反相高效液相法快速预测化合物亲脂性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:任梦鹤同学的硕士研究论文已经分别在XTerra RP 18,YMC- Pack ODS-A色谱柱上的对11个中性及两性化合物的保留因子(logk)进行了研究,建立了logkw值与logP_(oct)值线性回归方程,并且运用LSER(线性溶剂自由能关系)法分析并证明了化合物在XTerra RP 18柱的保留机制与在正辛醇/水系统中的分配机制是一致的,XTerra RP 18柱比YMC-Pack ODS-A更适合用来快速的预测化合物的亲脂性参数logP_(oct)值。在此基础上,用XTerra RP 18进一步测定了35个结构及性质多样化的化合物(包括中性、两性、酸性及碱性)在反相高效液相色谱(RP-HPLC)上的保留因子logk,并外推出甲醇含量为0的流动相中的logkw值。同时,对测得logkw值与这些化合物亲脂性参数logP_(oct)值的进行了相关性分析,探索以XTerra RP 18柱快速测定结构及性质多样化的化合物(尤其是碱性化合物)亲脂性的方法的可行性及其测定范围。
     方法:采用RP-HPLC法测定了结构及性质多样化的化合物集合在XTerra RP 18色谱柱上的保留因子(logk),并外推出logkw值。建立logkw值与logP_(oct)值线性回归方程。将前期研究的11种化合物的logkw值代入线性方程,计算出logPpre值,并与logP_(oct)值比较。
     结果:35个中性、两性、酸性和碱性化合物的logP_(oct)值与logkw值的线性方程: logP_(oct) =0.8964(±0.219)logkw+0.1805(±0.201) n=35, r~2=0.9471, F=322中性及两性化合物logkw值和logP_(oct)值的线性方程: logP_(oct)=0.8151(±0.172)logkw +0.5466(±0.142) n=9, r~2= 0.9832, F=410酸性化合物logkw值和logP_(oct)值的线性方程: logP_(oct) =1.0153(±0.340)logkw-0.0882(±0.352) n=10, r~2=0.9634, F=211碱性化合物logkw值和logP_(oct)值的线性方程:logP_(oct) =0.9428(±0.376)logkw-0.0.0925(±0.0.360) n=16, r~2=0.9706, F=462所有46个化合物(本论文选择的35个化合物加上在任梦鹤硕士论文中的11个化合物)的的测定结果,建立的logkw值和logP_(oct)值的线性方程如下: logP_(oct)=0.8596(±0.213)logkw+0.3448(±0.189) n=46, r~2=0.9356, F=639
     结论:XTerra RP 18柱在本实验条件下所测定中性、两性、酸性及碱性化合物的logkw值与正辛醇/水系统中的分配系数logP_(oct)值之间存在线性关系(r~2=0.9471),用35个化合物所建立的线性方程计算前期研究的11个化合物的logPpre值与logP_(oct)值无显著性差异。XTerra RP 18柱可用来预测结构及性质多样化的化合物的亲脂性参数logP_(oct)值,尤其是用于对碱性化合物的亲脂性预测。
Objective: A set of 11 model solutes and drugs were selected to determine their extrapolated logkw of the retention factor logk by Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC)in two different stationary phases(XTerra RP 18,YMC- Pack ODS-A). Compared the correlations of extrapolation capacity factors logkw and the lipophilicity partition coefficients (logP_(oct)) in two stationary phases. The previous experiments analyzed by a method based on linear solvation-energy relationships (LSERs) had already demonstrated that the retention mechanism of the compounds on the XTerra RP 18 stationary phase was similar to the mechanisms of the solutes’partition in octanol/water system. And the polar embedded ligands phase XTerra RP 18 phase was more suitable for the rapidly determining lipophilicity. On this basis, a set 35 compounds and drugs of various structures and properties (neutral, amphoteric, acid and basic compounds) were selected to determine their extrapolated logkw of the retention factor logk by the XTerra RP 18 stationary phase to explore the feasibility and range of determining method of the the XTerra RP 18 stationary phase.
     Method: XTerra RP 18 stationary phase was applied to determine the 35 compounds’logk and extrapolated to 100% H2O (phosphate buffer)logkw and established the linear regression equation of logkw and logP_(oct) by the sas JMP6.0 to discuss the the feasibility and range of determining method of the the XTerra RP 18 stationary phase. Calculated the previous 11 compouds’logPpre by introduce the logkw into the linear regression equation and analyzed the logPpre and logP_(oct) by SPSS.
     Results: The linear regression equation of logkw value and logP_(oct) value of neutral, amphoteric, acid and basic compounds: logP_(oct) =0.8964(±0.219)logkw+0.1805(±0.201) n=35, r~2=0.9471, F=322
     The linear regression equation of logkw value and logP_(oct) value of neutral and amphoteric compounds: logP_(oct)=0.8151(±0.172)logkw +0.5466(±0.142) n=9, r~2= 0.9832, F=410 The linear regression equation of logkw value and logP_(oct) value of acid compounds: logP_(oct) =1.0153(±0.340)logkw-0.0882(±0.352) n=10, r~2=0.9634, F=211 The linear regression equation of logkw value and logP_(oct) value of basic compounds: logP_(oct) =0.9428(±0.376)logkw-0.0.0925(±0.0.360) n=16, r~2=0.9706, F=462 Calculated the previous 11 compouds’logPpre value by introduce the logkw into the linear regression equation and analyzed the logPpre and logP_(oct) by SPSS. There was no significant difference between logP_(oct) value and logPpre value.
     Conclusion: The good correlation between the logkw and log Poct of the set of 35 neutral, amphoteric, acid and basic compounds indicated that the XTerra RP 18 stationary phase was appropriate to predict the log Poct of compounds of various structures and properties. And there was no significant difference between logP_(oct) value and logPpre value.
引文
[1]任梦鹤.两种固定相的RP-HPLC法亲脂性测定比较研究[硕士学位论文]华中科技大学图书馆,2008.
    [2] Xiangli Liu, Hiroshi Chuman. Determination of solute lipophilicity by reversed-phase high–performance liquid chromatography(RP-HPLC) [J]. The Journal of Medical Investe- gation,2005,52Suppl :293-294.
    [3] Z. Mrkvickova, P.Kovar?kova, S. Bal?kova,J. Klimes.Determination of lipophilicity of novel potential antituberculotic agents using HPLC on monolithic stationary phase and theoretical calculations[J]. J Pharm Biomed Anal (2008), doi:10.1016/ j.jpba. 2007.12.040.
    [4] K. Valko, J. Chromatogr. A 1037 (2004): 299–310.
    [5] OECD Guidelines for the Testing of Chemicals, Test No. 107; Organisation for Economic Co-operation and Development (OECD): Paris, 1995.
    [6] Danielsson, L.-G.; Zhang, Y.-H. TrAC, Trends Anal. Chem. 1996, 15, VIII.
    [7] Sangster, J. Octanol-water Partition Coefficients: Fundamentals and Physical Chemistry; Wiley: New York, 1997.
    [8] Liu.X, G.Bouchard, H.Girault,et al. Partition Coefficients of Ionizable Compounds in o-Nitrophenyl Octyl Ether/Water Measured by the Potentiometric Method[J]. Anal. Chem, 2003, 75: 7036-7039.
    [9] Roman Kaliszan, Antoni Nasal and Micha Jan Markuszewski. New approaches to hromatographic determination of lipophilicity of xenobiotics[J]. Analytical and Bioanalytical Chemistry, 2003, 377: 803-811.
    [10] Nasal A., Siluk D.,Kaliszan R. Chromatographic Retention Parameters in Medicinal Chemistry and Molecular Pharmacology[J]. Current Medicinal Chemistry, 2003, 10: 381-426
    [11] Liu.X, Hideji Tanaka, Aiko Yamauchi, et al. Lipophilicity Measurement by Reversed-Phase High-Performance Liquid Chromatography(RP-HPLC):A Comparison of Two Stationary Phases Based on Retention Mechanisms[J]. Helvetica Chimica Acta, 2004,87: 2866-2876.
    [12] Costas Giaginis, Anna Tsantili-Kakoulidou. Current State of the Art in HPLCMethodology for Lipophilicity Assessment of Basic Drugs[J]. Journal of Liquid Chromatography & Related Technologies, 2008, 31: 79-96.
    [13] Tate Peter A, Dorsey John G. Column selection for liquid chromatographic estimation of the k'w hydrophobicity parameter[J]. Journal of chromatography A, 2004, 1042(1-2): 37-48.
    [14]梁贵键,朱利,邹凤君,胡永礼.根据色谱保留值与流动相pH值的函数关系对212种常用药物的分类[J].色谱, 1996, 14(3): 196-198.
    [15] V. Pliska, B. Testa, H. van de Waterbeemd. Octanol/water partitioning simulation by reversed-phase high performance liquid chromatography for structurally diverse acidic drugs: Effect of n-octanol as mobile phase additive[J]. Journal of Chromatography A, 2007,1166:116-125.
    [16] V. Pliska, B. Testa, H. van de Waterbeemd. Octanol/water partitioning simulation by reversed-phase high performance liquid chromatography for structurally diverse acidic drugs: Effect of n-octanol as mobile phase additive[J]. Journal of Chromatography A, 2007,1166:116-125.
    [17] Stella C, Galland A, Liu X, et al. Novel RPLC stationary phases for lipophilicity measurement: Solvatochromic analysis of retention mechanisms for neutral and basic compounds[J]. The Journal of Medical Investegation, 2005, 28(17): 2350-62.
    [18] Roman Kaliszan, Marion A. van Straten, Michal Markuszewski, et al. Molecular mechanism of retention in reversed-phase high-performance liquid chromatography and classification of modern stationary phases by using quantitative structure- retention relationships[J]. Journal of ChromatographyA, 1999, 855(2): 455-486.
    [19] A. Bechalany, A. Tsantili-Kakoulidou, N. El Tayar,B. Testa, J. Chromatogr, 541 (1991) 221.
    [20] P.A. Tate, J.G. Dorsey, J. Chromatogr. A 1042 (2004) 37.
    [21] F.Lombardo, M.Y.Shalaeva, K.A.Tupper, et al. ElogPoct: A Tool for Lipophilicity Determination in Drug Discovery[J]. J. Med. Chem., 2000, 43: 2922-2928.
    [22]牟永平,吴刚,周立社,和彦苓.Caco-2细胞模型在药物研究中的应用[J].中国药理学通报, 2005, 21(5):536-539.
    [23]卢弘,邢东明,李敏等.对中药复方药代动力学研究中血药浓度测定方法的评述与思考[J] .世界科学技术—中药现代化, 2000,2 (4) :22-25.
    [1] Pliska.V, Testa.B, van de Waterbeemd.H. Lipophilicity in Drug Action and Toxicology, Eds.; VCH, Weinheim,1996,39: 1-6.
    [2] Antoni Nasal, Danuta Siluk, Roman Kaliszan. Chromatographic Retention Parameters in Medicinal Chemistry and Molecular Pharmacology[J]. Current Medicinal Chemistry, 2003, 10: 381-426.
    [3] Dearden JC. Partitioning and lipophilicity in quantitative structure-activity relationships[J]. Environ Health Perspect,1985, 61:203–228
    [4] Hansch C, Leo A, Hoekman D. Hydrophobic, electronic, and steric constants, Washington, DC:American Chemical Society.
    [5] Kubinyi H. Lipophilicity and drug activity[J]. Prog Drug Res, 1979,23:97–198.
    [6] Lombardo F, Gifford E, Shalaeva MY. In silico ADME prediction: Data, models, facts and myths[J]. Mini Rev Med Chem,2003, 3:861–875.
    [7] Smith DA, Jones BC, Walker DK. Design of drugs involving the concepts and theories of drug metabolism and pharmacokinetics[J]. Med Res Rev,1996, 16:242–266.
    [8] Taylor NR, Smith R. TheWorldWideWeb as a graphical user interface to program macros for molecular graphics, molecular modeling, and structure-based drug design[J]. J Mol Graph,1996, 14:291–296.
    [9] Testa B, Kramer SD, Wunderli-Allenspach H, Folkers G. 2006. Pharmacokinetics profiling in drug research. Zurich and Weinheim: Verlag Helvetica Chimica Acta and Willey-VCH.
    [10] van De Waterbeemd H, Smith DA, Beaumont K, Walker DK. Property-based design: Optimization of drug absorption and pharmacokinetics[J]. J Med Chem, 2001, 44:1313–1333.
    [11] Van deWaterbeemdH, LennernasH, Artursson P. Drug bioavailability. Estimation of solubility, permeability, absorption and bioavailability, Methods and principles in medicinal chemistry, Vol. 18. Weinheim: Wiley-VCH.
    [12] Atkinson F, Cole S, Green C, Van de Waterbeemd H. Lipophilicity and other parameters affecting brain penetration[J]. Curr Med Chem Cent Nerv Syst Agents,2002, 2:229–240.
    [13] Cronin MTD. The role of hydrophobicity in toxicity prediction[J], Curr Comput-Aided Drug Des, 2006, 2:405–413.
    [14] van de Waterbeemd H, Smith DA, Jones BC. Lipophilicity in PK design: Methyl, ethyl, futile[J]. J Comput-Aided Mol Des, 2001, 15:273–286.
    [15] Sangster J. Octanol-water partition coefficients: Fundamentals and physical chemistry[J]. Chichester: John Wiley & Sons Ltd. 1997,3: 178.
    [16] Nys GG, Rekker RF. The concept of hydrophobic fragmental constants (f-values). II. Extension of its applicability to the calculation of lipophilicities of aromatic and hetero-aromatic structures[J]. Chim Ther,1974, 9:361–374.
    [17] Rekker RF, de Kort HM. The hydrophobic fragmental constant; an extension to a 1000 data point set[J]. Eur J Med Chem,1979, 14:479–488.
    [18] Buchwald P, Bodor N. Octanol-water partition: Searching for predictive models[J]. Curr Med Chem, 1998,5:353–380.
    [19] Klopman G, Zhu H. Recent methodologies for the estimation of n-octanol/water partition coefficients and their use in the prediction of membrane transport properties of drugs[J]. Mini Rev Med Chem, 2005,5:127–133.
    [20] Mannhold R, Dross K. Calculation procedures for molecular lipophilicity: A comparative study[J]. Quant Struct-Activ Rel, 1996,15:403–409.
    [21] Mannhold R, Rekker RF, Dross K, Bijloo G, de Vries G. The lipophilic behaviour of organic compounds: 1. An updating of the hydrophobic fragmental constant approach[J]. Quant Struct-Activ Rel, 1998,17:517–536.
    [22] Klopman G, Li J-Y, Wang S, Dimayuga M. Computer automated log P calculations based on an extended group contribution approach[J]. J Chem Inf Comput Sci, 1994, 34:752–781.
    [23] Leo A, Hansch C, Elkins D. Partition coefficients and their uses[J]. Chem Rev, 1971, 61:525–616.
    [24] Viswanadhan VN, Ghose AK, Revankar GR, Robins RK. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions andtheir application for an automated superposition of certain naturally occurring nucleoside antibiotics[J]. J Chem Inf Comput Sci, 1989, 9:163–172.
    [25] Klopman G. MULTICASE 1. A hierarchical computer automated structure evaluation program[J]. Quant Struct-Activ Rel, 1992, 11:176–184.
    [26] Sedykh AY, Klopman G. A structural analogue approach to the prediction of the octanol-water partition coefficient[J]. J Chem Inf Model, 2006, 46:1598–1603.
    [27] Meylan WM, Howard PH. Estimating logP with atom/fragments and water solubility with log P[J]. Perspect Drug Discov Des, 2000, 19:67–84.
    [28] Raevsky OA. Molecular lipophilicity calculations of chemically heterogeneous chemicals and drugs on the basis of structural similarity and physicochemical parameters[J]. SAR QSAR Environ Res, 2001, 12:367–381.
    [29] Cheng T, Zhao Y, Li X, Lin F, Xu Y, Zhang X, Li Y, Wang R, Lai L. Computation of octanol-water partition coefficients by guiding an additive modelwith knowledge[J]. J ChemInfModel, 2007, 47:2140–2148.
    [30] Meylan WM, Howard PH. Atom/fragment contribution method for estimating octanol-water partition coefficients[J]. J Pharm Sci, 1995, 84:83–92.
    [31] Leo AJ. Some advantages of calculating octanol-water partition coefficients[J]. J Pharm Sci, 1987, 76:166–168.
    [32] Leo AJ. Calculating logPoct fromstructures[J]. Chem Rev, 1993, 93:1281–1306.
    [33] Petrauskas AA, Kolovanov EA. ACD/LogP method description[J]. Perspect Drug Discov Des, 2000, 19:99–116.
    [34] Japertas P, Didziapetris R, Petrauskas A. Fragmental methods in the design of new compounds. Applications of The Advanced Algorithm Builder[J]. Quant Struct-Activ Rel, 2002, 21:23–37.
    [35] Japertas P, Sazonovas A, Didziapetris R, Petrauskas A. The 235th ACS National Meeting, New Orleans, LA, April 6–10 2008.
    [36] Convard T, Dubost JP, Le Solleu H, Kummer E. SmilogP: A program for a fast evaluation of theoretical log P from the Smiles code of a molecule[J]. Quant Struct-Activ Rel,1994, 13:34–37.
    [37] Ghose AK, Crippen GM. Atomic physi-cochemical parameters forthree-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions[J]. J Chem Inf Comput Sci, 1987,27:21–35.
    [38] Ghose AK, Viswanadhan VN, Wendoloski JJ. Prediction of hydrophobic (lipophilic) properties of small organic molecules using fragmental methods: An analysis of ALOGP and CLOGP methods[J]. J Phys Chem A, 1998,102:3762–3772.
    [39] Wang RX, Fu Y, Lai LH. A new atom-additive method for calculating partition coefficients[J]. J Chem Inf Comput Sci, 1997,37:615–621.
    [40] Wildman SA, Crippen GM. Prediction of physicochemical parameters by atomic contributions[J]. J Chem Inf Comput Sci, 1999,39:868–873.
    [41] Sangster J. Octanol-water partition coefficients of simple organic compounds[J]. J Phys Chem Ref Data, 1989,18:1111–1229.
    [42] Duffy EM, Jorgensen WL. Prediction of properties from simulations: Free energies of solvation in hexadecane, octanol, and water[J]. J Am Chem Soc, 2000,122:2878–2888.
    [43] Kamlet MJ, Abboud J-LM, Abraham MH, Taft RW. Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, pi, alpha, and beta, and some methods for simplifying the generalized solvatochromic equation[J]. J Org Chem,1983, 48:2877– 2887.
    [44] Abraham MH, Chadha HS, Whiting GS, Mitchell RC. Hydrogen bonding. 32. An analysis of water-octanol and water-alkane partitioning and the delta log P parameter of seiler[J]. J Pharm Sci,1994, 83:1085–1100.
    [45] Platts JA, Abraham MH, Butina D, Hersey A. Estimation of molecular linear free energy relationship descriptors by a group contribution approach. 2. Prediction of partition coefficients[J]. J Chem Inf Comput Sci, 2000,40:71–80.
    [46] Schuurmann G, Ebert RU, Kuhne R. Prediction of physicochemical properties of organic compounds from 2D molecular structure—Fragment methods vs. LFER models[J]. Chimia, 2006,60:691–698.
    [47] Hilal SH, Carreira LA, Karickhoff SW, Melton CM. Estimation of gas-liquid chromatographic retention times from molecular structure[J]. J Chromatogr A, 1994,662:269–280
    [48] Karickhoff SW, McDaniel VK, Melton C, Vellino AN, Nute DE, Carreira LA. Predicting chemical reactivity by computer[J]. Environ Toxicol Chem, 1991,10:1405–1416.
    [49] DewarMJS. Themolecular orbital theory for organic chemistry. New York: McGraw-Hill.
    [50] Rogers KS, Cammarata A. A molecular orbital description of the partitioning of aromatic compounds between polar and nonpolar phases[J]. Biochim Biophys Acta, 1969,193:22–29.
    [51] Bodor N, Gabanyi Z,Wong C. A new method for the estimation of partition coefficient[J]. J Am Chem Soc, 1989,111:3783–3786.
    [52] Breindl A, Beck B, Clark T, Glen RC. Prediction of the n-octanol/water partition coefficient, logP, using a combination of semiempirical MO-calculations and a neural network[J]. J Mol Model,1997, 3:142–155.
    [53] Bodor N, Buchwald P. Molecular size based approach to estimate partition properties for organic solutes[J]. J Phys Chem B, 1997,101:3404–3412
    [54] Buchwald P, Bodor N. Octanol-water partition of nonzwitterionic peptides: Predictive power of amolecular size-basedmodel[J]. Proteins,1998, 30:86–99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700