可食性明胶抑菌保鲜涂层的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鸡肉调理肉制品是一类由生鲜鸡肉和调理料成分组成的具有方便、新鲜、营养、低脂等特点的新型肉类食品。鸡肉产品是容易发生腐败的食品,在储存过程中容易发生微生物腐败和汁液损失等变化,这两个不利因素将导致其货架期缩短并严重损害了产品的经济价值,影响到鸡肉调理制品的发展。因此降低汁液损失和延长调理鸡肉产品的货架期成为鸡肉调理制品加工业所面临的重要任务。
     本实验研究了添加抑菌抑菌成分的可食性明胶抑菌涂层对冷却鸡肉制品的抑菌保鲜效果和降低鸡肉调理制品汁液损失效果,目的在于开发一种适用于冷却鸡肉调理制品的可食性抑菌包装。本研究旨在:(1)研究Nisin(乳酸链球菌素)和山梨酸钾在明胶抑菌涂层中对新鲜鸡胸肉的保鲜效果,并且筛选适合作为响应面方程响应值的定量指标;(2)通过建立二次响应面方程优化三种抑菌成分(Nisin、山梨酸钾和EDTA-2Na)的在明胶涂层中的添加配比;(3)验证添加优化抑菌配方的明胶可食性抑菌涂层对鸡肉调理制品(川香鸡柳)的抑菌保鲜效果。
     本实验的研究结果如下:
     (1) Nisin-明胶涂层处理显著抑制了冷却鸡胸肉菌落总数的增长(p<0.05),且涂层的抑菌效果随Nisin浓度增大而增强;Nisin-明胶涂层处理对鸡胸肉组的中心pH没有显著影响(p>0.05);Nisin-明胶涂层处理在储存初期显著鸡胸改善鸡肉的色泽(p<0.05);明胶-明胶可食性涂层极显著降低鸡胸肉的汁液损失(p<0.01)。实验结果说明,Nisin-明胶涂层具有显著抑菌能力和保水能力,鸡胸肉菌落总数可以作为二次响应面方程的响应值。
     (2)山梨酸钾-明胶涂层处理显著抑制了鸡胸肉表面菌落总数的增长(p<0.05),且涂层的抑菌效果随着山梨酸钾浓度升高而增强;山梨酸钾-明胶涂层对冷却鸡肉的可挥发性盐基氮(TVB-N)水平没有显著影响(p>0.05);山梨酸钾明胶保鲜涂层对鸡胸肉的中心pH和色差没有显著影响(p>0.05)。实验结果表明山梨酸钾-明胶涂层具有显著的抑菌作用,可挥发性盐基氮水平不适合作为鸡肉鲜度的定量指标。(3)以储存四天鸡胸肉菌落总数作为响应值建立二次响应面方程并进行响应面分析,结果显示三种抑菌成分在实验水平范围内存在稳定的最优组合,在该组合配方下使得菌落总数取得最小值,在优化配方下三种抑菌成分的抑菌效果发挥到最佳水平。Nisin、山梨酸钾和EDTA-2Na的最优抑菌添加配方分别为936mg/L、23g/L和7.99g/L。
     (4)使用添加了优化抑菌剂配方的明胶抑菌涂层处理鸡胸肉和川香鸡柳。实验结果显示:明胶抑菌涂层显著抑制了冷鲜鸡胸肉和川香鸡柳的菌落总数(p<0.01),分别显著延长了冷却鸡胸肉和川香鸡柳肉货架期100%和75%;明胶抑菌涂层极显著降低了产品的汁液损失(p<0.01),并将冷却鸡胸肉的汁液损失从7.5%降低到0.8%;明胶可食性涂层显著改善了冷鲜鸡胸肉的色泽品质(p<0.05)。实验结果说明明胶可食性抑菌涂层具有显著抑菌能力和保水能力,可食性明胶抑菌涂层可以作为鸡肉调理制品的包装。
Prepared chicken products, gaining popularity for their convenience, freshness, nutrition balance and low-fat properties, consists of fresh chicken and others added elements. Fresh chicken and products are highly perishable foods and susceptible to microbial spoilage which leads to short shelf-life, and while there also exists heavy drip loss during the refrigeration storage. Consequently, developing methods to extend the shelf-life and reduce the weight loss represents a major task for the poultry processing industry.
     In this study, the edible antibacterial gelatin based coatings added with several bacteriostatic agents was used for chicken products package. The following are the purpose of this research: (1) Studying the preservation of edible antibacterial gelatin based coatings added with Nisin and potassium sorbate during the storage of fresh chilled chicken breast, and selecting the best quantitative indicator used as the response value for the square response surface equation; (2) The optimization of the antimicrobial agents formula (Nisin, potassium sorbate and EDTA-2Na) in gelatin based coatings by establishing a square response surface equation; (3) The application of the edible antibacterial gelatin coatings on prepared chicken products(Chuanxiang chicken fillet), and developing a proper method of active edible package for fresh chicken products.
     The results of the experiments were as follows:
     (1) The preservation effect of gelatin based edible coatings added with Nisin on chilled fresh chicken breast was evaluated. The result showed that the Nisin-gelatin based edible coatings had a significant inhibitory action on the total number of visible colonies(TVC) of chicken breast, and the inhibitory effect increased with the strengthen of Nisin’s concentration (p<0.05); The addition of Nisin to the gelatin based edible coatings showed no significant effect on the center pH of chicken breast during refrigeration (p>0.05), but significantly improved the color of chicken breast in the beginning period of storage (p<0.05); The drip loss of chicken breast was significantly reduced during storage by the treatment of gelatin based edible coatings (p<0.01). It was indicated that the TVC of the chicken breast treated by edible fresh-keeping coatings was proper for the indicator used for the square response surface equation which could optimize the formula of antimicrobial agents in edible gelatin coatings.
     (2) The preservation effect of gelatin based edible coatings added with potassium sorbate on chilled fresh chicken breast was evaluated. The results showed that the potassium sorbate-gelatin edible coatings had a significant inhibitory action on the TVC of chicken breast, and the inhibitory effect increased with the strengthen of potassium sorbate’s concentration (p<0.05); The total volatile basic nitrogen(TVB-N) had no significant difference between the coatings groups treated by potassium sorbate-gelatin edible coatings and the control group (p>0.05); The edible gelatin coatings added with potassium sorbate had no influence on both chroma and central pH of the chicken breast. It illustrated that the socalled TVB-N was not proper used as a quantitative indicator for chicken products of freshness.
     (3) The square response surface equation which response value was the TVC of chicken breast in the 4th day of storage and the independent variable was the addition value of the three antimicrobial agents (Nisin, potassium sorbate and EDTA-2Na) was set up. It showed that there existed a stable point where the TVC of the coated chicken was in the lowest level, in other means that the three antimicrobial agents had a optional regrouping which had the best inhibit action of the three antimicrobial agents added into gelatin coatings; According to the optimization formula attained by the square response equation the addition of the thee antimicrobial agents was fixed. (Nisin:936 mg/L, potassium sorbate:23 g/L, EDTA-2Na:7.99g/ L).
     (4) The preservation effect of edible gelatin antimicrobial coatings on the chilled fresh chicken breast and Chuanxiang chicken fillet stored under refrigeration (0-4℃) was analyzed. The result showed that the coatings treatment had separately extended the shelf-life of the fresh chilled chicken breast and Chuanxiang chicken fillet by approximately 100% and 75% compared to the control groups in the way of significantly inhibition of the TVC (p<0.01); The drip loss of the fresh chicken products had been reduce from 7.5% to 0.8% by the edible gelatin coatings(p<0.01); Compared with the control group the edible gelatin coatings had the ability to improve the colour quality of chicken products. The edible gelatin based coatings added with antibacterial agents was proved to be fit as an active anti-microbial package which could maintain a long shelf-life by controlling the growth of the microorganism and reducing the drip loss in the chilled chicken prepared products.
引文
曹娜,符玉华,贺军辉.明胶膜的性能研究进展[J].高分子通报,2007(8):1-6. 董金甫,李瑶卿.茶多酚(TPP)对8种致病菌最低抑制浓度的研究[J].食品
    科学,1995,16(1):6-12.
    GB2760-2007.中国食品添加剂使用卫生标准[S]. 2009.
    GB16869-2005.鲜、冻禽产品国家标准[S]. 2006.
    GB/T 4789.2-2008.食品卫生微生物学检验菌落总数测定[S]. 2009.
    GB/T5009.44-2003.中国肉及肉制品卫生标准分析方法[S].2004.
    GB/T9695.5-2008.肉与肉制品pH测定[S]. 2009.
    何国庆,贾英明.食品微生物学[M].中国农业大学出版社,2002.
    江汉湖.食品微生物学[M].中国农业出版社,2001.
    李海娜,朱希强,郭学平.天然防腐剂乳链菌肽复配应用的研究进展[J].食品与药品,2010(12):51-55。
    李苗云等.冷却猪肉贮藏过程中腐败品质指标的关系研究[J].食品与发酵工业, 2008(4):168-171.
    李晓波.微生物与肉类腐败变质[J].肉类研究, 2008(9):41-44.
    刘琳,张德权,贺稚非.调理肉制品保鲜技术研究进展[J].肉类研究, 2008(5):3-9.
    罗欣,朱燕. Nisin在冷却牛肉保鲜中的应用[J].食品科学,2000(21):53-57. 罗欣,朱燕.丙酸钙在真空包装鲜牛肉保鲜中的应用研究[J].肉类研究,1998(2):40-42.
    南庆贤.肉类工业手册[M].中国轻工业出版社,2002.
    史贤明.食品安全与卫生学[M].中国农业出版社,2002.
    苏世彦等.食品微生物检验手册[M].中国轻工业出版社,1998,247-264.
    孙承锋,戴瑞彤,曲富春.微生物与肉类食品的腐败[J].肉类验究,2001(12): 32-36.
    文杰.肉鸡业产销形势与后市分析研究[J].北方牧业,2009会议传真:11.
    翁航萍.肉类微生物学概论[J].肉类研究,2008(4):11-15.
    吴信法.畜产食品兽医卫生检验手册[M].上海科学技术出版社,1988. 余铀.两种天然抗氧化剂对猪肉保鲜效果的比较研究[J].食品科学, 1995,16(10):69-71.
    张希斌,罗欣,张一敏等. Nisin-明胶可食性抑菌涂层对冷却鸡胸肉的综合保鲜效果的研究[J].食品与发酵工业,2010(已收录).
    张志良.用茶多酚改善肉制品营养卫生[J].肉品卫生,1995,(6):24-25.
    周光宏,罗欣,徐幸莲等.中国肉制品分类[J].肉类研究,2008(10):3-5.
    周光宏等编著.畜产品加工学[M].中国农业大学出版社,2002.
    Ahvenainen(Ed.). Novel food packaging techniques. Woodhead Publishing Ltd, 2003(13):5–21.
    Antonio Gálvez, Hikmate Abriouel, Rosario Lucas López, et al. Bacteriocin-based strategies for food biopreservation [J]. International Journal of Food Microbiology, 2007(120):51–70.
    Arauz L. J., Jozala A. F., Mazzola.P.G., et al. Nisin biotechnological production and application:a review[J]. Trends Food Sci. Technol, 2009 (20):146–154.
    Aristippos Gennadios, Milford A.Hanna, Lyndon B.Kurth. Application of Edible Coatings on Meats, Poultry and Seafoods:A Review. Lebensm.-Wiss.u.-Technol, 1997(30):337–350.
    Athina G. Ntzimani, Vasiliki I. Giatrakou, Ioannis N. Savvaidis. Combined natural antimicrobial treatments (EDTA, lysozyme, rosemary and oregano oil) on semicooked coated chicken meat stored in vacuum packages at 4°C:Microbiological and sensory evaluation[J]. Innovative Food Science and Emerging Technologies, 2010(11):187–196.
    Aymerich T., Picouet,P.A., Monfort J. M. Decontamination technologies for meat products[J]. Meat Science, 2008(78):114-129.
    Barnes E. M. Microbiological problems of poultry at refrigerator temperatures -a review[J]. Journal Science Food Agriculture, 1976(27):777–782.
    Barbut S. Poultry Products Processing. An Industry Guide[J],CRC Press, London. 2002.
    Belcher J.N. Industrial packaging developments for the global meat market[J], Meat Science, 2006(74):143–148.
    Bolder N. M. Decontamination of meat and poultry carcasses[J]. Trends in Food Science and Technology, 1987(8):221–227.
    Botsogloua N. A. E. Christakia, Fletourisb D. J., et al. The effect of dietary oregano essential oil on lipid oxidation in raw and cooked chicken during refrigerated storage[J]. Meat Science, 2002 (62) 259–265.
    Brewer M. S. Irradiation effects on meat flavor: A review [J]. Meat Science, 2009 (81):1-14.
    Buonocore G. et al. A general approach to describe the antimicrobial agent release from highly swellable films intended for food packaging applications[J]. Journal of Controlled Release, 2003(90)97-107.
    Catherine Nettles Cutter. Opportunities for bio-based packaging technologies to improve the quality and safety of fresh and further processed muscle foods[J]. Meat Science, 2006(74)131–142.
    Chouliara E. A, Karatapanis I.N, Savvaidis M.G. Combined effect of oregano essential oil and modified atmosphere packaging on shelf-life extension of fresh chicken breast meat stored at 4℃[J], Food Microbiology, 2007 (24):607–617.
    Christiana C, Balamatsia Apostolos Patsias, Michael G. Kontominas,et al. Possible role of volatile amines as quality-indicating metabolites in modified atmosphere-packaged chicken fillets:Correlation with microbiological and sensory attributes[J].Food Chemistry, 2007(104) 1622–1628.
    Comstock K., Farrell D., Godwin C., et al. From hydrocarbons to carbohydrates: food packaging of the future[J]. Meat Science, 2004 (34):168-181.
    Cooksey K.. E?ectiveness of antimicrobial food packaging materials[J]. Food Additives and Contaminants, 2005(22):980-987.
    Cumba H. J., Bellmer D.. Production of value-added products from meat processing cellulosic waste[J]. ASAE Annual International Meeting, Tampa, Florida,2005(1)7-20.
    Cunningham F. E. Shelf-life and quality characteristics of poultry parts dipped in potassium sorbate[J]. Journal of Food Science,1979(44):863-864.
    Cuq B., Gontard N., Guilbert S.. Edible films and coatings as active layers[J]. Active food packaging, 1995(12):111-142.
    Cunningham, F.E., Proctor V.A., Goetsch S.J. Egg-white lysozyme as a food preservative: an overview[J]. World’s Poult, 1991(47):141-163.
    Cutter C. N., Sumner S. S.. Application of edible coatings on muscle foods[J]. Food Microbiology, 2002(22):467-484.
    Cutter, C.N., Siragusa, G.R. Decontamination of beef carcass tissue with Nisin using a pilot scale model carcass washer[J]. Food Microbiol, 1994(11):481-489.
    Cutter, C.N., Siragusa, G.R., Reductions of Listeria innocua and Brochothrix thermosphacta on beef following Nisin spray treatments and vacuum packaging [J]. Food Microbiol,1996(13):23-33.
    Cutter C.N., Siragusa G. R. Reduction of Brochothrix thermosphacta on beef surfaces following immobilization of Nisin in calcium alginate gels[J]. Lett. Appl. Microbiol, 1996(23):9-12.
    Cutter C.N., Siragusa G.R.. Growth of Brochothrix thermosphacta in ground
    beef following treatments with Nisin in calcium alginate gels [J]. Food Microbiol, 1997(14):425–430.
    Dallyn H., Shorten D. Hygiene aspects of packaging in the food industry [J]. International Biodeterioration, 1998(24):392–3876.
    Davies A. R. Advances in modified-atmosphere packaging [J]. Food Microbiology, 1995(12):304–320.
    Dawsona P.L, Hirt D. E., Rieckc J.R., et al. Nisin release from films is a?ected by both protein type and film-forming method. Food Research International, 2003 (36) 959–968.
    Doyle In M. P, Beuchat L. R., Montville T. J.. Food Microbiology Fundamentals and Frontiers [M]. (Chapter 6). ASM press, 2007.
    Driessen. Mechanistic studies of antibiotic-induced permeabilization of phospholipid vesicles [J] . Biochemistry.1995 (34):1606-1614. Dutreux N. S, Notermansa M. M., Go′ngora-Nieto G. V, et al. Effects of combined exposure of Micrococcus luteus to Nisin and pulsed electric fields[J]. International Journal of Food Microbiology, 2000(60): 147–152.
    Economou T., Pournis N., Ntzimani A.,et al. Nisin–EDTA treatments and modified atmosphere packaging to increase fresh chicken meat shelf-life[J]. Food Chemistry, 2009 (114) 1470–1476.
    Eleftherios H, Drosinos Marios Mataragas, Aikaterini Kampani,et al. Ioannis Metaxopoulos, Inhibitory eVect of organic acid salts on spoilage Xora in culture medium and cured cooked meat products under commercial manufacturing conditions[J], Meat Science, 2006(73):75–81.
    Fagan J. D, Gormley T. R., Mhuircheartaigh M. U.. Freeze-chill technology for raw whiting and mackerel fillets[J]. Farm Food, 2002(12):14–17.
    Fagan J. D, Gormley T. R., Mhuircheartaigh, M.U.. Effect of freeze-chilling, in comparison with fresh, chilling and freezing on some quality parameters if raw whiting, mackerel and salmon portions[J]. Leban. Wiss. und. Technol, 2003(36):647-655.
    G.H. Zhou, X. L. Xu, Y. Liu. Preservation technologies for fresh meat– A review[J]. Meat science, 2010(x):xxx-xxx. Giatrakou V. A, Ntzimani I.N, Savvaidis. Effect of chitosan and thyme oil on a ready to cook chicken product [J]. Food Microbiology, 2010(27) 132–136.
    Gill C. O. Extending the storage life of chilled meats [J]. Meats Science, 1996(43):99-109.
    Gómez-Estaca J. P, Montero F, Fernández-Martín,et al. Physico-chemical andfilm-forming properties of bovine-hide and tuna-skin gelatin: A comparative study [J]. Journal of Food Engineering, 2009 (90):480–486.
    González-Fandos E. J., Dominguez. L, Effect of potassium sorbate washing on the growth of Listeria monocytogenes on fresh poultry [J]. Food Control 18 (2007) 842–846.
    Han, J. H. Antimicrobial food packaging [M]. Novel food package techniques. CRC Press. (2003)
    Harald ortner. The effect of chilling on meat quality [J]. Fleishwirtsch,1989 (4):1124-1137. Harry M, Pylypiw Jr, Maureen T.. Rapid high-performance liquid chromatography method for the analysis of sodium benzoate and potassium sorbate in foods [J]. Journal of Chromatography A, 2000(83): 299–304.
    Holzapfel W. H., Geisen R., Schillinger U, Ecological preservation of foods with reference to protective cultures, bacteriocins and food-grade enzymes[J]. International Journal of Food Microbiology, 1995 (24):343-362.
    Honikel K. O. C, Kim J., Hamm R. Sarcomere shortening of pre rigor muscles and its influence on drip loss in meat[J]. Meat Science, 1986(16):267-282.
    Honikel K O. The water binding of meat [J]. Fleishwirtschaft International, 1988 (1):14-22.
    Hsu S. Y., Lung-Yueh Sun. E?ects of salt, phosphates, potassium sorbate and sodium erythorbate on qualities of emulsified meatball [J]. Journal of Food Engineering, 2006 (73) :246–252.
    Hwang H., Beuchat L. R. Efficacy of selected chemicals for killing pathogenic and spoilage microorganisms on chicken skin [J]. Journal of Food Protection, 1995 (58):19–23.
    Ilkka M. Helander, Tiina Mattila-Sandholm. Permeability barrier of the Gram-negative bacterial outer membrane with special reference to Nisin [J]. International Journal of Food Microbiology, 2000(60) 153–161.
    Joshua L, Herring Sharat, Jonnalongadda C. Oxidative stability of gelatin coated pork at refrigerated storage [J], Meat Science, 2010 (xxx) xxx–xxx.
    Karen Sanjurjo. Study of the performance of Nisin supported in edible films [J]. Food Research International, 2006(39):749–754
    Lawrie R. A., Ledward D. A. Lawrie's Meat Science [M]. Seventh English edition ed. Cambridge England: Woodhead Publishing Limited ,2006.
    Lee D. U, Heinz V., Knorr D.. Effects of combination treatments of Nisin and high-intensity ultrasound with high pressure on the microbial inactivation in liquid whole egg [J]. Innovative Food Science and Emerging Technologies, 2003 (4) 387–393.
    Lothar Leistner. Basic aspects of food preservation by hurdle technology [J]. International Journal of Food Microbiology, 2000(55):181-186.
    Malton R., James S. J., Drip loss from wrapped meat on retail display [J]. Meat Industry, 1983 (56):39-41.
    Magnussen O. M., Haugland A., Torstveit Hemmingsen A. K., et al. Advances in superchilling of food process characteristics and product quality [J]. Trends in Food Science & Technology, 2008 (19):418-424.
    Marggrander K., Hofmann K. Reduction of freezer burn and loss on drying during long term storage of pork with gelatin spray solution[J]. Fleischwirtschaft, 1977(1)19–20.
    Montville T.J, Chung H. J., Chikindas M.L. Nisin A depletes intracellular ATP and acts in a bacteriocidal manner against Mycobacterium smegmatis[J]. Lett. Appl. Microbiol, 1999(28):189–193.
    Nattress .F. M., Yost C. K.,et al. Evaluation of the ability of lysozyme and Nisin to control meat spoilage bacteria[J]. International Journal of Food Microbiology , 2001 (70):111–119.
    Nychas G J. E., Marshall D., Sofos J. Meat poultry and seafood [M],2007.
    Ockerman H. W., Basu L. Carcass chilling and boning [J]. In J. Werner Klinth (Ed.), Encyclopedia of Meat Sciences, 2004 (22):144-149.
    Offer G, Cousins T. The mechanism of drip production: formation of two compartments of extracellular space in muscle post mortem [J]. Journal of the Science of Food and Agriculture , 1992 (58):107-116.
    Olafsdottir G., Lauzon H. L., Martinsdottir E., et al. Evaluation of shelf life of superchilled cod (Gadus morhua) fillets and the influence of temperature fluctuations during storage on microbial and chemical quality indicators[J]. Journal of Food Science, 2006(71):97-109.
    Ozdemir M., Floros J. D.. Optimization of edible whey protein films containing preservatives for water vapor permeability, water solubility and sensory characteristics [J]. Journal of Food Engineering, 2008(86):215–224.
    Patsias A. I, Chouliara A., Badeka I. N. Shelf-life of a chilled precooked chicken product stored in air and under modified atmospheres: microbiological, chemical, sensory attributes [J]. Food Microbiology, 2006 (23):423–429.
    Patsias A, Badeka A. V., Savvaidis I. N., et al. Combined effect of freeze chilling and MAP on quality parameters of raw chicken fillets[J]. Food Microbiology, 2008 (25):575– 581.
    Paula M. Periago, Roy Moezelaar. Combined effect of Nisin and carvacrol at different pH and temperature levels on the viability of different strains of Bacillus cereus[J]. International Journal of Food Microbiology, 2001(68):141–148.
    Phillips C. A, Duggan J., The effect of EDTA and trisodium phosphate, alone and in combination with Nisin, on the growth of Arcobacter butzleri in culture[J]. Food Microbiology, 2001(18) 547-554.
    Ross T, McMeekin T A. Food Microbiol [M], 1994,23: 241~264.
    Ruhr E., Sahl H. G. Mode of action of the peptide antibiotic Nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles[J]. Antimicrobe Agents Chemother, 1985(27):841–845.
    Schuchat A., Deaver K., Wenger J. D., Swaminathan B. Role of food in sporadic listeriosis: I Case-control-study of dietary risk factors[J]. Journal
    of American Medical Association, 1992 (267):2041–2045.
    Schubring R. 'Superchilling' - an 'old' variant to prolong shelf life of fresh fish and meat requicked[J]. Fleischwirtschaft, 2009 (89):104-113.
    Smith G. C., Rape S. W., Motycka R. R., et al. Packaging systems for extending the storage life of pork cuts[J]. Journal of Food Science, 1974 (6):1140–1144.
    Sothorvit R, Krochta J M. Review of Study on Properties of Gelatin Film[J]. Food Engineering , 2001(50):149-155.
    Stevens K.A., Sheldon B.W., Klapes N.A.,et al. Nisin treatment for inactivation of Salmonella species and other Gram-negative bacteria[J]. Appl. Environ. Microbiol, 1991(57): 3613-3615.
    Steven R. Payne, Cedric J. Durham, Sheryl M. Scottt, et al. The effect of non-vacuum packaging systems drip loss from chilled beef [J]. Meat Science, 1998 (49):211-287.
    Stiles M. E. Scientific principles of controlled/modified atmosphere packaging[J]. Food control, 1991(22):18–25.
    Surekha M., Reddy S. M.. Preservatives. ClassiWcation and properties [J]. Encyclopedia of food microbiology, 2000:1710–1717.
    Uyttendaele M. R., Neyts K. D., Lips R. Incidence of Listeria monocytogenes in poultry and poultry products obtained from Belgian and French abbatoirs [J]. Food Microbiology, 1997 (14):339–345.
    WHO. Wholesomeness of irradiated foods [M]. World Health Organization, Technical Report Series, 1981:659.
    Winkowski K. Correlation of bioenergetic parameters with cell death in Listeria monocytogenes cells exposed to Nisin [J]. Applied and environmental microbiology, 1994(60):4186-4188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700