丙酮、丁酮、乙酸乙酯、乙酸丁酯和DMF在水中的溶解度及其在皮革废气治理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
治理有机废气是大气污染治理中极为重要的一部分。而吸收法是诸多治理技术中最为经济实用且成熟的一种方法。而在吸收操作中,气体在溶剂中的溶解度决定了吸收操作的效率和经济性。本文对丙酮、丁酮、乙酸乙酯、乙酸丁酯和DMF在水中15~40℃、常压下的气体溶解度做了系统的测定,研究了其受温度和液相浓度的影响规律。并用UNIFAC模型对气液平衡情况进行模拟,与实验值相比较。同时还对应用于皮革干法中丁酮和DMF废气的填料吸收塔进行了性能测定。
     实验表明,在相同温度下,在水中的气体溶解度由大到小依次为DMF、丙酮、丁酮、乙酸乙酯、乙酸丁酯。当温度小于30℃时且液相浓度较低时,气体溶解度的实验值与用UNIFAC模型的计算值符合较好。当液相浓度增大时,用UNIFAC模型计算气体溶解度产生的偏差也随之增大。对于同一物质,当溶液中液相摩尔分数较小时,气相平衡分压随温度变化改变不大,温度对溶解度的影响可以忽略。
     在吸收装置的工业测试中,随着液相浓度、气体进口浓度的增加,水吸收丁酮和DMF的效率降低。液相浓度、进口浓度的增加对DMF吸收效率的影响不大,而对丁酮吸收效率的影响较大。气体的出口温度随液气比增大而降低,二者近似为线性关系。全塔压降随着操作空塔气速的增加而降低,而持液量主要受喷淋密度制约。
It is rather important to treat organic waste gas in the air pollution control. Absorption is the most economical, convenient and well-developed among other treatment methods. In the absorption process, the gas solubility in the solvent plays a key role on removal efficiency and operation price. This paper focus on the gas solubility of Acetone, Z-Butanone, Ethyl acetate , n-Butyi acetate, N,N-Dimethylformamide(DMF) in the water at 15~40℃ and normal air pressure. The infection of temperature and liquid concentration on the gas solubility is studied. UNIFAC model is used to simulate the gas-liquid equilibira and compared with experimental data. The operation character of packed tower in leaher production waste gas treatment is also investigated.
    From the experimental data, the gas solubility from high to low in the water can be ranged as DMF, Acetone , Z-Butanone, Ethyl acetate and n-Butyi acetate. UNIFAC model is accord well with the experimental data at temperature below 30℃ and low liquid concentration. But the deviation between UNIFAC model and experimental data increases as the temperature or the liquid concentration increases. For the same substance at low liquid concentration, the gas solubility of it remain unchanged when temperature changes.
    The removal efficiency of DMF and Acetone decreases with increase of The liquid concentration and inlet concentration in the industrial packed tower. The removal efficiency of Acetone is affected more intensive than that of DMF. The outlet temperature decreases as L/G increases, and they are in a linear relation. The total pressure drop increases with the increase of gas velocity. The liquid hold is affected by the insufflation density.
引文
[1] 高正虹,崔志娱.乙醇—乙酸丁酯二元系统的等温气液平衡.化学工业与工程,1995,12(1),7-10.
    [2] 郭荣根,朱军,杨晓霞.气相色谱法测定废水中N,N—二甲基甲酰胺[J].环境监测与管理,1996,(5):30.
    [3] 黄晓东,张晓兰.有机废气的生物膜处理技术.化工环保,1996,16:19-22.
    [4] 黄立维,谭天恩.脉冲电晕法治理甲苯废气实验研究[J].中国环境科学,1997,17(5):449-452.
    [5] 刘治雄,张晓春,等.燃烧—催化氧化法治理有机废气[J].化学工业与工程技术,2000,21(2):11-13.
    [6] 屈一新,宋晓岚,李青山,等.水-二甲基甲酰胺-甲酸体系的气液相平衡的研究.化工学报,1998,49(3):347-351.
    [7] 孙佩石 杨显万,生物膜填料塔净化有机废气研究,中国环境科学.1996,16(2).92-95.
    [8] 陶有胜.微生物在空气污染控制中的应用.环境科学动态,1995,(3):9-12.
    [9] 涂晋林,吴志泉.化学工业中的吸收操作—气体吸收工程,华东理工大学出版社,上海,1996.
    [10] 田森林,宁平.有机废气治理治理技术及其新近展.环境科学动态,2000,1:23-28.
    [11] 孙佩石,杨显万,谢蕴国,等.生物法净化低浓度挥发性有机废气的动力学问题探讨[J].环境科学学报,1999,19[2]:153-158.
    [12] 王德民,赵一先,李定邦等.生物滴滤池法处理废气动力学模式研究.上海环境科学,1999,18(7):309-311.
    [13] 王家德,陈建孟,唐翔羽.有机废气的生物处理概述[J].上海环境科学,1998,17(4):21-24.
    [14] 宴乃强.吴祖成,施耀,等.电晕—催化技术治理甲苯废气的实验研究[J],环境科学,1999,20(1):11-14.
    [15] 阎勇.有机废气中VOC的回收方法.化工环保,1997,19:332-335.
    [16] 张晓辉.国外生物过滤器处理化工有机废气进展[J].化工环保,1999,19(2):84-88.
    [17] 李泽清.含VOC废气的回收净化工艺[J].环境工程,2003,21(5).38-39.
    [18] 植松信行(日).PPM,1994,25(1):74-81.
    [19] 上殊勇(日).PPM,1993,24(3):55-60.
    [20] 普劳斯尼茨,J.M.等,“用计算机计算多元气—液和液—液平衡”,陈川美,盛若瑜等译,化工出版社,1987.
    [21] 《化学工程手册》编辑委员会.化学工程手册.化学工业出版社,1991,347;169:355
    [22] 陈尊庆编.气相色谱法与气体在水中的溶解度研究.天津:天津大学出版社,1991.
    [23] 国家环境保护局《空气和废气监测分析方法》编写组.空气和废气监测分析方法[M].北京:中国环境科学出版社,1990:20-22、30,35-37.
    [24] 《环境监测分析方法》城乡建设环保局,83年9月,P20—P46.
    
    
    [25] 朱自强,姚善泾,金彰礼.流体相平衡及其应用[M].浙江:浙江大学出版社,1990.
    [26] 日本化学会,李介春译.碳氢化合物污染及其对策.北京:科学出版社,1987.
    [27] 薛履中.工程最优化技术[M].天津大学出版社,1989.
    [28] Abrams, D.S., Prausnitz, J.M. (1975). Statistical Thermodynamics of Liquid Mixtures. A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems. AIChE J. 21, 116.
    [29] Anita Zieba, Teresa Bnaszak, Thermal-Catalytic oxidation of waste gases. Applied Catalysis, 1995, 124:47-57.
    [30] A.R.Khan, R.Ataullah and A.Al-Haddad, "Equilibrium Gases Adsorption At Different Temperatures", Journal of Environmental Engineering, June, 548(1999)
    [31] Billet, R. Performance of low Pressure drop packings. Chem. Eng. Commun, 1987, 54(1-6):93-118.
    [32] Clever, H.L., Bamino, R. in "Techniques of Chemistry", Vol. 8, "Solutions and Solubilities". Part 1, ed. by Dack, M. R., John Wiley & Soms. 1975.379.
    [33] C.M.Nunez, G.H.Ramsey, W.H.Ponder.Corona Destruction:An Innovative Control Technology for VOCs and Air Toxics[J]. J of Air & water Mana. Assoc. 1993,43(2):242-247.
    [34] Edward C.Moretti et al.,VOC Control:Current Practices and Future Trends.Chem.Eng.Progess, 1993.89(7):20-26.
    [35] Edward Ruddy et al., Select Best VOC Control Strategy.Chem.Enl.Progress.1993.89(7):28-35.
    [36] G.L.Aranovich and M.D.Donohue, "Vapor Adsorption on Microporous Adsorbents", Carbon, 38, 701(2000).
    [37] Dahi,S., Michelsen, M.L. (1990), High-Pressure Vapor-Liquid Equilibrium with a UNIFAC-Based Equation of State. AIChE J. 36, 1829-1836.
    [38] Fischer, K., Gmehling, J.(1995). Further Development, Status and Results for the Prediction of Vapor-Liquid Equilibria and Gas Solubilities. Fluid Phase Equilibria in press.
    [39] Fredenslund, Aa., Jones, R.L., Prausnitz, J.M. (1975). Group Contribution Estimation of Activity Coefficients in Noideal Mixtures. AIChE J. 21, 1086.
    [40] Fredenslund, Aa., Jones, R.L., Prausnitz, J. M., AIChe J., 1975, 21 1086.
    [41] Gmehling, J., Li, Jiding, Schiller, M.(1993a). A Modified UNIFAC Model 2. Present Paramenter Gmehling, J., Menke, J., Schiller, M., Tiegs, D., Medina, A., Soares, M., Bastos, J., Alessi, P., Kikic, I. Starting 1986. Activity Coefficients at Infinite Dilution, 4 parts. DECHEMA Chemistry Data Series, Frankfurt.
    [42] Matrix and Results for Different Thermodynamic Properties. Ind. Eng. Chem. Res. 32, 178-193.
    
    
    [43] Holderbaum, Th., Gmehling, J.(1991). PSRK: A Group Contribution Equation of State Based on UNIFAC, Fluid Phase Equilibria 70, 251-265.
    [44] John McCallion. Membrane Process Captures VinylCholride and Other VOCs. Chemical Processing. 1994, (9): 33-36.
    [45] Kawata K, Ibaraki T, Tanabe A, Yasuhara A. N, N- Dimethylformamide and N, N-dimethylacetamide monitoring with a diffusive sampler using distd water as an absorbent. AIHA Jouranal 2002, 63(6) 726-731.
    [46] K. Sampeth Kumar et al., Capture or Destrory Toxic Air Pollutants, Chem. Eng., 1993, 100(6): 12-17.
    [47] Kim, H.; Lin, H.; Chao, K. In Experimental Results from the Design Institute for Physical Property Data 1: Phase Equilibria; Benson, M. S.; Zudkevitch, D., Eds.; AIChE Symposium Series 81(244); American Institute of Chemical Engineers: New York, 1985; p 96.
    [48] Larsen, B.L., Rasmussen, P., Fredenslund, Aa. (1987). A Modified UNIFAC Group Contribution Model for Prediction of Phase Equilibria and Heats of Mixing. Ind. Eng. Chem. Res. 26, 2274-2286.
    [49] Louis Sorrento. The Proven Process of Carbon Adsorption. Chem. Eng., 1994, 101(7): 94-95.
    [50] M.A.Deshusses,G.Hamer, L J.Dunn.Behavior of Biofilters for Waste Air Biotreatment. 1.Dynamic Model Developmen [J]. Environ. Sci.Technol. 1995,29(4):1048-1058.
    [51] M. A. Malik, Jiang Xuanzhen. Destruction of VOCs by Combination of Corona Discharge and Catalysis Techniques[J]. J of Environ. Sci 1998, 10(3).
    [52] M. B. Chang, C.C. Lee. Destruction of Formatldehyde with Dielectric Barrier Discharge Plasmas[J]. Environ. Sci & Technol. 1995, 29(1):181-186.
    [53] M.John Rubl.Recover VOCs Via Adsorption on Activated Carbon Chem.Eng Progress, 1993,89(7):37-41.
    [54] O'Connell,j.P., " Some Aspects of Henrry' s Constants and Unsymmetric Convention Activity Coefficient" ,in "Phase Equiibria and Fluid Properties in Chemical Industry" , Ed. By storvick, T.S., Sandler, S.I., Acs Symposium Series 60,Acs,Washington 1977,490
    [55] Peter Cartwright. Pollution Prevention Driver Membrane Technologies, Chem. Eng., 1994, 101 (9): 84-87.
    [56] PRAUSNITZ J. M. Molecular Thermodynamics of Fluid-Phase Equilibrium[M]. Englewood: Preutice-Hall, 1986.
    [57] P. V. Shanbbag, A. K. Guba, K. K. Sirkar. Membrane-Based Integrated Absorption-Oxidation Reactor for Destroying VOCs in Air[J]. Environ. Sci. Technol.
    [58] Sander, B., Skjold-Jorgensen, S., Rasmussen, E, Fluid Phase Equilibria, 1983, 11,105.
    
    
    [59] Soave, G. (1972). Equilibrium Constants from a Modified Redlich-Kwong Equation of State. Chem. Eng. Sci. 27, 1197.
    [60] Whitmore A., Corsi R.L. Measurement of gas-liquid mass transfer coefficients for volatile organic compounds in sewers Environmental Progress. 1994, 2 (13): 114.
    [61] W.Strauss, Industrial Gas Cleaning, Second Edition, Pergamon Press, 1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700