九里香叶总黄酮及其单体对糖尿病心肌病的保护作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病心肌病是糖尿病的主要并发症之一,随着糖尿病患者的逐年增多,糖尿病心肌病的发病率也迅速上升。糖尿病心肌病的主要因素是由心肌能量代谢异常,包括糖和乳酸盐代谢减少,脂肪代谢增加导致游离脂肪酸堆积以及由此导致的体内稳态失衡。在此基础上出现氧化应激,最终导致细胞凋亡、炎症反应增加、内皮功能紊乱以及血液高凝和心肌纤维化等病理生理改变,同时出现线粒体、细胞微循环的损伤,间质纤维化,心肌的功能和结构均发生改变。九里香叶总黄酮(TFMP)是从九里香叶中提取的黄酮类化合物,纯度达到92%以上。研究表明,TFMP是由一系列极性很小的甲氧基黄酮类化合物组成,其中两种含量最高的单体成分是JA(40.96%)和JB(31.05%)。
     本研究在整体水平,观察TFMP对高糖高脂饮食伴小剂量链脲佐菌素诱导大鼠糖尿病心肌病的影响,探讨TFMP对糖尿病心肌病的保护作用;在细胞水平,观察TFMP、JA及JB对高糖诱导H9c2心肌细胞凋亡的影响,探讨TFMP、JA及JB对高糖诱导H9c2心肌细胞凋亡的保护作用及机制。主要研究内容如下:
     1.整体水平研究利用高糖高脂饮食伴小剂量链脲佐菌素(30mg/kg)建立大鼠2型糖尿病模型,给予TFMP12周,检测大鼠血糖、血脂、自由基氧化损伤、炎性因子和心肌病理等改变。结果表明,灌胃给予TFMP35、70mg/kg12周,可明显改善2型糖尿病大鼠的心肌结构损伤,纠正血糖、血脂代谢紊乱,抑制心肌纤维化主要炎性因子(IL-6,TGF-β1,CTGF)的增高,对抗自由基的氧化损伤。整体实验结果说明,TFMP能明显改善2型糖尿病大鼠的心肌损伤。
     2.细胞水平研究通过不同浓度葡萄糖(20、30、50、100mmol/L)刺激H9c2心肌细胞,观察不同浓度葡萄糖对H9c2心肌细胞的存活率、乳酸脱氢酶(LDH)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)、丙二醛(MDA)、caspase-3,NADPH氧化酶p47phox蛋白的影响。结果显示,高浓度葡萄糖(30、50、100mmol/L)可明显诱导H9c2心肌细胞氧化损伤及凋亡。
     3.作用机制研究通过高糖(30mmol/L)刺激诱导H9c2心肌细胞氧化损伤及凋亡,并用TFMP、JA及JB干预,检测H9c2心肌细胞氧化应激及凋亡信号转导通路等蛋白的表达。结果显示:TFMP、JA及JB能改善高糖诱导H9c2心肌细胞的氧化应激损伤,减少caspase-3的活性及蛋白表达,降低p38MAPK、JNK、NF-κB及NADPH氧化酶p47phox的蛋白表达,并可提高Bcl-2/Bax比值、抑制细胞凋亡,其保护糖尿病心肌病的作用机制可能与p38MAPK、JNK、NF-κB,caspase-3信号转导通路的激活有关。
     综上所述,TFMP对糖尿病心肌病具有保护作用,其机制可能与抑制氧化应激损伤诱导的心肌细胞凋亡有关。研究结果表明,单体黄酮JA、JB同样通过抑制氧化应激损伤诱导心肌细胞凋亡的机制保护糖尿病心肌损伤,从而确证了单体黄酮JA及JB是TFMP保护糖尿病心肌病的主要有效成份。
Cardiovascular complications, including diabetic cardiomyopathy (DCM), havebecome one of the leading causes of the rising morbidity and mortality in both type1and type2diabetes. In addition, DCM, as an independent diabetic cardiaccomplication, is characterized by the myocardial dysfunction in the absence ofhypertension, coronary artery or valvular heart disease which increases the risk ofheart failure. The mainly clinical feature of DCM is left ventricular hypertrophy anddiastolic dysfunction and will occur systolic dysfunction with the progression.
     TFMP was extract from the leaves of Murraya paniculata (L.) Jack (TFMP). Thecontent of flavonoid was more than92%. The study showed that TFMP wascomposed of a series of small polar methoxy flavonoids, and proved that the highestcontent of TFMP was JA (40.96%) and JB (31.05%). Our previous study showed thatTFMP had hypoglycemic and protective effect of diabetic nephropathy. However, thestudy about the effect of TFMP、JA and JB on the progression of DCM has not beenreported.
     In the thesis, we have used high fat diet and single low does STZ to inducediabetes to evaluate the protective effect of TFMP on diabetic cardiomypathy, and wehave established the model of oxidative injury and apoptosis in H9c2cells by highconcentration glucose to study the effects of TFMP、JA and JB on H9c2cellsoxidative injury and apoptosis.
     Flavonoids is one of the major compounds in the leaves of Murraya paniculata.Our previous study showed that TFMP had hypoglycemic effects without harmfulside effects. Therefore, we hypothesized that TFMP may have beneficial influence onthe progression of DCM. In the present study, the effects of TFMP on DCM in highfat diet and STZ-induced diabetic rats were evaluated.
     1. The protective effects of TFMP on type2diabetic rats
     (1) Experimental method
     The type2diabetic rats, induced by high fat diet and low dose STZ, were used toevaluate the effects of TFMP70、35mg/kg. The changes of TC, TG, HDL-c, LDL-cand IL-6in the serum of rats; the activity of SOD, GSH-Px and the content of MDAin myocardial tissue of rats; the expression of TGF-β1and CTGF in myocardial tissuewere detected. The myocardial histopathology and ultrastructure changes wereobserved.
     (2) Experimental results
     ①Compared with the Normal group, the TC, TG, LDL-c level was increasedsignificantly and the level of HDL-c was decreased significantly in the Model group;compared with the Model group, the TC, TG, LDL-c level was decreased significantlyand the level of HDL-c was increased significantly in the TFMP70、35mg/kg group(P<0.05or P<0.01);②Diabetic rats showed a significant reduction of both SOD andGSH-Px activities while increased the level of MDA in the myocardial tissuecompared with normal rats; the avtivities of SOD, GSH-Px were elevated and thecontent of MDA was reduced significantly in the myocardial tissue of TFMP70、35mg/kg group (P<0.05or P<0.01);③The body weight was decreased and theHW/BW was increased significantly in Model group compared with Normal group;compared with Model group, the body weight was increased and the HW/BW wasdecreased significantly in the TFMP70、35mg/kg group(P<0.05or P<0.01);④In theModel group rats, the level of IL-6and the myocardial tissue staining for TGF-β1and CTGF was significantly higher than that in Normal group; However, comparedwith Model group, the level of IL-6and immunohistochemical staining for TGF-β1and CTGF in myocardial tissue was markedly less in TFMP70、35mg/kg group.⑤The lesion of heart in the TFMP70、35mg/kg were significantly improved comparedwith Model group.
     2. The effects of different concentration of glucose on H9c2cells.
     (1) Experimental method
     To investigate the apoptosis-related signaling pathyways that are avtivated inH9c2cells treated with (20、30、50、100mmol/L) glucose. The percentage of survival cells, LDH, SOD, GSH-Px, MDA, the activity of caspase-3,AO/EB,Hoechst33342, Annexin V-FITC/PI and the protein expression of caspase-3andp47phox in H9c2cells were observed.
     (2) Experimental results
     ①MTT assay was performed to evaluate whether high concentrations of glucoseinhibit the growth of H9c2cells. We found that high concentration of glucose (30、50、100mmol/L) had cytotoxic effect on H9c2cells;②Compared with Normal H9c2cells, the activities of SOD, GSH-Px was decreased significantly, the content of MDAwas increased significantly in high concentration of glucose (30、50、100mmol/L)induced H9c2cells (P<0.05or P<0.01);③High concentration of glucose (20、30、50、100mmol/L) could increased the activities of caspase-3in H9c2cells (P<0.05orP<0.01);④Immunofluorescence staining showed that: the high concentration ofglucose (20、30、50、100mmol/L) induced H9c2cells displayed different levels ofapoptosis;⑤Western Blot to examine the protein expression of caspase-3andp47phox in cells exposed to high concentration of glucose (20、30、50、100mmol/L).The results showed that the protein level of caspase-3and p47phox were elevatedafter high concentration of glucose treatment.
     3. Effect of TFMP, JA and JB in H9c2cells exposed to high glucose and itsmechanism
     (1)Experimental method
     H9c2cells treated with high concentration of glucose (30mmol/L) was used asModel group. TFMP, JA and JB added into high concentration of glucose (30mmol/L)respectively were used as medicine group intervention. The H9c2cells treated withnormal glucose (5.5mmol/L) was used as Normal group. The H9c2cells of eachgroup were collected and the following measures were carried out: The activities ofSOD, GSH-Px, the content of MDA and the activity of caspase-3were assayed byavailable kits. The apoptosis was observed by staining of AO/EB and Hoechst33342.The rate of apoptosis was assayed by Annexin V-FITC kit. The expression of p47phox,p38MAPK, p-p38MAPK, JNK, p-JNK, p-NF-κB, Bcl-2, Bax, caspase-3protein weredetermined by Western Blot analysis.
     (2) Experimental results
     ①The activities of SOD, GSH-Px were increased and the content of MDA wasdecreased significantly in TFMP, JA and JB group compared with Model group(P<0.05or P<0.01);②The activity of caspase-3was decreased in TFMP, JA and JBgroup compared with Model group (P<0.05or P<0.01);③The result of AnnexinV-FITC/PI showed that: TFMP, JA and JB can inhibited high glucose induced earlyapoptosis in H9c2cells;④TFMP, JA and JB can decreased the expression ofp47phox, caspase-3. TFMP, JA, JB can up-regulate Bcl-2protein level, and reducedBax protein level. TFMP, JA and JB can reduce the phosphorylation of p38MAPK,JNK and NF-κB. The results showed that high glucose induced oxidative stressthrough the activation of NADPH oxidase, thus activating the p38MAPK, JNK,NF-κB signaling pathway, leading to myocardial apoptosis. The mechanism of TFMP,JA and JB protective effects probably through downregulation of NADPHoxidase-ROS-p38MAPK-JNK-NF-κB signaling pathway.
     In summary, TFMP has protective effect on the high fat diet and low dose STZinduced diabetic cardiomyopathy. TFMP, JA and JB can extenuate oxidative injury ofH9c2cells induced by high glucose. TFMP, JA and JB can inhibit H9c2cellsapoptosis induced by high glucose. This study preliminary clarified TFMP, JA and JBhave the protective effect of diabetic cardiomyopathy, and confirmed the monomericflavonoids JA and JB is the main active ingredient of TFMP.
引文
[1] S. Wild, G. Roglic, A. Green, et al. Global prevalence of diabetes estimates for theyear2000and projections for2030. Diabetes care.2004,27(5):1047-1053.
    [2] T. Ledet, B. Neubauer, N. Christensen, et al. Diabetic cardiopathy. Diabetologia.1979,16(4):207-209.
    [3] X. Jouven, R.N. Lema tre, T.D. Rea, et al. Diabetes, glucose level, and risk ofsudden cardiac death. European heart journal.2005,26(20):2142-2147.
    [4] S. Inamoto, T. Hayashi, N. Tazawa, et al. Angiotensin-II receptor blocker exertscardioprotection in diabetic rats exposed to hypoxia. Circulation journal: officialjournal of the Japanese Circulation Society.2006,70(6):787.
    [5] J. Aabun, F. Villarreal. The pathogenesis of myocardial filbrosis in the setting ofcardimyopathy. Am Coll Cardio.2006,47(4):693-700.
    [6] R.I. Hamby, S. Zoneraich, L. Sherman. Diabetic cardiomyopathy. JAMA.1974,229(13):1749-1754.
    [7] R.I. Hamby, S. Zoneraich, L. Sherman. Diabetic cardiomyopathy. JAMA: thejournal of the American Medical Association.1974,229(13):1749-1754.
    [8] M. Brownlee. The pathobiology of diabetic complications a unifying mechanism.Diabetes.2005,54(6):1615-1625.
    [9] R. Petrova, Y. Yamamoto, K. Muraki, et al. Advanced glycationendproduct-induced calcium handling impairment in mouse cardiac myocytes. JMol Cell Cardiol.2002,34(10):1425-1431.
    [10] C. Iribarren, A.J. Karter, A.S. Go, et al. Glycemic control and heart failure amongadult patients with diabetes. Circulation.2001,103(22):2668-2673.
    [11] D. Liao, J.B. Shofer, E.J. Boyko, et al. Abnormal glucose tolerance and increasedrisk for cardiovascular disease in Japanese-Americans with normal fastingglucose. Diabetes care.2001,24(1):39-44.
    [12] C. Chiu, A. Kovacs, R.M. Blanton, et al. Transgenic expression of fatty acidtransport protein1in the heart causes lipotoxic cardiomyopathy. Circulationresearch.2005,96(2):225-233.
    [13] D.D. Belke, E.A. Swanson, W.H. Dillmann. Decreased sarcoplasmic reticulumactivity and contractility in diabetic db/db mouse heart. Diabetes.2004,53(12):3201-3208.
    [14] J. opden Buijs, Z. Miklos, N.A. van Riel, et al. beta-Adrenergic activation revealsimpaired cardiac calcium handling at early stage of diabetes. Life Sci.2005,76(10):1083-1098.
    [15]黄娅茜,王宪,孔炜.糖尿病心肌病发病机制的研究进展[J].生理科学进展.2010,41(1):31-36.
    [16] E. Adeghate. Molecular and cellular basis of the aetiology and management ofdiabetic cardiomyopathy: a short review. Molecular and cellular biochemistry.2004,261(1-2):187-191.
    [17] S. Hafizi, J. Wharton, A.H. Chester, et al. Profibrotic effects of endothelin-1viathe ETA receptor in cultured human cardiac fibroblasts. Cellular Physiology andBiochemistry.2004,14(4-6):285-292.
    [18] B. Pozo-Navas, H. Stessel, G. Wolkart, et al. Role of myocardial nitric oxide indiabetic ischemia-reperfusion dysfunction: Studies in mice withmyocyte-specific overexpression of endothelial nitric-oxide synthase. Journal ofPharmacology and Experimental Therapeutics.2006,319(2):729-738.
    [19] D. An, B. Rodrigues. Role of changes in cardiac metabolism in development ofdiabetic cardiomyopathy. American Journal of Physiology-Heart and CirculatoryPhysiology.2006,291(4): H1489-H1506.
    [20] P.K. Singal, A. Bello-Klein, F. Farahmand, et al, Oxidative stress and functionaldeficit in diabetic cardiomyopathy, in: Diabetes and Cardiovascular Disease,Springer,2001, pp.213-220.
    [21] M. Hamblin, D.B. Friedman, S. Hill, et al. Alterations in the diabetic myocardialproteome coupled with increased myocardial oxidative stress underlies diabeticcardiomyopathy. Journal of molecular and cellular cardiology.2007,42(4):884-895.
    [22] J. Kajstura, F. Fiordaliso, A.M. Andreoli, et al. IGF-1overexpression inhibits thedevelopment of diabetic cardiomyopathy and angiotensin II-mediated oxidativestress. Diabetes.2001,50(6):1414-1424.
    [23] S.-Y. Li, X. Yang, A. Ceylan-Isik, et al. Cardiac contractile dysfunction inLep/Lep obesity is accompanied by NADPH oxidase activation, oxidativemodification of sarco (endo) plasmic reticulum Ca2+-ATPase and myosin heavychain isozyme switch. Diabetologia.2006,49(6):1434-1446.
    [24] D. Montanari, H. Yin, E. Dobrzynski, et al. Kallikrein gene delivery improvesserum glucose and lipid profiles and cardiac function in streptozotocin-induceddiabetic rats. Diabetes.2005,54(5):1573-1580.
    [25] J. Li, V. Petrov, K. Rumilla. Transforming growth factor betal promotescontraction of collagen gel by cardia fibroblasts through their differentiation intomyofibroblasts. Methods Find Exp Clin Pharmacol.2003,25(2):79-86.
    [26]石永英,董颀,石永华,等. TGF-β1对体外培养的大鼠心肌细胞肥大和凋亡的影响.中国病理生理杂志.2009,25(4):802-805.
    [27] J. Grünenfelder, D.N. Miniati, S. Murata, et al. Up-regulation of Bcl-2throughhyperbaric pressure transfection of TGF-β1ameliorates ischemia-reperfusioninjury in rat cardiac allografts. The Journal of heart and lung transplantation.2002,21(2):244-250.
    [28] W. Song, X. Lu, Q. Feng. Tumor necrosis factor-α induces apoptosis viainducible nitric oxide synthase in neonatal mouse cardiomyocytes.Cardiovascular research.2000,45(3):595-602.
    [29] J. Rodríguez-Vita, E. Sánchez-López, V. Esteban, et al. Angiotensin II activatesthe Smad pathway in vascular smooth muscle cells by a transforming growthfactor-β–independent mechanism. Circulation.2005,111(19):2509-2517.
    [30] J. Kajstura, F. Fiordaliso, A.M. Andreoli, et al. IGF-1overexpression inhibits thedevelopment of diabetic cardiomyopathy and angiotensin II–mediated oxidativestress. Diabetes.2001,50(6):1414-1424.
    [31] A.S. Baldwin Jr. The NF-κB and IκB proteins: new discoveries and insights.Annual review of immunology.1996,14(1):649-681.
    [32] M.L. Sheu, C.K. Chiang, K.S. Tsai, et al. Inhibition of NADPH oxidase-relatedoxidative stress-triggered signaling by honokiol suppresses high glucose-inducedhuman endothelial cell apoptosis. Free Radical Biology and Medicine.2008,44(12):2043-2050.
    [33] G. Chen, X. Shen, J. Yao, et al. Ablation of NF-κB expression by smallinterference RNA prevents the dysfunction of human umbilical vein endothelialcells induced by high glucose. Endocrine.2009,35(1):63-74.
    [34] O. Casis, E. Echevarria. Diabetic cardiomyopathy: electromechanical cellularalterations. Current vascular pharmacology.2004,2(3):237-248.
    [35] W. Karnafel.[Diabetic cardiomyopathy. Pathophysiology and clinicalimplications]. Przeglad lekarski.1999(57):9-11.
    [36]郝志敏,赵洁,巨名飞.氧化应激在心血管疾病中的作用.中西医结合心脑血管病杂志.2008,6(8):959-960.
    [37] K.H. Tsai, W.J. Wang, C.W. Lin, et al. NADPH oxidase‐derived superoxideAnion‐i nduced apoptosis is mediated via the JNK‐dependent activation ofNF‐κB in cardiomyocytes exposed to high glucose. Journal of cellularphysiology.2012,227(4):1347-1357.
    [38] P. Martín-Gallán, A. Carrascosa, M. Gussinyé, et al. Biomarkers ofdiabetes-associated oxidative stress and antioxidant status in young diabeticpatients with or without subclinical complications. Free Radical Biology andMedicine.2003,34(12):1563-1574.
    [39] F. Giacco, M. Brownlee. Oxidative stress and diabetic complications. Circulationresearch.2010,107(9):1058-1070.
    [40]常洁,姜宗培,余学清.氧化应激及其在糖尿病肾病中的作用.国际内科学杂志.2007,34(2):105-108.
    [41] T.D. Giles, J. Ouyang, E.K. Kerut, et al. Changes in protein kinase C in earlycardiomyopathy and in gracilis muscle in the BB/Wor diabetic rat. AmericanJournal of Physiology-Heart and Circulatory Physiology.1998,274(1):295-307.
    [42]杜爱民,袁莉. NADPH氧化酶,氧化应激和糖尿病.国外医学:老年医学分册.2007,28(5):225-228.
    [43] R.P. Robertson. Oxidative stress and impaired insulin secretion in type2diabetes.Current opinion in pharmacology.2006,6(6):615-619.
    [44]张莹,黄国良. NADPH氧化酶与糖尿病肾病.国际内分泌代谢杂志.2007,27(B04):35-37.
    [45] A. El-Remessy, Y. Tang, G. Zhu, et al. Neuroprotective effects of cannabidiol inendotoxin-induced uveitis: critical role of p38MAPK activation.2008(14):190-203.
    [46] M. Zhang, A.L. Kho, N. Anilkumar, et al. Glycated Proteins Stimulate ReactiveOxygen Species Production in Cardiac Myocytes Involvement of Nox2(gp91phox)-Containing NADPH Oxidase. Circulation.2006,113(9):1235-1243.
    [47] M.R. Abid, K.C. Spokes, S.-C. Shih, et al. NADPH oxidase activity selectivelymodulates vascular endothelial growth factor signaling pathways. Journal ofBiological Chemistry.2007,282(48):35373-35385.
    [48] A. Uruno, A. Sugawara, M. Kudo, et al. Stimulatory Effects of Low-Dose3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitor Fluvatatin onHepatocyte Growth Factor–Induced Angiogenesis: Involvement of p38Mitogen-Activated Protein Kinase. Hypertension Research.2008,31(11):2085-2096.
    [49] A. Riad, J. Du, S. Stiehl, et al. Low-dose treatment with atorvastatin leads toanti-oxidative and anti-inflammatory effects in diabetes mellitus. Europeanjournal of pharmacology.2007,569(3):204-211.
    [50] M. Satoh, S. Fujimoto, Y. Haruna, et al. NAD (P) H oxidase and uncoupled nitricoxide synthase are major sources of glomerular superoxide in rats withexperimental diabetic nephropathy. American Journal of Physiology-RenalPhysiology.2005,288(6):1144-1152.
    [51] P.A. MacCarthy, D.J. Grieve, J.-M. Li, et al. Impaired Endothelial Regulation ofVentricular Relaxation in Cardiac Hypertrophy Role of Reactive Oxygen Speciesand NADPH Oxidase. Circulation.2001,104(24):2967-2974.
    [52] C.S. Lim, N.D. Vaziri. The effects of iron dextran on the oxidative stress incardiovascular tissues of rats with chronic renal failure. Kidney international.2004,65(5):1802-1809.
    [53]姬仲,陆兵勋,王晓艺,等.广东汉族人细胞色素C242T p22phox基因多态性观察.第一军医大学学报.2004,23(4):387-388.
    [54] N. Inoue, S. Kawashima, K. Kanazawa, et al. Polymorphism of theNADH/NADPH oxidase p22phox gene in patients with coronary artery disease.Circulation.1998,97(2):135-137.
    [55] U. Landmesser, H. Cai, S. Dikalov, et al. Role of p47phox in vascular oxidativestress and hypertension caused by angiotensin II. Hypertension.2002,40(4):511-515.
    [56] K.K. Griendling, D. Sorescu, M. Ushio-Fukai. NAD (P) H oxidase role incardiovascular biology and disease. Circulation research.2000,86(5):494-501.
    [57] B. Babior, J. Lambeth, W. Nauseef. The neutrophil NADPH oxidase. Archives ofbiochemistry and biophysics.2002,397(2):342-344.
    [58]陈冲,中药现代化研究.北京:科学出版社,2006.
    [59]黄成就.中国芸香科植物资料.植物分类学报.1978,16(2):85.
    [60]由先德.中华药海.哈尔滨出版社.1993,4:197.
    [61]余传隆.中药辞海.中国医药科技出版社,1993:1426.
    [62]杨峻山,杜明慧.云南九里香化学成分的研究.植物学报.1984,26(2):184-188.
    [63] T. Kinoshita, K. Firman. Myricetin5,7,3′,4′,5′-pentamethyl ether and othermethylated flavonoids from Murraya paniculata. Phytochemistry.1997,45(1):179-181.
    [64]吴贻谷.中药大辞典.上海科学技术出版社.2002,437.
    [65]睢大筼,吕忠智,李淑惠.九里香化学及抗生育作用研究概况.中草药.1994,25(8):435-437.
    [66]李钳.广西九里香根部的化学成分.广西植物.1990,10(3):241-243.
    [67] Y.C. Kong, K. Ng, K. Wat, et al. Yuehchukene, a novel anti-implantation indolealkaloid from Murraya paniculata. Planta medica.1985,51(2):304-307.
    [68]刘京丽,王淑如,陈琼华.九里香多糖和蛋白多糖的分离,纯化和分析.中国生物化学与分子生物学报.1989,5(1):33-38.
    [69]张宗禹,韦松,陈安兰, et al.九里香糖蛋白成分终止孕兔妊娠及其机理.中国药科大学学报.1989,20(5):283-286.
    [70] S.K. Mondal, B. Ray, P.K. Ghosal, et al. Structural features of a water solublegum polysaccharide from Murraya paniculata fruits. International Journal ofBiological Macromolecules.2001,29(3):169-174.
    [71]赵文报,李统茂,魏绣枝.四数花九里香精油化学成分研究.广西农业大学学报.1993,12(2):60-63.
    [72]邹联新,郑汉臣,杨崇仁.九里香属植物研究进展.药学实践杂志.1997,15(4):214-219.
    [73]陈琼华,王淑如,张宗禹.九里香的抗生育作用.中国药科大学学报.1987,18(3):213-215.
    [74]王淑如,吴梧桐,陈琼华.九里香皮抗生育物质的分离,效价与毒性.中国药科大学学报.1987,18(3):213-215.
    [75]刘京丽,王淑如,陈琼华.九里香蛋白多糖的抗生育及其它生物活性.生物化学杂志.1989,5(2):119-123.
    [76]王迺功,关慕贞,雷海鹏.月橘烯碱抗着床作用及其激素活性的研究.药学学报.1990,25(2):85-89.
    [77]单晶,王晓中,马彦冬.九里香叶黄酮类成分的研究.中国药学杂志.2011,(24):1910-1912.
    [78]樊秋菊.九里香叶总黄酮降血糖作用的研究.吉林大学学报.2008:108.
    [79]邹敬韬,九里香叶总黄酮对大鼠实验性2型糖尿病肾病的保护作用.吉林大学,2010.
    [80] J. Zou, X. Yu, S. Qu, et al. Protective effect of total flavonoids extracted from theleaves of Murraya paniculata(L.) Jack on diabetic nephropathy in rats. Food andChemical Toxicology.2014(64):231-237.
    [81]梁启明,刺五加皂苷B对大鼠心肌缺血再灌注和过氧化氢损伤心肌细胞凋亡的影响及机制.吉林大学,2010.
    [82] M.T. Schram, C.G. Schalkwijk, A.H. Bootsma, et al. Advanced Glycation EndProducts Are Associated With Pulse Pressure in Type1Diabetes TheEURODIAB Prospective Complications Study. Hypertension.2005,46(1):232-237.
    [83] A. Gend, S. Mizuno, S. Nunoda, et al. Clinical studies on diabetic myocardialdisease using exercise testing with myocardial scintigraphy and endomyocardialbiopsy. Clinical cardiology.1986,9(8):375-382.
    [84]朱禧星,周晓朋,何德华.链脲佐菌素糖尿病大鼠的心肌病变.中华内分泌代谢杂志.1992,8(4):222-225.
    [85] L.B. Nielsen, E.D. Bartels, E. Bollano. Overexpression of apolipoprotein B in theheart impedes cardiac triglyceride accumulation and development of cardiacdysfunction in diabetic mice. Journal of Biological Chemistry.2002,277(30):27014-27020.
    [86] J.L. Evans, I.D. Goldfine, B.A. Maddux, et al. Oxidative stress andstress-activated signaling pathways: a unifying hypothesis of type2diabetes.Endocrine reviews.2002,23(5):599-622.
    [87] Q. Liang, E.C. Carlson, R.V. Donthi, et al. Overexpression of metallothioneinreduces diabetic cardiomyopathy. Diabetes.2002,51(1):174-181.
    [88] K.M. Baker, G.W. Booz, D.E. Dostal. Cardiac actions of angiotensin II: role of anintracardiac renin-angiotensin system. Annual review of physiology.1992,54(1):227-241.
    [89] C.G. Brilla, R. Pick, L.B. Tan, et al. Remodeling of the rat right and leftventricles in experimental hypertension. Circulation research.1990,67(6):1355-1364.
    [90] O.Kovalchuk, L. Chyczewski, M.g. Szelachowska, et al. CCN2protein is anannouncing marker for cardiac remodeling following STZ-induced moderatehyperglycemia in mice. Pharmacological Reports.2009,61(496):496-503.
    [91] M.H. Cho, A. Niles, R. Huang, et al. A bioluminescent cytotoxicity assay forassessment of membrane integrity using a proteolytic biomarker. Toxicology inVitro.2008,22(4):1099-1106.
    [92] M.J. Corey, R.J. Kinders, L.G. Brown, et al. A very sensitive coupled luminescentassay for cytotoxicity and complement-mediated lysis. Journal of immunologicalmethods.1997,207(1):43-51.
    [93] D.R. Janero, D. Hreniuk, H.M. Sharif. Hydrogen peroxide‐induced oxidativestress to the mammalian heart‐muscle cell (cardiomyocyte): Lethalperoxidative membrane injury. Journal of cellular physiology.1991,149(3):347-364.
    [94]焦向英,王晓樑,马新亮.高糖高脂对培养成年小鼠心肌细胞的氧化应激损伤.中国循环杂志.2009,18(1):64-67.
    [95] H. Kim, S.C. Yoon, T.Y. Lee, et al. Discriminative cytotoxicity assessment basedon various cellular damages. Toxicology letters.2009,184(1):13-17.
    [96]王亮,戴振华,孙伟.缬沙坦对过氧化氢损伤乳鼠心肌细胞的保护作用.山东医药.2007,47(19):24-26.
    [97] M.G. Ormerod. The study of apoptotic cells by flow cytometry. Leukemia.1998,12(7):1013-1025.
    [98] D.V. Krysko, T. Vanden Berghe, K. D'Herde, et al. Apoptosis and necrosis:detection, discrimination and phagocytosis. Methods.2008,44(3):205-221.
    [99] L. Cai, Y.J. Kang. Oxidative stress and diabetic cardiomyopathy: a brief review.Cardiovasc Toxicol.2001,1(3):181-193.
    [100]吕黄伟,冯娅妮,王俊科.同型半胱氨酸对人离体嗜中性白细胞释放超氧阴离子的影响和机制.中国现代医学杂志.2007,17(5):562-564.
    [101] A. Oguro, N. Fujita, S. Imaoka. Regulation of soluble epoxide hydrolase (sEH)in mice with diabetes: high glucose suppresses sEH expression. Drug metabolismand pharmacokinetics.2008,24(5):438-445.
    [102] P.N. Seshiah, D.S. Weber, P. Rocic, et al. Angiotensin II stimulation of NAD (P)H oxidase activity upstream mediators. Circulation research.2002,91(5):406-413.
    [103] T.G. Ebrahimian, C. Heymes, D. You, et al. NADPH oxidase-derivedoverproduction of reactive oxygen species impairs postischemicneovascularization in mice with type1diabetes. The American journal ofpathology.2006,169(2):719-728.
    [104] K.M. Boatright, G.S. Salvesen. Mechanisms of caspase activation. Currentopinion in cell biology.2003,15(6):725-731.
    [105] V. Soetikno, F.R. Sari, V. Sukumaran, et al. Curcumin prevents diabeticcardiomyopathy in streptozotocin-induced diabetic rats: Possible involvement ofPKC–MAPK signaling pathway. European Journal of Pharmaceutical Sciences.2012,47(3):604-614.
    [106] S. Fang, Y. Jin, H. Zheng, et al. High glucose condition upregulated Txnipexpression level in rat mesangial cells through ROS/MEK/MAPK pathway.Molecular and cellular biochemistry.2011,347(1-2):175-182.
    [107] Q. Liang, J.D. Molkentin. Redefining the roles of p38and JNK signaling incardiac hypertrophy: dichotomy between cultured myocytes and animal models.Journal of molecular and cellular cardiology.2003,35(12):1385-1394.
    [108] M. Li, D. Georgakopoulos, G. Lu, et al. p38MAP kinase mediates inflammatorycytokine induction in cardiomyocytes and extracellular matrix remodeling inheart. Circulation.2005,111(19):2494-2502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700