1994.22:740.
    [52] Levine J S, B D Harteneck, S K Lam, and C W Parks. High Current RelativisticKlystron Research at Physics International. Intense Microwaves and ParticleBeams Ⅲ.Proceeding SPIE.1994.19:2154.
    [53] Serlin V, and M. Friedman. High Frequency Operation of the RelativisticKlystron Amplifer. Intense Microwaves and Particle Beams Ⅲ.Proceeding SPIE.1992.3:1629.
    [54] M. Friedman, and Serlin V. High power Relativistic Klystron Amplifer at theNaval Research Laboratory. Intense Microwaves Pulses Ⅰ.Proceeding SPIE.1993.2:1872.
    [55] Gelvich E A, L M Borisov, Y V Zhary, A D Zakurdayev, A S Pobedonostsev,and V I Poognin. The New Generation of High Power Multiple Beam Klystrons.IEEE Trans. MTT.1993.41:15.
    [56] Garyotakis G, E Jongewaard, R Phillips, G Schietrum, S Tantawi, and NLuhmann. A2-gigawatt,1-microsecond Microwave Source. In Proceedings11thInternational Conference on High Power Particle Beams.1996. p.406.
    [57] Friedman M, J Pasour, and D. Smithe. Modulating Electron Beams for anX-Band Relaticistic Klystron Amplifier. Appl. Phys. Lett.1997.71:3724.
    [58] Friedman M. Propagation of an Intense Relativistic Electron Beam in an AnnularChannel. J. Appl. Phys.1996.80:1263.
    [59] J Pasour, D Smithe, and M Friedma. The Triaxial Klystron. High Energy DensityMicrowave. AIP Conference Proceedings474.1999. p373.
    [60] J. A. Swegle, J. W. Poukey, G. T. Leifeste. Backward wave oscillators withrippled wall resonators: analytic theory and numerical simulation. Phys. Fluids.,1985,28(9):2882-2894.
    [61] J. A. Swegle, R. A. Anderson, J. F. Camacho, B. R. Poole, M. A. Rhodes, E. T.Rosenbury, and D. L. Shaeffer. Scaling Studies and Time-Resolved Microwavemeasurements on a Relativistic Backward-wave oscillator. IEEE Trans. PlasmaSci.,1993,21:714.
    [62] B. Levush, T. Antonsen, Jr., A. Bromborsky, et al. Relativistic backward-waveoscillators: Theory and experiment [J]. Phys. Fluids B,1992,4(7):2293-2299.
    [63] L. D. Moreland, Edl Schamiloglu, R. W. Lemke, et al. Efficiency enhancementof high power vacuum BWO’s using nonuniform slow wave structure. IEEETrans. Plasma Sci.,1994,22(5):554-565.
    [64] L. D. Moreland, Edl Schamiloglu, R. W Lemke, et al. Enhanced FrequencyAgility of High-power Relativistic Backward Wave Oscillators. IEEE Trans.Plasma Sci.,1996,24:852.
    [65] B. Levush, T. Antonsen, A. N. Vlasov, et al. High-efficiency relativistic BWO:theory and design. IEEE Trans. Plasma Sci.,1996,24(3):843-851.
    [66] Nation J. A. On the Coupling of a High-current Relativistic Beam to a SlowWave Structure. Appl. Phys. Lett.1970.17:491.
    [67] Carmel Y, J. Ivers, R. E. Kribel, and J. Nation. Intense Coherent CerenkovRadiation due to the Interaction of a Relativistic Electron Beam with aSlow-Wave Structure. Phys. Rev. Lett.1974.33:1278.
    [68] Gunin A. I., A. I. Klimov, S. D. Korovin, I. K. Kurkan, I. V. Pegel, S. D. Polevin,A. M. Rointman, V. V. Rostov, A. S. Stepchenko, and E. M. Totmeninov.Relativistic X-band BWO with3-GW Outpwer Power. IEEE Trans. Plasma Sci.1998.26:326.
    [69] Vlasov A. N., G. S. Nusinovich, and B. Levush. Effect of the Zero SpatialHarmonic in a Slow Electromagnetic Wave on Operation of RelativisticBackward-wave Oscillators. Phys. Plasmas.1997.5:1402.
    [70] Nusinovich G. S., and Vlasov A. N. Parametric Effect of a Spatially PeriodicVoltage Depression on Operation of Cerenkov Sources of ElectronmagneticRadiation. Phys. Plasmas.1994.1:744.
    [71] Miller S. M., T. M. Antonsen, B. Levush, A. Bromborsky, D. K. Abe, and Y.Carmel. Theory of Relativistic Backward Wave Oscillators Operating NearCutoff. Phys. Plasmas.1994.1:730.
    [72] Kehs R. A., A. Bromborsky, B. G. Ruth, S. E. Graybill, W. W. Destler, Y.Carmel, and M. C. Wang. A High-power Backward-wave Oscillator Driven by aRelativistic Electron Beam. IEEE Trans. Plasma Sci.1985.13:559.
    [73] Vlasov A. N., G. S. Nusinovich, B. Levush, A. Bromborsky, W. Lou, and Y.Carmel. Relativistic Backward-wave Oscillators Operating Near CyclotronResonance. Phys. Fluids.1993.5:1625.
    [74] Vlasov A. N., A. S. Ilyin, and Y. Carmel. Cyclotron Effects in RelativisticBackward-wave Oscillators Operating at Low Magnetic Fields. IEEE Trans.Plasma Sci.1998.26:605.
    [75] Vlasov A. N., G. S. Nusinovich, and B. Levush. Effects of the Zero SpatialHarmonic in a Slow Electromagnetic Wave on Operation of RelativisticBackward-wave Oscillators. Phys. Plasmas.1997.4:1402.
    [76] Levush B., T. M. Antonsen, Jr., A. Bromborsky, W. R. Lou, and Y. Carmel.Theory of Relativistic Backward-wave Oscillators with End Reflections. IEEETrans. Plasma Sci.1992.20:263.
    [77] Levush B., T. M. Antonsen, Jr., A. N. Vlasov, G. S. Nusinovich, S. M. Miller, Y.Carmel, V. L. Granatstein, W. W. Destler, A. Bromborsky, C. Schlesinger, D. K.Abe, and L. Ludeking. High-Effeciency Relativistic Backward-wave Oscillators:Theory and Design. IEEE Trans. Plasma Sci.1996.24:843.
    [78] D. K. Abe, S. M. Miller, A. Bromborsky, Levush B., T. M. Antonsen, Jr., and W.W. Destler. Experimental Studies of Overmoded Relativistic Backward-waveOscillators. IEEE Trans. Plasma Sci.1998.26:591.
    [79] Grabowski C., E. Schamiloglu, C. T. Abdallah, and F. Hegeler. Observation ofthe Cross-excitation Instability in a Relativistic Backward wave Oscillators. Phys.Plasmas.1998.5:3490.
    [80] Grabowski C., J. M. Gahl, and E. Schamiloglu. Electron Emission fromSlow-wave Structure Walls in a Long-pulse High-power Backward waveOscillators. IEEE Trans. Plasma Sci.1997.25:335.
    [81] D. Shiffler, J. A. Nation, G. S. Kerslick. A high-power traveling wave tubeamplifier. IEEE Trans. Plasma Sci.,1990,18(3):546-552.
    [82] S. P. Bugaev, V. A. Cherepenin, V. I. Kanavets, et al. Relativistic multiwaveCerenkov generators. IEEE Trans. Plasma Sci.,1990,18(3):525-536.
    [83]舒挺.多波切伦柯夫振荡器的研究.长沙:国防科技大学,1998.
    [84] Bratman V. L., Gubanov V.P., Denisov G. G., et al. The relativistic orotron: ahigh-power source of coherent millimeter microwaves. Sov. Tech. Phys. Letter,1984,10:339.
    [85] S. P. Bugaev, V. A. Cherepenin, V. I. Kanavets, et al. Investigation of amillimeter-wavelength range relativistic diffraction generator. IEEE Trans.Plasma Sci.,1990,18(3):518.
    [86] Price D., and J. Benford. Diode Plasma Effects on the Microwave Pulse Lengthfrom Relativistic Magnetrons. IEEE Trans. Plasma Sci.,1998,26(3):348.
    [87] James Benford, and Gregory Benford. Survey of Pulse Shortening in High-PowerMicrowave Sources. IEEE Trans. Plasma Sci.,1997,25(2):311.
    [88] Price D., and J. Benford. General Scaling of Pulse Shortening inExplosive-emission-driven Microwave Sources. IEEE Trans. Plasma Sci.,1998,26(3):256.
    [89] Lemke R. W., T. C. Genone, and T. A. Spencer. Three-dimensionalParticle-in-cell Study of a Relativistic Magnetron. Phys. Plasmas.1999.6:603.
    [90] M. C. Clark, B. M. Marder, and L. D. Bacon, Magnetically simulatedtransmission line oscillator. Appl. Phys. Lett.1988.52:78.
    [91] R. W. Lemke and M. C. Clark. Theory and simulation of high power microwavegeneration in a magnetically insulated transmission line oscillator. J. Appl. Phys.1987.62:3436.
    [92] B. M. Marder,“Simulated behavior of the magnetically insulated oscillator,” J.Appl. Phys.1989.65:1338.
    [93] R. W. Lemke. Linear stability of relativistic space-charge flow in a magneticallyinsulated transmission line oscillator. J. Appl. Phys.1989.66:1089.
    [94] R. W. Lemke, S. E. Calico, and M. C. Clark. Investigation of a load limitedmagnetically insulated transmission line oscillator (MILO). IEEE Trans. PlasmaSci.1997.25:364.
    [95] D. E. T. F. Ashby, J. W. Eastwood, J. Allen, K. C. Hawkins, and L. M. Lea,Comparison between experiment and computer modeling for simple MILOconfigurations,”IEEE Trans. Plasma Sci.1995.23:959.
    [96] M. D. Haworth, G. Baca, J. N. Benford, T. Englert, K. Hackett, K. J. Hendricks,D. Henley, M. Lacour, R. W. Lemke, D. Price, D. Ralph, M. Sena, D. Shiffler,and T. A. Spencer. Significant pulse-lengthening in a multigigawatt magneticallyinsulated transmission line oscillator. IEEE Trans. Plasma Sci.1998.26:312.
    [97] D. Shiffler, G. Baca, T. Englert, M. D. Haworth, K. J. Hendricks, D. Henley, M.Sena, and T. A. Spencer. Investigation of RF breakdowns on the MILO. IEEETrans. Plasma Sci.1998.26:304.
    [98] J. W. Eastwood, K. C. Hawkins, and M. P. Hook. The tapered MILO. IEEETrans. Plasma Sci.1998.26:698.
    [99] J. W. Eastwood, M. P. Hook, and K. C. Hawkins. Development of the TaperedMILO.
    [100] M. D. Haworth, J. W. Luginsland, and R. W. Lemke. Evidence of a newpulse-shortening mechanism in a load-limited MILO. IEEE Trans. Plasma Sci.2000.28:511.
    [101] M. D. Haworth, T. J. Englert, K. J. Hendricks, R. W. Lemke, J. W. Lug-insland,D. S. Shiffler, and T. A. Spencer. A comprehensive diagnostic suite for MILO.Rev. Sci. Instrum.2000.71:1539.
    [102] Michael D. Haworth, John W. Luginsland, and Raymond W. Lemke. ImprovedCathode Design for Long-Pulse MILO Operation. IEEE Trans. Plasma Sci.2001.29:388.
    [103] Michael D. Haworth, Keith L. Cartwright, John W. Luginsland, Donald A.Shiffler, and Ryan J. Umstattd. Improved Electrostatic Design for MILOCathodes. IEEE Trans. Plasma Sci.2002.30:992.
    [104] R. Cousin, J. Larour, P. Gouard, P. Raymond, and A. J. Durand. FirstExperiments on a Compact MILO Device.
    [105] R. Cousin, J. Larour, P. Raymond, J. Wey, P. Gouard, and A. J. Durand.Theoretical and experimental behavior of a compact magnetically insulated lineoscillator electromagnetic structure. Rev. Sci. Instrum.2005.76:124701.
    [106] Richard Cousin, Jean Larour, Philippe Gouard, and Pierre Raymond. Evidenceof the3π/4interaction mode in a compact magnetically insulated line oscillatorprocess. J. Appl. Phys.2006.100:084512.
    [107] Richard Cousin, Jean Larour, Jacques Gardelle, Bruno Cassany, Patrick Modin,Philippe Gouard, and Pierre Raymond. Gigawatt Emission From a2.4-GHzCompact Magnetically Insulated Line Oscillator (MILO). IEEE Trans. PlasmaSci.2007.35:1467.
    [108] D. H. Kim, H. C. Jung, S. H. Min, S. H. Shin, and G. S. Park. Dynamics ofmode competition in a gigawatt-class magnetically insulated line oscillator.Appl. Phys. Lett.2007.90:124103.
    [109] D. H. Kim, H. C. Jung, S. H. Min, M. C. Wang, M.J. Rhee and G. S. Park.Experimental Investigation of Giga-watt Magnetically Insulated TransmissionLine Oscillator(MILO) by Improved Axial Power Extraction.
    [110] Smrity Dwive di and P. K. Jain. Electromagnetic Analysis of a Disk-LoadedCoaxial Waveguiding Structure for MILO. IEEE Trans. Plasma Sci.2012.40:1032.
    [111] Bao Liang Qian, Yong Gui Liu, Chuan Lu Li, and Che Bo Liu.Two-Dimensional Analysis of the Relativistic Parapotential Electron Flow in aMagnetically Insulated Transmission Line Oscillator (MILO). IEEE Trans.Plasma Sci.2000.28:760.
    [112]刘松,刘永贵,舒挺,钱宝良. C波段磁绝缘传输线振荡器数值模拟与分析.国防科技大学学报.2001.23:30.
    [113]刘松,刘永贵,舒挺,钱宝良.渐变型C波段磁绝缘线振荡器.强激光与粒子束.2001.13:93.
    [114]张晓萍,钟辉煌等.利用负载电流产生微波的新型MILO.强激光与粒子束.2003,15:80.
    [115]张晓萍等.磁绝缘线振荡器同轴慢波结构色散特性分析.强激光与粒子束.2004,16:363.
    [116]张晓萍,钟辉煌等.一种改进型C波段MILO的数值模拟研究.强激光与粒子束,2004,16(4).
    [117]张晓萍,钟辉煌,舒挺,袁成卫,王勇,赵延宋,罗玲. C波段磁绝缘线振荡器的理论设计与实验.强激光与粒子束.2005.17:1129.
    [118] ZHANG Xiao-ping, Ren He-ming, YUAN Cheng-wei, JIN Zhen-xing, XuLiu-rong. Theoretical Design and Particle Simulation of a Novel CompactP-Band Magnetically Insulated Transmission Line Oscillator.
    [119]樊玉伟,舒挺,李志强.紧凑型L波段磁绝缘线振荡器的粒子模拟.强激光与粒子束.2003.15:1225.
    [120]樊玉伟,舒挺,王勇,李志强,周津娟,赵延宋.紧凑型L波段磁绝缘线振荡器的实验设计.强激光与粒子束.2004.16:767.
    [121] FAN Yu-wei, ZHONG Hui-huang, ZHENG Shi-yong, SHU Ting. Simulationinvestigation of X-band MILO.强激光与粒子束.2006.18:439.
    [122] Yu-Wei Fan, Cheng-Wei Yuan, Hui-Huang Zhong, Ting Shu, and Ling Luo.Simulation Investigation of an Improved MILO. IEEE Trans. Plasma Sci.2007.35:379.
    [123] Yu-Wei Fan, Cheng-Wei Yuan, Hui-Huang Zhong, Ting Shu, Jian-De Zhang,Jian-Hua Yang, Han-Wu Yang, Yong Wang, and Ling Luo. ExperimentalInvestigation of an Improved MILO. IEEE Trans. Plasma Sci.2007.35:1075.
    [124] Yu-Wei Fan, Hui-Huang Zhong, Zhi-Qiang Li, Ting Shu, Jian-De Zhang, JunZhang, Xiao-Ping Zhang, Jian-Hua Yang, and Ling Luo. A double-bandhigh-power microwave source. J. Appl. Phys.2007.102:103304.
    [125] Yu-wei Fan, Hui-huang Zhong, Han-wu Yang, Zhi-qiang Li, Ting Shu, JunZhang, Yong Wang, and Ling Luo. Analysis and improvement of an X-bandmagnetically insulated transmission line oscillator. J. Appl. Phys.2008.103:123301.
    [126] Yu-Wei Fan, Hui-Huang Zhong, Zhi-Qiang Li, Ting Shu, Han-Wu Yang, HengZhou, Cheng-Wei Yuan, Wei-Hong Zhou, and Ling Luo. Repetition rateoperation of an improved magnetically insulated transmission line oscillator.Phys. Plasmas.2008.15:083102.
    [127] Yu-Wei Fan, Hui-Huang Zhong, Ting Shu, and Zhi-Qiang Li. Complexmagnetically insulated transmission line oscillator. Phys. Plasmas.2008.15:83108.
    [128] Yu-Wei Fan, Hui-Huang Zhong, Ting Shu, and Zhi-Qiang Li. Theoreticalinvestigation of the fundamental mode frequency of the magnetically insulatedtransmission line oscillator. Phys. Plasmas.2008.15:123504.
    [129] Yu-Wei Fan, Hui-Huang Zhong, Zhi-Qiang Li, Ting Shu, Jian-De Zhang,Jin-Liang Liu, Jian-Hua Yang, Jun Zhang, Cheng-Wei Yuan, and Ling Luo.Recent progress of the improved magnetically insulated transmission lineoscillator. Rev. Sci. Instrum.2008.79:034703.
    [130] Yu-wei Fan, Hui-huang Zhong, Zhi-qiang Li, Cheng-wei Yuan, Ting Shu,Han-wu Yang, Yong Wang, and Ling Luo. Investigation of a1.2-GHzMagnetically Insulated Transmission Line Oscillator. IEEE Trans. Plasma Sci.2011.39:540.
    [131]樊玉伟,周恒,钟辉煌,舒挺,季涛,杨汉武,罗玲.碳纤维天鹅绒阴极与化纤天鹅绒阴极的比较.强激光与粒子束.2010.22:587.
    [132]李志强,钟辉煌,樊玉伟,舒挺,杨建华,许流荣,赵延宋,周蔚红. S波段锥形磁绝缘线振荡器长脉冲实验研究.强激光与粒子束.2008.20:255.
    [133]李志强,钟辉煌,樊玉伟,舒挺,杨建华,许流荣,赵延宋. S波段锥形磁绝缘线振荡器频率特性.强激光与粒子束.2009.21:867.
    [134] LI Zhi-Qiang, ZHONG Hui-Huang, FAN Yu-Wei, SHU Ting, QIAN Bao-Liang,XU Liu-Rong, ZHAO Yan-Song. Investigation of an S-Band TaperedMagnetically Insulated Transmission Line Oscillator. Chin. Phys. Lett.2009.26:055201.
    [135]靳振兴,张晓萍,钱宝良. P波段混合型MILO的粒子模拟.强激光与粒子束.2007,19:923.
    [136]靳振兴,张晓萍,钱宝良,丁敦高. P波段磁绝缘线振荡器的实验设计.高电压技术.2008.34:521.
    [137] Jin-Chuan Ju, Yu-Wei Fan, Hui-Huang Zhong, and Ting Shu. A NovelDual-Frequency Magnetically Insulated Transmission Line Oscillator. IEEETrans. Plasma Sci.2009.37:2041.
    [138] Jin-Chuan Ju, Yu-Wei Fan, Hui-Huang Zhong, and Ting Shu. An improvedX-band magnetically insulated transmission line oscillator. Phys. Plasmas.2009.16:073103.
    [139]王冬,邢庆子,黄峰,邓景康.渐变型磁绝缘线振荡器色散关系的研究.强激光与粒子束.2006.18:624.
    [140]王冬,范植开,陈代兵,邓景康,郭焱华,何琥,龚海涛,安海狮.双阶梯阴极型磁绝缘线振荡器设计与模拟.强激光与粒子束.2007.19:647.
    [141]王冬,范植开,陈代兵,邓景康. S波段磁绝缘线振荡器的数值模拟.强激光与粒子束.2007.19:1861.
    [142] Dong Wang, Zhi Kai Fan, Dai Bing Chen, and Jing Kang Deng. Investigation ofDispersion Characteristics in Coaxial Disk-Loaded Slow-Wave Structures WithBoth Symmetric and Asymmetric Modes. IEEE Trans. Plasma Sci.2007.35:1070.
    [143]王冬,秦奋,陈代兵,文杰,张新凯,安海狮. L波段双阶梯阴极磁绝缘线振荡器的粒子模拟与实验研究.强激光与粒子束.2010.22:857.
    [144]陈代兵,范植开,董志伟,许州,周海京,郭焱华,何琥,龚海涛,安海狮.阶梯阴极型L波段MILO的实验研究.强激光与粒子束.2007.19:820.
    [145]陈代兵,王冬,范植开,孟凡宝.双频磁绝缘线振荡器微波产生特性的数值研究.强激光与粒子束.2009.21:493.
    [146]陈代兵,王冬,孟凡宝,范植开.双频磁绝缘线振荡器的高频特性.强激光与粒子束.2009.21:1511.
    [147] Dai-Bing Chen, Dong Wang, Fan-Bao Meng, and Zhi-Kai Fan. BifrequencyMagnetically Insulated Transmission Line Oscillator. IEEE Trans. Plasma Sci.2009.37:23.
    [148] Dai-Bing Chen, Dong Wang, Fan-Bao Meng, Zhi-Kai Fan, Fen Qin, and JieWen. Bifrequency HPM Generation in a MILO With Azimuthal Partition. IEEETrans. Plasma Sci.2009.37:1916.
    [149]陈代兵,王冬,秦奋,文杰,金晓,安海狮,张新凯.磁绝缘线振荡器的起振电压与注入电压关系的分析.物理学报.2012.61:012901.
    [150] Fen Qin, Dong Wang, Dai-Bing Chen, and Zhi-Kai Fan. SimulationInvestigation of L-BandLadder Cathode MILO. IEEE Trans. Plasma Sci.2009.37:1921.
    [151] Fen Qin, Dong Wang, Jie Wen, Dai-Bing Chen, and Zhi-Kai Fan. A NovelMethod to Depress Higher Order Mode Generation in MILO. IEEE Trans.Plasma Sci.2011.39:545.
    [152] Fen Qin, Dong Wang, Dai-Bing Chen, and Jie Wen. Simulation Investigation ofS-Band Higher-Order-Mode Depressed MILO. IEEE Trans. Plasma Sci.2012.40:1933.
    [153]秦奋,王冬,陈代兵,文杰. L波段高阶模抑制型磁绝缘线振荡器研究.物理学报.2012.61:094101.
    [154]文杰,范植开,陈代兵,王冬,秦奋,田扬超.单频多模磁绝缘线振荡器的3维数值模拟.强激光与粒子束.2011.23:1335.
    [155]文杰,田扬超,范植开,陈代兵,王冬,秦奋. Ku波段磁绝缘线振荡器的数值模拟.强激光与粒子束.2011.23:3047.
    [156]文杰,范植开,陈代兵,王冬,秦奋,田扬超.轴向分区双频磁绝缘线振荡器的数值模拟.强激光与粒子束.2011.23:1676.
    [157] Jie Wen, Dai-Bing Chen, Dong Wang, and Fen Qin. A Novel MILO WithStable Frequency. IEEE Trans. Plasma Sci.2012.40:1594.
    [158]何琥. C波段磁绝缘线振荡器开放腔高频特性分析.强激光与粒子束.2006.18:101.
    [159]郭焱华,范植开,何琥,陈代兵.磁绝缘线振荡器谐振腔的高频特性研究.强激光与粒子束.2005.3:436.
    [160]郭焱华,何琥,范植开,陈代兵,王冬. C波段磁绝缘线振荡器的数值模拟.强激光与粒子束.2007.19:284.
    [161]郭焱华,范植开,何琥. X波段磁绝缘线振荡器的数值模拟.强激光与粒子束.2009.21:490.
    [162]杨郁林,丁武. MILO物理分析与数值模拟.强激光与粒子束.1999.11:623.
    [163]杨郁林,丁武.高频大功率磁绝缘线振荡器的理论设计.强激光与粒子束.2001.13:76.
    [164]丁武.磁绝缘线振荡器中空间电荷的调制.强激光与粒子束.2001.13:213.
    [165]丁武,杨郁林.磁绝缘线振荡器中空间电荷的辐射.强激光与粒子束.2002.14:115.
    [166]郝建红,丁武.磁绝缘线振荡器中辐射场的非线性行为.强激光与粒子束.2002.14:743.
    [167]郝建红,丁武. MILO中场不稳定性的非线性发展及混沌行为.强激光与粒子束.2003.15:995.
    [168]郝建红,丁武,董志伟.磁绝缘传输线振荡器中的次级电子倍增现象.物理学报.2006.55:4789.
    [169]孙会芳,董志伟,姜幼明.改进型磁绝缘线振荡器的设计和数值模拟.强激光与粒子束.2003.15:1221.
    [170]孙会芳,董志伟,杨温渊,周海京,姜幼明. MILO实验模型的频移问题研究.信息与电子工程.2004.2:95.
    [171]孙会芳,董志伟,周海京,杨温渊.虚阴极为负载的磁绝缘线振荡器设计和研究.强激光与粒子束.2005.17:1127.
    [172]孙会芳,董志伟.双极性流对低阻抗器件的影响.强激光与粒子束.2006.18:2053.
    [173]孙会芳,董志伟.磁绝缘线振荡器中高阶模式的3维数值模拟.强激光与粒子束.2008.20:641.
    [174]孙会芳,董志伟.高效率磁绝缘线振荡器的设计和数值模拟.强激光与粒子束.2008.20:797.
    [175]孙会芳,董志伟,杨郁林.磁绝缘线振荡器中模式竞争问题的数值模拟.强激光与粒子束.2010.22:303.
    [176] Wenyuan Yang. Numerical Study of a Simply Constructed MagneticallyInsulated Transmission Line Oscillator. IEEE Trans. Plasma Sci.2008.36:2801.
    [177]董烨,董志伟,杨温渊,陈军,周前红,孙会芳,周海京.磁绝缘线振荡器内气体碰撞电离数值模拟.强激光与粒子束.2012.24:732.
    [178] Renzhen Xiao, Yongpeng Zhang, Hao Shao, and Jun Sun. An Inward-EmittingMagnetically Insulated Line Oscillator. IEEE Trans. Plasma Sci.2009.37:1925.
    [179] Renzhen Xiao, Jun Sun, Changhua Chen, Yongpeng Zhang, and Hao Shao.High efficiency annular magnetically insulated line oscillator-transit timeoscillator with three separate frequencies in three bands. J. Appl. Phys.2009.106:033308.
    [180] Renzhen Xiao, Wei Song, Zhimin Song, Jun Sun, Hao Shao, and ChanghuaChen. High efficiency X-band magnetically insulated line oscillator with aseparate cathode. Phys. Plasmas.2010.17:043109.
    [181]彭天柱,祝大军,刘盛纲.磁绝缘线振荡器的三维粒子模拟.真空电子技术.2006.3:21.
    [182]彭天柱,祝大军,刘盛纲.一种S波段磁绝缘线振荡器的高频特性研究.强激光与粒子束.2006.18:2044.
    [183] Smrity Dwivedi and P. K. Jain. Electromagnetic Analysis of a Disk-LoadedCoaxial Waveguiding Structure for MILO. IEEE Trans. Plasma Sci.2012.40:1032.
    [184] Smrity Dwivedi and P. K. Jain. Beam-wave interaction analysis of amagnetically insulated line oscillator. Phys. Plasmas.2012.19:082110.
    [185] Price D, Sze H, Fittinghoff D, Phase and frequency locking of a cavity vircatordriven by a relativistic magnetron. J. Appl. Phys.,1989.12:5185.
    [186] M. V. Fazio, J. Kinross-wright, B. Haynes, et al. Virtual cathode microwaveamplifier experiment. J. Appl. Phys.1989.6:2675.
    [187] H. Sze, D. Price, B. Harteneck. Phase locking of two strongly-coupled vircators.J. Appl. Phys.1990.5:2278.
    [188] K. J. Hendricks, Richard Adler, R. C. Noggle. Experimental results of phaselocking two virtual cathode oscillator. J. Appl. Phys.1990.2:820.
    [189] R. Menon, A. Roy, S. K. Singh, et al. High power microwave generation fromcoaxial virtual cathode oscillator using graphite and velet cathodes. J. Appl.Phys.2010.107:093301.
    [190]舒挺,李志强,袁成卫等. TM01模虚阴极振荡器实验研究.强激光与粒子束.2005.8:1163.
    [191]李志强,钟辉煌,舒挺等.多腔虚阴极振荡器研究.强激光与粒子束.2009.3:421.
    [192] LI Zhi-Qiang, ZHONG Hui-Huang, FAN Yu-Wei, SHU Ting, QIAN Bao-Liang,XU Liu-Rong, ZHAO Yan-Song. Investigation of an S-Band TaperedMagnetically Insulated Transmission Line Oscillator. Chin. Phys. Lett.2009.26:055201.
    [193]荀涛,杨汉武,张建德,樊玉伟.磁绝缘线振荡器重复频率运行真空系统优化.强激光与粒子束.2012.24:1004.
    [194] J. M. Creedon. Magnetic cutoff in high-current diodes. J. Appl. Phys.1977.48:1070.
    [195]刘盛纲.相对论电子学.北京:科学出版社,1987
    [196]刘盛纲.微波电子学导论.北京:国防工业出版社,1985.
    [197]吴鸿适.微波电子学原理.北京:科学出版社,1987.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700