反相离子对色谱法及高效毛细管电泳法测定脱氧精胍菌素及其有关物质
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
免疫抑制剂是一类具有免疫抑制作用的药物,可抑制机体异常的免疫反应,目前已广泛用于器官移植抗排斥反应和自身免疫性疾病的治疗。免疫抑制剂的不断更新及在临床的实际应用,使当今的器官移植取得了巨大的成功。
     脱氧精胍菌素(Deoxyspergualin,DSG)是一种全新的免疫抑制剂,不仅能有效地阻止移植器官排异,而且能逆转急性排异反应,由于DSG的免疫抑制作用强,毒性较低,特别是对肝、肾以及神经几乎没有毒副作用,因此,该新药为临床免疫抑制剂的应用提供了又一新的选择。
     为了研究开发脱氧精胍菌素,将该新药尽快推向临床,必须建立准确、可靠的分析方法,为合成工艺研究、制剂研究、质量研究和稳定性研究打下基础,本文建立了脱氧精胍菌素的反相离子对色谱分离分析方法,有效的解决了脱氧精胍菌素在反相色谱柱上不保留的问题,为脱氧精胍菌素的含量及有关物质测定提供了一个简便有效的分析手段。同时,本文还建立了脱氧精胍菌素的高效毛细管电泳分离分析方法,该法简便快速,灵敏度高,特异性好,可作为该药物高效液相分析方法的补充和完善,为该药物提供了一种新的分离分析手段。
     目的:建立脱氧精胍菌素及其有关物质的高效液相色谱分析方法和高效毛细管电泳分析方法,并对新方法进行方法学研究,分析测定实际样品中的有关物质和含量,为脱氧精胍菌素的研究开发提供可靠的分析方法。
     方法:1反相离子对色谱法。(1)通过对不同色谱柱,不同流动相的组成、配比、流速及柱温的优化选择,确定最佳的色谱分离条件,并对所建立的新方法进行方法学验证。(2)系统适用性试验:在已确定的反相液相色谱条件下,考察脱氧精胍菌素主峰的理论板数,并计算拖尾因子。(3)专属性试验:在合适的条件下,对脱氧精胍菌素样品进行热、碱、酸、氧化、光的破坏,考察加速破坏所产生的杂质与主峰的分离。(4)线性与范围:配制一系列浓度的脱氧精胍菌素对照品溶液,测定峰面积;以浓度为横坐标,以脱氧精胍菌素主峰面积为纵坐标,绘制标准曲线。(5)精密度试验:取一份对照品溶液,重复进样6次,记录峰面积,计算峰面积的RSD值。(6)稳定性试验:取脱氧精胍菌素供试品溶液适量,室温下放置,分别于0、2、4、6、8小时,取样注入液相色谱仪,记录色谱图,计算峰面积的RSD值。(7)回收率:取同一批脱氧精胍菌素供试品适量,按供试品溶液浓度的80%、100%、120%分别配制低、中、高3种浓度的溶液各3份,作为供试品溶液。分别取上述溶液各20μL注入液相色谱仪,记录色谱图及峰面积,计算回收率。(8)最低检测限:将脱氧精胍菌素对照品溶液逐步稀释,使峰高为噪音峰高的3倍,此时对应的脱氧精胍菌素的量即为最低检测限。(9)样品测定:对三批脱氧精胍菌素样品按照已确定的色谱条件进行测定。2.高效毛细管电泳法。(1)通过对不同缓冲液浓度、pH值、温度及电压的选择,确定最佳的高效毛细管电泳分离分析条件。
     (2)系统适用性试验:在已确定的高效毛细管电泳色谱条件下,以脱氧精胍菌素主峰面积考察系统理论板数,并计算拖尾因子。(3)专属性试验:在合适的条件下,对脱氧精胍菌素样品进行热、碱、酸、氧化、光的破坏,考察加速破坏所产生的杂质与主峰的分离情况。(4)线性与范围:配制一系列浓度的脱氧精胍菌素对照品溶液,测定峰面积;以浓度为横坐标,以脱氧精胍菌素主峰面积为纵坐标,绘制标准曲线。(5)精密度试验:取一份对照品溶液,重复进样6次,记录峰面积,计算峰面积的RSD值。(6)稳定性试验:取脱氧精胍菌素供试品溶液适量,室温下放置,分别于0、2、4、6、8小时,取样注入液相色谱仪,记录色谱图,计算峰面积的RSD值。(7)检测限的确定:将脱氧精胍菌素对照品溶液逐步稀释,测量最高噪音峰的峰高,使样品峰高为噪音峰高的3倍,此时对应的脱氧精胍菌素的量即为最低检测限。(8)样品测定:对三批脱氧精胍菌素样品按照已确定的色谱条件进行测定。
     结果:1反相离子对色谱法。(1)色谱条件:色谱柱:Gemini C18色谱柱(250×4.60mm,5μm Phenomenex公司);流动相: 5mmol/L磷酸氢二钾水溶液(内含5mmol/L戊烷磺酸钠,用磷酸调pH3.6±0.3)-乙腈(90:10);检测波长:210nm;柱温:30℃;进样量:20μl;流速:1.0ml/min。(2)系统适用性试验:以脱氧精胍菌素峰计算的理论板数为8000,拖尾因子为1.05。(3)专属性试验:脱氧精胍菌素样品进行热、碱、酸、氧化、光破坏,降解产物可与主成分峰达基线分离,表明该方法专属性良好。(4)线性与范围:脱氧精胍菌素浓度在0.05-2mg/ml范围内与峰面积呈良好的线性关系,线性方程为Y=5.7×106X+27336,相关系数r2为1.000(n=5)。(5)精密度:按上述条件平行测定6次,脱氧精胍菌素峰面积的RSD为0.26%,表明方法精密度良好。(6)溶液稳定性:供试品溶液室温下放置0、2、4、6、8小时,脱氧精胍菌素峰面积的RSD为0.40%,表明样品溶液在8 h内稳定。(7)回收率:低、中、高三个浓度的平均回收率分别为98.5%、99.8%和98.2%,RSD%值分别为0.32%、0.35%和0.29%。试验结果表明,该方法回收率高。(8)最低检测限:当S/N=3时,测得本方法的最低检测浓度为0.5μg/mL,计算最低检测量为10ng。(9)样品测定:三批供试品含量分别为98.8%、98.5%和98.9%;有关物质分别为1.3%、1.4%和1.3%。2.高效毛细管电泳法。(1)色谱条件:未涂层石英毛细管67cm×50μm(有效长度60cm);缓冲液为75mmol/L磷酸氢二钠缓冲液(用5%磷酸调节pH 2.5);检测波长为214nm;电压为25kV;温度为30℃;压力进样5s。(2)系统适用性:理论板数按脱氧精胍菌素峰计算为200000,拖尾因子为1.01。(3)线性与范围:浓度在0.1-2.0mg/mL范围内脱氧精胍菌素峰面积与浓度值之间呈良好的线性关系,回归方程为:Y=0.8116X+0.07141,相关系数r为0.9996(n=5)。(4)精密度:按上述条件平行测定6次,脱氧精胍菌素峰面积的RSD为0.47%,表明方法精密度良好。(5)溶液稳定性:供试品溶液室温下放置0、2、4、6、8小时,脱氧精胍菌素峰面积的RSD为0.45%,表明样品溶液在8 h内稳定。(6)最低检测限:当S/N=3时,测得本方法的最低检测浓度为3μg/mL,计算最低检测限为0.19%。(7)样品测定:对三批脱氧精胍菌素在已确定的色谱条件下进行了测定,测得脱氧精胍菌素含量分别98.7%、98.6%和98.8%;有关物质分别为1.3%、1.4%和1.3%。
     结论:本文建立了脱氧精胍菌素的反相离子对色谱和高效毛细管电泳测定方法,并进行了方法学研究,对脱氧精胍菌素进行了含量和有关物质测定。为该药的稳定性研究、质量控制研究及质量标准的建立提供了可靠、有效的分析手段。
Immunosuppressant is a kind of drug that has an immunosuppressive effect, which has suppressive activities on abnormal immune responses.At present ,it has been widely used in treating the transplant rejection and the autoimmune disease. The great success of the organ transplantation was owning to the continuous renewal and the clinical application of the immunosuppressant.
     Deoxyspergualin is a new immunosuppressant,which not only can prevent the transplant rejection effectively, but also can reverse the outbreak of acute rejection. Because of its high immunosuppressive activity and low side-effect, deoxyspergualin provides a new alternative of immunosuppressant for clinical application.
     In order to the investigation and exploitation of deoxyspergualin, an accurate and reliable method required to be established, it is also the foundation of the quality control and stability test. An simple but effective method has been established for analysis of deoxyspergualin by reversed-phase ion-pair high performance liquid chromatography. At the same time, another precise and fast method, that is, high-performance capillary electrophoresis, has also been established. This new method proved to be alternative to RP-HPLC for analysis of deoxyspergualin.
     Objective: To qualitative and quantitative analysis of deoxyspergualin ,two new methodes were established ,i.e. the RP-HPLC method and the HPCE method.
     Method: 1. RP-HPLC method. (1) Optimization chromatographic condition: the best separation condition was chosen by optimizing different columns, adjusting solvent proportion of mobile phase and column temperature. (2) System suitability test: On the optimized chromatographic condition, the theoretical plate of deoxyspergualin and the tailing factor were determinated. (3) Specificity test: After treated with heating, base, acid, hydrogen peroxide (H2O2) and strong light, the sample of deoxyspergualin were analyzed. (4) Linearity and range of calibration curve: Prepared a series of the reference solutions and determined peaks areas, then calibration curve was obtained by the contents of deoxyspergualin and the peaks areas. (5) Precision test: The sample solution was analyzed for six times; the peak area of deoxyspergualin was determinaed, and relative standard deviation was calculated. (6) Stability test: By determinaed sample solutions at different time on the room temperature, the stability of the sample solution was determined. (7) Recovery test: The sample solutions were prepared at three level of concentration, i.e. low, middle and high, three portions for each level., The peaks areas were determined and recovery were calculated.(8) Limit of detection test: Dilute the reference solution until the ratio of signal and noise ( S/N )was not less than 3.The limit of detection was determinated. (9) Sample analysis: Determination the related substances the content of three batchs of deoxyspergualin. 2. HPCE method. (1) By optimizing factors which affect the separation, such as concentration of buffers, the pH value , the supplied voltage and temperature, the optimum conditions for separation were selected. (2) System suitablity test: On the optimized analysis condition, the theoretical plate together with the tailing factor of deoxyspergualin were determinated. (3) Specificity test: After treated with heating, base, acid, hydrogen peroxide (H2O2) and strong light, the sample of deoxyspergualin were analyzed. (4) Linearity and range of calibration curve: Prepared a series of the reference solutions and determined peaks areas, then calibration curve was obtained by the contents of deoxyspergualin and the peaks areas. (5) Precision test: The sample solution was analyzed for six times; the peaks areas of deoxyspergualin were determined, and relative standard deviation was calculated. (6) Stability test: By determinated sample solutions at different time on the room temperature, the stability of the sample solution was determined. (7) Limit of detection test: Dilute the reference solution until the ratio of signal and noise ( S/N )was not less than 3.The limit of detection was determinaed. (8) Sample analysis:Determination the related substances and the content of three batchs of deoxyspergualin.
     Results: 1. RP-HPLC method. (1)The RP-HPLC separation was performed on a Gemini-C18 analytical column(250×4.60mm,5μm), with a mobile phase consisting of acetonitrile, 5mmol K2HPO4 and 5mmol sodium pentanesulfonate. The pH value was adjusted to 3.6±0.3 by phosphoric acid. The flow rate was 1.0 ml/min. The detection wavelength was 210 nm. The column temperature was set at 30℃. Injection volume was 20μl. (2) System suitablitily test: On the optimized chromatographic condition, the theoretical plate of deoxyspergualin was about 8000, and the tailing factor was 1.05. (3) Specificity test: By analyzed accelerate samples, the specificity of the system was proved. (4) Linearity and range of calibration curve: The linear range for deoxyspergualin was 0.05-2.0mg/ml. The calibration curve was Y=5.7×106X+27336, (r2=1.000). (5) Precision test: The Precision of main peak at six times was good and the RSD of the peaks areas of deoxyspergualin was 0.26%. (6) Stability test: The RSD of the peak area of deoxyspergualin was 0.40%. The test solution was stable in 8 hours. (7) Recovery test: The average recovery at three level of concentration were 98.5%、99.8% and 98.2% respectively. (8) Limit of detection test: The detection limit of deoxyspergualin was 0.5μg/mL. (9) Sample analysis: The related substances of deoxyspergualin was 1.3%、 1.4% and 1.3% respectively; and the content of deoxyspergualin was 98.8%、98.5% and 98.9% respectively. 2. HPCE method. (1) The HPCE separation was performed on a fused silica capillary column. The runing buffer was Na2HPO4 solution adjusted to pH 2.5 by 5% phosphoric acid. (2) System suitablitily test: On the optimized separation condition, the theoretical plate of deoxyspergualin were about 200000, and the tailing factor was 1.01. (3) Specificity test: By analyzed accelerate samples,the specificity was proved. (4) Linearity and range of calibration curve: The linear range for deoxyspergualin was 0.1-2.0mg/ml. The calibration curve was Y=0.8116X+0.07141, (r=0.9996). (5) Precision test: The Precision of main peak at six times was good and the RSD of the peaks areas of deoxyspergualin was 0.47%. (6) Stability test: The RSD of the peaks areas of deoxyspergualin was 0.45%.The test solution was stable in 8 hours. (7) Limit of detection (LOD) test: The limit of detection of deoxyspergualin was 0.19%.(8) Sample analysis: The related substances of deoxyspergualin was 1.3%、1.4% and 1.3% respectively; and the content of deoxyspergualin for three batchs were 98.7%、98.6% and 98.8% .
     Conclusion: Two new methodes were established, i.e. the RP-HPLC method and the HPCE method. By validation, the two new methods were proved to be specific, accurate and sensitive. They may be used to qualitative and quantitative analysis of deoxyspergualin in the new drug development for stability study and quality control.
引文
1 中国药典委员会.中华人民共和国 2005 年版,化 学工业出版社
    2 Merck Index 13 版
    3 S. Jung, K. V. Toyka & H.-P. Hartung. Impact of
    15-deoxyspergualin on effector cells in experimental autoimmune diseases of the nervous system in the Lewis rat. Clin Exp Immunol .1994, 98:494~502
    4 A. Najane, A.Numata & T. Minagawa. Suppression of host resistance against Listeria monocytogenes infection by
    15-deoxyspergualin in mice. Immunology. 1990, 71: 560~565
    5 叶开和,何小萍.一种新型的免疫抑制剂:脱氧精胍菌素.国外医学药学分册.1998,25(2):83~86
    6 章海涛. 脱氧精胍菌素:一种治疗自身免疫性疾病的新型 免 疫 抑 制 剂 . 肾 脏 病 与 透 析 肾 移 植 杂志.1997,6(3):263~266
    7 K. Nishimura & T. Tokunaga. Mechanism of action of 15-deoxyspergualin. Immunology.1989,68:66~71
    8 A. W. Thomson. The spectrum of action of new immunosuppressive drugs. Clin. exp. Immunol.1992,89:170~173
    9 C. Odaka,E. Toyoda,et al. Immunosuppressant deoxyspergualin induces apoptotic cell death in dividing cells. Immunology.1998,95:370~376
    10 邹汉发,张玉奎,洪名放,等.反相离子对色谱中有机溶剂浓度和离子对试剂浓度对保留值的影响.化学学报,1994,52:1106~1111
    11 邹汉发,张玉奎,洪名放,等.反相离子对色谱保留机理研究进展.自然科学进展-国家重点实验室通讯,1994,4(4):403~409
    12 蒋晔,谢赞,张嫡群.离子对反相高效液相色谱法测定阿仑 膦 酸 钠 含 量 及 其 有 关 物 质 . 分 析 化学.2006,34(6):835~838
    1 中国药典委员会.中华人民共和国 2005 年版.化学出版社
    2 孙毓庆主编.现代色谱法及其在药物分析中的应用. 北京,科学出版社
    3 祝仕清,牛长群,王娅莉等.盐酸坦洛新的手性分离与纯度检查. 药物分析杂志.2007,27(11):1701~1703
    4 薛娜,牛长群.苯磺酸左旋氨氯地平的毛细管电泳手性分离与纯度检查. 中国医院药学杂志.2007,27(01):51~53
    1 孙毓庆主编.现代色谱法及其在药物分析中的应用.北京:科学出版社,2005.182~186
    2 邹汉法,张玉奎,洪名放等.反相离子对色谱保留机理研究进 展 . 自 然 科 学 进 展 - 国 家 重 点 实 验 室 通讯.1994.4(4):403~408
    3 邹汉法,张玉奎,洪名放等.反相离子对色谱中有机溶剂浓度 和 离 子 对 试 剂 浓 度 对 保 留 值 的 影 响 . 化 学 学报.1994.52:1106~1111
    4 南京大学化学系有机化学教研室.有机化学(下册 )[M]北京:高等教育出版杜,1988,329
    5 徐任生主编.天然产物化学[M].北京:科学出版社, 1993.
    6 孟玉芳,龚明涛,张钧寿,等. 反相离子对色谱-荧光检测器同时检测两种形式的羟基喜树碱.江苏药学与临床研究.2006,14(5):316~317
    7 李惠芬,张庆伟,张晓梅,等.应用离子对色谱技术同时测定 天仙子中三种生物碱.中草药.1999,30(3):184~185
    8 韩金土,余梅,赵荣亮,等.嘌呤类化合物的反相离子对色谱分离及饮料中咖啡因的测定.信阳师范学院学报(自然科学版).1998,11(1):47~50
    9 靳宝峰,杨晓军,毕森林,等.离子对色谱法测定颠茄及莨菪制剂中的 3 种有效成分.药物分析杂志.1995,15(4):26~28
    10 仉文升,李安良主编.药物化学.北京:高等教育出版社
    11 张春然,唐克慧.头孢美唑钠的质量与稳定性研究.国外医药抗生素分册.2005,26(1):5~8
    12 沈向忠.氟奎诺酮类抗生素分析的新进展.国外医药抗生素分册.1994,15(1):12~17
    13 熊耀华,刘轶春,屈健,等.离子对高效液相色谱荧光检测法测 定 四 环 素 类 药 物 . 分 析 化 学 研 究 简报.2000,6(28):745~748
    14 习玲玲,朱岩.反相离子对色谱-脉冲安培电化学法测定硫酸 庆 大 霉 素 中 各 组 分 含 量 . 分 析 化 学 研 究 简报.2006,34(12):1763~1766
    15 蒋国强,杨水新,叶勇.离子对色谱法同时测定万古霉素、去 甲 万 古 霉 素 血 药 浓 度 . 中 国 现 代 应 用 药 学 杂志.2006,23(4):322~323
    16 洪波,赵宏峰,司云珊,等.中药附子的指纹图谱研究.吉林农业大学学报.2003,25(5):536~538
    17 潘扬,杨光明,蔡宝昌.高效液相色谱法同时测定莲子心中四 中 异 喹 啉 生 物 碱 的 含 量 . 时 真 国 医 国药.2005,16(12):1219~1221
    18 寿国香,刘冰,周立红,等.离子对反相 HPLC 法测定 10 个产 地 莲 子 心 中 莲 心 碱 的 含 量 . 中 草药.2001,32(11):989~990
    19 寿国香,刘冰,郝连淑.离子对 RP-HPLC 法测定不同产地莲子心中甲基莲心碱的含量.中草药.2002,33(6):517~518
    20 程晓霞,向瑛.甘草及其制剂中甘草酸的定量方法研究概况.时珍国医国药.2000,11(4):380~381
    21 林志华,李哲媛.伤风止咳糖浆中两组分的离子对高效液相色谱测定.中国医药工业杂志.1999,30(8):369~370
    22 张志斌,钱卫德,杭亚军,等.反相离子对色谱法测定鱼腥草素钠的含量.中成药.2006,28(6):895~896
    23 邹汉法,张玉奎,洪名放,等.反相色谱法和反相离子对色谱法测定有机离子在正辛醇/水中分配系数的比较.自然科学进展-国家重点实验室通讯.1995,5(5):581~586
    24 郭磊,江桂斌.高效液相色谱及其联用技术在有机锡形态测定中的应用.环境科学进展.1999(7)6:45~55
    25 田松柏.离子对色谱测定碱性样品溶液中铬的方法研究.岩矿测试.1999,18(3):193~197
    26 陈秀华,朱岩,杨建军.离子对高效液相色谱分离及光度检测法测定 meso-四(4-甲基-3-磺酸苯基)卟啉-铜、锌络合物.分析化学研究简报.2000,28(10):1260~1262
    27 喻宏伟,陈春英,高愈希,等.高效液相色谱-电感耦合等离子体质谱法分析生物样品中硒的化学形态.分析化学研究简报.2006,34(6):749~753
    28 李好枝主编.体内药物分析.北京,中国医药科技出版社
    29 郑永彪,范慧红,徐康森,等.离子对高效液相色谱法分离测定 单 唾 液 酸 神 经 节 苷 脂 的 含 量 . 药 物 分 析 杂志,2004,24(2):135~136
    30 潘峰云,端裕树.盐酸二钾双胍血药浓度的 HPLC-UV 测定.中国国境卫生检疫杂志.2006,29(3):177~179
    31 曾佳,李艳,杨爱群.离子对-高效液相色谱法测定盐酸伪麻黄 碱 的 血 药 浓 度 . 中 山 大 学 学 报 论丛.2006,26(12):193~196
    32 胡雁,杨俊,谷勋刚,等.反相离子对高效液相色谱法同时测定 头 发 中 的 尼 古 丁 和 可 天 宁 . 分 析 测 试 学报.2006,25(2):77~80
    33 于慧娟.离子对反相色谱法分析 α-奈磺酸钠.染料工业.1995,32(1):36~37
    34 李意.反相离子对色谱法对两种新型苯磺酸类染料中间体的研究.分析实验室.2004,23(8):31~33
    35 石义林,韩金土,刘绮萍,等.生物碱基的反相离子对色谱分离 及 茶 叶 中 咖 啡 因 测 定 的 研 究 . 分 析 测 试 学报,1997,16(3):17~20
    36 潘峰云,张亮,杭太俊,等.离子对-超临界流体色谱在药物分析中的应用.药学进展.2000,20(6):326~329

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700