海岛棉和陆地棉纤维发育的遗传基因组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是我国最重要的经济作物之一,也是主要的自然纤维作物。中国是世界上最大的纺织品生产国和消费国,常年种植面积在8,000万亩左右,棉花种植业与纺织业在我国国民经济中起着重要的作用。但是,目前国产原棉在质量上已经不能满足市场需要,适纺高档棉纱的优质原棉,主要依赖进口。长期以来,我国棉花纤维品质偏差,平均跨长和比强度均较低,成为制约棉花产业可持续发展的主要障碍。纤维品质包括纤维长度、强度、细度等性状的综合指标受纤维的伸长和次生壁合成过程影响。因此,研究棉花纤维发育转录组以阐明纤维细胞基因表达模式,整合遗传和遗传基因组学以发掘影响纤维品质基因及了解棉纤维品质调控的分子机制,对改善纤维品质具有极为显著的意义。
     本研究开发了海陆群体的AFLP, SAMPL, SABPL和EST等分子标记,为本实验室构建的海陆遗传图谱增加了244个非SSR类型的多态位点,尤其是EST相关的功能标记。这些标记增加了遗传标记的类型,填充了染色体上某些空白区域。结合本实验加密的比较饱和海陆回交遗传图谱,我们整合四年纤检的纤维品质数据,利用多QTL联合分析方法检测了纤维长度、强度、细度、伸长率及整齐度等纤维品质性状基因型及环境互作效应,得到22个纤维品质QTL(LOD≥3),包括6个主效QTL,16个与环境互作的QTL;纤维长度和强度QTL主要定位在A亚组(A1、A3、A5和A11),而纤维整齐度和马克隆值QTL主要定位在D亚组(D1、D4、D7和D12)。一致或稳定的QTL将为研究影响纤维品质的候选基因提供基础。
     本研究利用高通量的微阵列平台,筛选了涉及陆地棉标准系TM-1纤维起始、伸长及次生壁加厚时期的差异表达基因。我们利用SAM (Significant Analysis of Microarray)软件的multiclass方法对28k棉花芯片上10,902个基因不同时期的信号强度分析,得到了6,186个时期差异表达基因(q-value≤5%)。 KEGG分析发现细胞骨架蛋白、类黄酮合成、氧化磷酸化和糖酵解代谢途径处于显著差异水平。我们对6,186个时期差异表达基因的11个时期平均最高信号强度值和次之信号值利用t-test方法(P<0.05)和1.5倍差异标准筛选,最终得到了192个时期特异表达的基因。这些时期特异表达基因决定了纤维细胞在特异时期的独特的分子事件。另外纤维的发育阶段也能够利用差异表达基因的聚类清晰的分开,在分子水平上分开了3个重要的纤维发育阶段。这项研究为四倍体栽培棉种的纤维发育机制提供了新的视点,也为纤维发育的研究提供了大量的特异表达基因资源,更为进一步通过遗传改良方法提高棉纤维的品质提供了一定基础。
     利用高通量的微阵列技术对陆地棉和海岛棉纤维基因表达进行了比较研究。我们测量了海岛棉Hai7124和陆地棉TM-1纤维整个伸长发育期不同时间点的长度(5-38days post anthesis, DPA),发现陆地棉和海岛棉纤维长度分别在15-20和23-28DPA之前线性增长,最终达到一个相对平稳的时期,较大的差异发生在20-33DPA。我们利用12k棉花纤维cDNA芯片与在5个时间点(5、10、15、20和25DPA)的Hai7124和TM-1纤维发育细胞的RNA杂交,利用R语言LIMMA软件包的经验贝叶斯(eBayes)方法在错误发现率FDR<0.05及2倍差异的标准下比较了发育纤维细胞在种内相邻时间点和种间差异表达基因的数目,在Hai7124相邻时期比较分别有276(5vs.10DPA),2402(10vs.15DPA),94(15vs.20DPA)和44(20vs.25DPA)个差异基因,而在TM-1分别得到473、2224、148和396个差异基因,在Hai7124和TM-1纤维细胞间5个时间点分别发现151、233、195、100和232个差异基因。10和25DPA有更多的差异表达基因,是两个非常关键的时期,对这两个时期的深入研究有利于弄清控制纤维快速伸长基因及决定海岛棉持续伸长或陆地棉停止伸长的基因。
     为了深入解析海陆棉花差异原因,发掘与纤维品质相关的基因,我们选择了10和25DPA的纤维进行了遗传基因组学研究。我们利用28k棉花cDNA芯片从10和25DPA的纤维细胞中分别检测到13,760和13,411个有效基因,利用R语言LIMMA软件包的经验贝叶斯(eBayes)方法,错误发现率控制在5%的水平上,发现在亲本TM-1和Hai7124间分别有142和302个差异表达基因。在这两个时期的66个棉花BC1S1株系分别用相同的芯片平台检测了表达谱,进一步用于连锁分析。在P<0.05水平上总共定位了916个表达QTL(eQTL),包括纤维伸长时期的293个和次生壁合成时期的623个;通过比较转录本的表达连锁位置和遗传标记定位预测了一些潜在的顺式或反式eQTL。另外,我们得到了46个eQTL热点,其中A亚组30个,D亚组16个,同时筛选了这些热点内包含的转录因子。比较eQTL与纤维QTL的位置,我们得到了一批纤维QTL在eQTL共定位的基因,尤其是在25DPA发现大量与纤维长度、强度和细度相关的基因,纤维品质可能由纤维品质QTL区域的基因表达调控因子影响,研究这些基因能够帮助我们进一步揭示海岛棉和陆地棉纤维长度差异的分子机制。结合这些研究结果,我们推测在纤维发育过渡阶段,ABA和乙烯信号途径基因的下调,生长素调控因子和细胞壁疏松酶等纤维伸长正向调控基因的长时间及高水平表达是海岛棉保持持续伸长的主要分子基础,这可能也是海岛棉具有优异的纤维品质的一个原因。棉花遗传和表达QTL的整合为纤维品质功能基因的发掘提供了新视点,有助于进一步通过分子手段改良棉花的纤维品质。
Cotton (Gossypium spp.) is one of the most important economic crops due to its excellent natural fiber properties. China is the world's largest producer and consumer of textiles, around the growing area of80million acres every year, the cotton textile industry in national economy plays an important part in our country. But, at present domestic raw cotton quality have not already met the demands of the market, and the superior quality raw cotton with a higher spinning performance almost all rely on imports. The domestic cotton fiber quality is poor because of low average span length and strength, which restrict sustainable development in cotton industry. Cotton fiber qualities including length, strength and fineness are controlled by genes that affect cell elongation and secondary cell wall (SCW) biosynthesis. Therefore, the research on cotton fiber development transcriptomics can be used to clarify gene expression patterns for crucial genes, and integratation of genetics and genetical genomics can help us understand the molecular mechanisms controlling the cotton fiber qualities, which will be remarkable significance for genetic improvement of fiber qualities.
     We developed AFLP, SAMPL, SABPL and EST molecular markers in BC1population of G. hirsutum acc. TM-1and G. barbadense cv. Hai7124, increasing244loci in our backbone BC1population, particular for EST functional markers, enriched types of molecular markers and dense area of chromosomes. The combination of four-year fiber trait data that were obtained from the same genetic materials revealed22QTL for fiber length (FL), strength (FS), micronaire reading (FM), elongation (FE), and uniformity (FU) involving genotype and interaction of genotype and environment [logarithm of odds (LOD)≥3.0] by multi-QTL joint analysis, including6main effect QTL,16QTL-by-environment interaction. QTL for FL and FS were mapped on A-subgenome (At) chromosomes (A1, A3, A5and All), whereas QTL for FU and FM were mainly mapped on D-subgenome (Dt) chromosomes (D1, D4, D7and D12). Stable or consistent QTL will provide foundation for identification of genes affecting fiber qualities.
     Cotton fiber is a highly elongated trichome from epidermal cell of cotton ovule that is one of the most important natural raw materials for the textile industry. Upland cotton (G hirsutum L.) accounts for about95%of the annual cotton production in the world. To reveal developmental features of upland cotton fiber cells, we combined11developmental stages (-3-25days post-anthesis, DPA) of microarray data in G. hirsutum acc.TM-1, and identified10,902effective genes during fiber cell initiation, elongation and secondary cell wall (SCW) synthesis. Of these genes, we determined6,186differentially expressed genes (DEGs) among11development times by SAM (significant analysis of microarray) multiclass. Several significant metabolic pathways from6,186DEGs were identified by Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway analysis in fiber development, primarily including cytoskeleton proteins, flavonoid biosynthesis, oxidative phosphorylation, and glycolysis/gluconeogenesis. Comparative analyses of transcriptomes showed192specific-times expressed genes across a developmental time-course involving in4gene clusters, and many key genes were confirmed by real-time quantitative reverse transcription PCR (QRT-PCR) analysis. These specific-times expressed genes may determine that cotton fiber cell at a certain stage has its own unique feature, and developmental stages of cotton fiber cells can be distinguished by their transcript profiles. This study also gains new insights to understand the molecular mechanism of cultivated tetraploid cotton fiber development.
     Comparative analysis of gene expression in G. hirsutum and G. barbadense was conducted using the high-throughput microarray platform. To reveal the differential feature of fiber development that may account for fiber qualities, we measured dynamic change of fiber length of TM-1and Hai7124at different time points (5-38DPA), and observed that fiber length increased approximately linearly over the first15-20DPA in TM-1and23-28DPA in Hai7124, and plateaued as the fibers reached their final dimensions, great difference occurred between20-33DPA during elongation. To investigate differentially regulated genes in fiber developmental process, we hybridized a cotton fiber cDNA microarray (GPL2610) with RNA samples of TM-1and Hai7124fiber from five different developmental time-points,5,10,15,20and25DPA. We compare mRNA expression levels in developing fiber-cells using the empirical eBayes method in LIMMA, and revealed the numbers of DEGs between adjacent time-points during fiber development within and between species based on the criterion of false discovery rate (FDR)<0.05and fold change (FC)≥2. Within each species, the number of DEGs was unequally distributed between adjacent time points. In Hai7124,276(5vs.10DPA),2,402(10vs.15DPA),94(15vs.20DPA) and44(20vs.25DPA) genes were differentially expressed, whereas in TM-1,473,2,224,148and396genes were differentially expressed. Between Hai7124and TM-1, there were151,233,195,100and232genes differentially expressed at five time points (5-25DPA). Thus, the two periods10and25DPA with higher numbers of DEGs will be crucial for identification of fiber genes regulating elongation at fast elongation stage and determination G. barbadense fiber continuative elongation or the termination of G. hirsutum fiber elongation at the transition stage.
     To deeply identify fiber quality genes, we selected these two respective periods for further linkage analysis of expression profiles. We extensively investigated gene expression in fiber cells of66randomly selected BC1S1lines as well as the two parents TM-1and Hai7124using another cDNA microarray platform (GPL8569) with abundant probes. A total of13,760and13,411active transcripts at10and25DPA, respectively, were detected and142and302DEGs between TM-1and Hai7124were further identified. Furthermore,444expression traits in66cotton BC1S1lines were used to expression quantitative trait loci (eQTL) analysis. A total of916eQTL were statistically significant with a logarithm of odds (LOD) score exceeding permutation based thresholds (P<0.05), including293and623eQTL at10and25DPA, respectively. Many positional cis-/trans-acting eQTL could be estimated by comparing chromosomal location of each transcript and position of its eQTL A total of46eQTL hotspots were identified, of them,30on At and16on Dt, and some transcriptional factors were existed in the hotspot regions. By comparative analysis of eQTL and consistent or stable fiber QTL in the present study, especially for eQTL hotspots were observed within the intervals regions of fiber QTL, we identified functional fiber quality genes differentially espressed between G. hirsutum and G. barbadense. Most noteworthy, the fiber transcript abundance variation at25DPA predominantly affected fiber qualities. The temporal regulation of gene expression and QRT-PCR identified the major differential genes regulating fiber cell elongation or SCW synthesis. These data collectively support molecular mechanism of fiber difference between G. hirsutum and G. barbadense through differential gene regulation causing difference of fiber qualities. The down-regulation expression of ABA and ethylene signaling pathway genes and high-level and long-term expression of positive regulators including auxin and cell wall enzyme genes for fiber cell elongation at the fiber developmental transition stage may account for superior fiber qualities.
引文
1. 陈利,张正圣,胡美纯,等.陆地棉遗传图谱构建及产量和纤维品质性状QTL定位[J].作物学报,2008,34(7):1199-1205
    2. 杜曼丽,倪勇祥,李学宝.3个编码AP2/EREBP转录因子的基因克隆及其在棉纤维中优势表达的初步分析[J].华中师范大学学报,2007,41(4):578-582.
    3. 方宣钧,吴为人,唐纪良.作物DNA标记辅助选择[M].北京,科学出版社,2001
    4.郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆和分子育种[J].科学通报,2003,48(5)410-417.
    5. 韩志国,楚鹰,郭旺珍,等.棉纤维发育重要基因FbL2A的SNPs研究及定位[J].农业生物技术学报.2006,14(3):360-364
    6. 何风华.水稻QTL分析的研究进展[J].西北植物学报,2004,24(11):2163-2169.
    7. 侯磊,李家宝,罗小英,等.棉花ADP-ribosylation factor基因(GhARF1)的克隆与表达分析[J].作物学报,2007,33(8):1226-1231.
    8. 胡文静,张晓阳,张天真,等.陆地棉优质纤维QTL的分子标记筛选及优质来源分析[J].作物学报,2008,34(4):578-586
    9. 计志斌,商海红,闫恒超,等.棉花纤维次生壁加厚期基因的表达谱分析[J].子植物育种,2011,9(3):27-335
    10.贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10
    11.蒋建雄,郭旺珍,张天真.棉花两个p-甘露糖苷酶cDNA的克隆及其特征[J].植物生理与分子生物学学报,2004,30(2):216-220.
    12.蒋建雄,张天真.利用CTAB酸酚法提取棉花组织总RNA[J].棉花学报,2003,15(3):166-167.
    13.冷雪,贾银华,杜雄明.棉纤维伸长阶段上、下调基因及相关通路的分析[J].作物学报,2010,36(11):1891-1901
    14.李龙云,于霁雯,翟红红,等.棉花纤维发育相关基因表达谱的比较分析[J].分子植物育种,2010,8(3):488-496
    15.刘刚,彭惠茹,倪中福,等.遗传与基因表达数据的整合--eQTL的方法及应用[J].遗传,2008(09).
    16.刘秀艳,谢正苗,陈惠哲.遗传基因组学(Genetical genomics)的研究进展[J].生物化学与生物物理进展2006,23(1):1030-1034
    17.梅文倩,秦咏梅,朱玉贤.乙烯、超长链脂肪酸、活性氧、油菜素内酯和赤霉素相互作用调 控棉纤维伸长发育的分子机制研究.生命科学,2010,22(1):7-14
    18.潘家驹.作物育种学总论[M].北京,农业出版社,1992
    19.任立华,郭旺珍,张天真.利用置换系检测棉花第16染色体的产量、纤维品质QTLs[J].植物学报,2002,44(7):815-820
    20.孙杰,李艳军,等.棉花纤维特异表达基因GhFl的分离及鉴定[J].棉花学报,2005,17:259-263.
    21.王娟,郭旺珍,张天真,等.渝棉1号优质纤维QTL的标记与定位[J].作物学报,2007,33(12):1915-1921
    22.王水平,沈曾佑,张志良,等.棉纤维细胞伸长生长与过氧化物酶和IAA氧化酶的关系[J].植物生理学报,1985,11(4):409-417.
    23.吴茂清,张献龙,聂以春,等.四倍体栽培棉种产量和纤维品质性状的QTL定位[J].遗传学报,2003,30(5):443-452
    24.吴为人,李维明,卢浩然.数量性状基因座的动态定位策略[J].生物数学学报,1997,12(5)400-495
    25.徐瑜,施永辉,冯建勋,等.cDNA芯片检测棉花纤维发育相关基因的表达[J].分子植物育种,2004,2(3):348-353.
    26.徐云碧,朱立煌.分子数量遗传学[M].北京:中国农业出版社,1994:205-207.
    27.杨霞,侯磊,肖月华,等.棉花4个GL2同源基因的序列比较及表达分析[J].作物学报,2008,34(6):1086-1091.
    28.杨鑫雷,王志伟,张桂寅.棉花分子遗传图谱构建和纤维品质性状QTL分析[J].作物学报2009,35(12):2159-2166
    29.于海川,吴娇,崔百明,等.棉花中两个新的F-box蛋白基因的克隆与表达分析[J].棉花学报,2008,20(2):99-104.
    30.张军,武耀廷,郭旺珍,等.棉花微卫星标记的PAGE/银染快速检测[J].棉花学报,2000,12(5):267-269
    31.张天真,郭旺珍.棉花分子育种的现状、问题与展望[J].中国农业科技导报,2007,9(2):19-25
    32.张天真,袁有禄,郭旺珍,等.棉花高强纤维QTLs的微卫星标记筛选[J].中国农业科学,2001,34(4):363-366
    33.张天真.棉花纤维品质分子育种的现状及展望[J].棉花学报,2000,12(6):321-326.
    34.张天真.作物育种学总论[M].北京:中国农业出版社,2003
    35.郑艳萍,Chander Subhash,杨小红,等.一种基于聚合酶链式反应检测SNP的方法[J],中国农业大学学报,2006,11(3):51-55
    36.朱军.复杂数量性状基因定位的混合线性模型方法[C].全国作物育种学术讨论会论文集,北 京:中国农业出版社,1998:11-20
    37.朱新霞,朱一超,艾尼江,等.中棉所12及其选系配制的4个杂交棉幼苗期基因差异表达.作物学报2009,35(9):1637-1645
    38.朱一超,张天真,贺亚军,等.棉花纤维伸长发育期的基因表达分析[J].作物学报,2006,11:1656-1662
    39. Adams KL, Cronn R, Percifield R, et al. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing [J]. Proc Natl Acad Sci, USA,2003,100 (8):4649-4654.
    40. Agarwal M, Shrivastava N, Padh H. Advances in molecular marker techniques and their applications in plant sciences [J]. Plant Cell Rep,2008,27:617-631
    41. Alabady MS, Youn E, Wilkins TA. Double feature selection and cluster analyses in mining of microarray data from cotton. BMC Genomics,2008,9:295.
    42. Al-Ghazi Y, Bourot S, Arioli T, et al. Transcript profiling during fiber development identifies pathways in secondary metabolism and cell wall structure that may contribute to cotton fiber quality. Plant Cell Physiol,2009,50:1364-1381.
    43. Amor Y, Haigler CH, Johnson S. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plant[J]. Proc Natl Acad Sci, USA,1995,92 (2): 9353-9357.
    44. Applequist WL, Cronn R, Wendel JF. Comparative development of fiber in wild and cultivated cotton [J]. Evol Dev,2001,3:3-17
    45. Arpat A, Waugh M, Sullivan JP, et al. Functional genomics of cell elongation in developing cotton fibers [J]. Plant Mol Bio,2004,54:911-929.
    46. Atwell S, Huang YS, Vilhjalmsson BJ, et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines[J]. Nature,2010,465:627-631
    47. Barcaccia G, Meneghetti S, Albertini E, et al. Linkage mapping in tetraploid willows:segregation of molecular markers and estimation of linkage phases support an allotetraploid structure for Salix alba x Salix fragilis interspecific hybrids [J]. Heredity.2003,90 (2):169-80.
    48. Basra AS, Malik CP. Development of cotton fiber [M]. Inter Rev Cyto,1984,89:65-113.
    49. Beasley CA, Ting IP. Effects of plant growth substances in vitro fibre development from fertilized cotton ovules [J]. Am J Bot,1973,60 (2):130-139.
    50. Beasley CA, Ting IP. The effects of plant growth substances on in vitro fiber development from unfertilized cotton ovules [J]. Am J Bot,1974,61:188-194.
    51. Benedict CR, Smith RH, Kohel RJ. Incorporation of 14C-photosynthate into developing cotton bolls, Gossypium hirsutum L. Crop Sci,1973,13:88-91.
    52. Besseau S, Hoffmann L, Geoffroy P, et al. Flavonoid accumulation in Arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell,2007,19:148-162.
    53. Boerjan W, Vuylsteke M. Integrative genetical genomics in Arabidopsis. Nature, Genetics,2009,41: 144-145.
    54. Bolton JJ, Soliman KM, Wilkins TA, et al., Aberrant Expression of Critical Genes during Secondary Cell Wall Biogenesis in a Cotton Mutant, Ligon Lintless-1 (Li-1) [J]. Comp Funct Genomics,2009, p659301.
    55. Brady SM, Long TA, Benfey PN. Unraveling the dynamic transcriptome [J]. Plant Cell,2006, 18:2101-2111.
    56. Brem RB, Yvert G, Clinton R, et al. Genetic dissection of transcriptional regulation in budding yeast. Science,2002,296 (5568):752-755
    57. Brogna S, Wen J. Nonsense-mediated mRNA decay (NMD) mechanisms. Nat. Struct. Mol. Biol., 2009,16:107-113.
    58. Brown DE, Rashotte AM, Murphy AS, et al. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol,2001,126:524-535.
    59. Brubaker CL, Bourland FM, Wendel JF. The origin and domestication of cotton. In C W Smith, JT Cothren, eds, Cotton:Origin, History, Technology, and Production[M]. John Wiley & Sons, New York,1999,pp 3-32
    60. Buer CS, Sukumar P, Muday GK. Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis. Plant Physiol,2006,140:1384-1396.
    61. Bystrykh L, Weersing E, Dontje B, et al. Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'. Nat Genet,2005,37:225-232.
    62. Cedroni ML, Cronn RC, Adams KL, et al. Evolution and expression of MYB genes in diploid and polyploid cotton [J]. Plant Mol Biol,2003,51:313-325.
    63. Chaudhary B, Hovav R, Flagel L, et al., Parallel expression evolution of oxidative stress-related genes in fiber from wild and domesticated diploid and polyploid cotton (Gossypium) [J]. BMC Genomics,2009,10:p378.
    64. Chaudhary B, Hovav R, Rapp R, et al., Global analysis of gene expression in cotton fibers from wild and domesticated Gossypium barbadense[J]. Evol Dev,2008,10 (5):567-582.
    65. Chee PW, Draye X, Jiang CX, et al. Molecular dissection of phenotypic variation between Gossypium hirsutum and Gossypium barbadense (cotton) by a backcross-self approach:Ⅲ. Fiber length[J]. Theor Appl Genet,2005,111:772-781.
    66. Chee P, Rong J, Williams-Coplin D, et al. EST derived PCR-based markers for functional gene homologues in cotton[J]. Genome,2004,47 (3):449-62.
    67. Chen CY, Cheung AY, Wu HM. Actin-depolymerizing factor mediates Rac/Rop GTPase-regulated pollen tube growth [J].Plant Cell,2003,15:237-249.
    68. Chen H, Qian N, Guo WZ, et al. Using three overlapped RILs to dissect genetically clustered QTL for fiber strength on Chro.D8 in Upland cotton[J]. Theor Appl Genet,2009,119:605-612
    69. Chen X, Hackett CA, Niks RE, et al. An eQTL analysis of partial resistance to Puccinia hordei in barley. PLoS One,2010,5 (1):e8598.
    70. Cheung VG and Spielman RS. The genetics of variation in gene expression. Nat Genet,2002,32: 522-525.
    71. Chi J, Wang X, Zhou H, et al. Molecular cloning and characterization of the actin-depolymerizing factor gene in Gossypium barbadense [J]. Genes Genet Syst,2008,83 (5):383-91.
    72. Clark G, Torres J, Finlayson S, et al. Apyrase (nucleoside triphosphate-diphosphohydrolase) and extracellular nucleotides regulate cotton fiber elongation in cultured ovules[J]. Plant Physiol, 2010,152 (2):1073-83.
    73. Cole RA, Fowler JE. Polarized growth:maintaining focus on the tip[J]. Curr Opin Plant Biol,2006, 9:579-588.
    74. Cosgrove DJ. Relaxation in high-stress environment:The molecular bases of extensible cell walls and cell enlargement [J]. Plant Cell,1997,9:1031-1041.
    75. Cui X, Shin H, Song C, et al. A putative plant homolog of the yeast beta-1,3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers [J]. Planta,2001,213 (2):223-230.
    76. Delmer DP. Chapter 4:Cellulose biosynthesis in developing cotton fibers. In:A.M. Basra (Ed.), Cotton Fibers[M]. Hawthorne Press, New York, pp.1999,85-106.
    77. Desai A, Chee PW, May OL, et al. Correspondence of trichome mutations in diploid and tetraploid cottons[J]. J Hered,2008,99 (2):182-186.
    78. Dhindsa RS, Beasley CA, Ting IP. Osmoregulation in cotton fibre[J]. Plant Physiol,1975,56, 394-398.
    79. Divya K, Jami SK, Kirti PB. Constitutive expression of mustard annexin, AnnBj1 enhances abiotic stress tolerance and fiber quality in cotton under stress [J]. Plant Mol Biol,2010,73 (3):293-308.
    80. Dixon DC, Seagull RW, Triplett BA. Changes in the accumulation of α-and β-tubulin isotypes during cotton fiber development [J]. Plant Physiol,1994,105:1347-1353.
    81. Draye X, Chee P, Jiang CX, et al. Molecular dissection of interspecific variation between Gossypium hirsutum and G. barbadense (cotton) by a backcross-self approach:Ⅱ. Fiber fineness [J]. Theor Appl Genet,2005,111:764-771.
    82. Druka A, Druka I, Centeno AG, et al. Towards systems genetic analyses in barley:integration of phenotypic, expression and genotype data into GeneNetwork [J]. BMC Genet,2008,18:9-73.
    83. Duggan DJ, Bittner M, Chen Y, Meltzer P, Trent JM. Expression profiling using cDNA microarrays [J]. Nat Genet,1999,21(1 Suppl):10-4.
    84. Edwards MD, Stuber CW, Wendel JF. Molecular-marker-facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action [J]. Genetics,1987,27: 639-648.
    85. Endrizzi JE, Turcotte EL, Kohel RJ. Qualitative genetics, cytology, and cytogenetics [M]. In:Kohel RJ, Lewis CF, eds. Cotton. ASA Monograph 24. Madison, WI:1985.American Society of Agronomy.
    86. Esch JJ, Chen MA, Hillestad M, et al. Comparison of TRY and the closely related Atlg01380 gene in controlling Arabidopsis trichome patterning[J]. Plant J,2004,40:860-869.
    87. Fan L, Shi WJ, Hu WR, et al. Molecular and biochemical evidence for phenylpropanoid synthesis and presence of wall-linked phenolics in cotton fibers[J]. J Integr Plant Biol,2009,51 (7):626-37.
    88. Feng JX, Ji SJ, Shi YH, et al. Analysis of five differentially expressed gene families in fast elongating cotton fiber [J]. Acta Biochim Biophys Sin (Shanghai),2004,36 (1):51-56.
    89. Flagel L, Udall J, Nettleton D, et al. Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution [J]. BMC Biology,2008,6:16
    90. Foreman J, Demidchik V, Bothwell JH, et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth [J]. Nature,2003,422:442-446.
    91. Frelichowski Jr JE, Palmer MB, Main D, et al. Cotton genome mapping with new microsatellites from Acala 'Maxxa' BAC-ends [J]. Mol. Gen. Genomics,2006,275 (5):479-91.
    92. Fryxell P A. The natural history of the cotton tribe [J]. Texas A&M University Press, College Station, Texas.1979
    93. Fryxell PA. A revised taxonomic interpretion of Gossypium (Malvaceae). Rheedea[J],1992, 2:108-165
    94. Fukao T, Xu KN, Ronald PC et al. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell, 2006,18:2021-2034.
    95. Gao P, Zhao PM, Wang J, et al. Identification of genes preferentially expressed in cotton fibers:A possible role of calcium signaling in cotton fiber elongation [J]. Plant Sci,2007,173 (1):61-69.
    96. Gilliland LU, Pawloski LC, Kandasamy MK, et al. Arabidopsis actin gene ACT7 plays an essential role in germination and root growth [J]. Plant J,2003,33:319-328.
    97. Gipson JR, Ray LL. Fiber elongation rates in five varieties of cotton (Gossypium hirsutum L.) as influenced by night temperatures. Crop Sci,1969,9:339-341
    98. Glover BJ, Perez Rodriguez M, Martin C. Development of several epidermal cell types can be specified by the same MYB-related plant transcription factor [J]. Development,1998,125: 3497-3508.
    99. Gou JY, Wang LJ, Chen SP, et al. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis [J]. Cell Research,2007,17:422-434.
    100. Guan XY, Li QJ, Shan CM, et al. The HD-Zip IV gene GaHOXl from cotton is a functional homologue of the Arabidopsis GLABRA2 [J]. Physiol Plant,2008,134:174-182
    101. Guan XY, Yu N, Shangguan XX, et al. Arabidopsis trichome research sheds light on cotton fiber development mechanisms[J]. Chin Sci Bull,2007,52:1734-1741
    102. Guo W, Cai C, Wang C, et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium [J]. Genetics,2007,176:527-541
    103. Guo W, Cai C, Wang C, et al. A preliminary analysis of genome structure and composition in Gossypium hirsutum [J]. BMC Genomics,2008,9:314
    104. Guo WZ, Zhang TZ, Shen XL, et al. Development of SCAR marker linked to a major QTL for high fiber strength and its usage in molecular-marker assisted selection in upland cotton[J]., Crop Sci, 2003,43 (6):2252-2256
    105. Han ZG, Guo WZ, Song XL, et al. Genetic mapping of EST-PCR microsatellites from the diploid Gossypium arboreum in allotetraploid cotton [J]. Mol. Genet. Genomics,2004,272:308-327
    106. Han ZG, Guo WZ, Zhang TZ. Mapping of one Fiber Factor 1 gene based on single nucleotide polymorphisms in Gossypium [J]. Acta Agronomica Sinica,2007,33 (2):256-26
    107. Han ZG, Wang CB, Song XL, et al. Characteristics, development and mapping of Gossypium hirsutum derived-EST SSR in allotetraploid cotton [J]. Theor Appl Genet,2006,112:430-439
    108. Harmer SE, Orford SJ and Timmis JN. Characterisation of six a-expansin genes in Gossypium hirsutum (upland cotton) [J]. Mol Genet Genomics,2002,268:1-9
    109. Hawkins JS, Kim H, Nason JD, et al. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium [J]. Genome Res,2006,16: 1252-1261
    110. Hayden MJ, Sharp PJ. Targeted development of informative microsatellite (SSR) markers[J]. Nucleic Acids Res,2001,29 (8):E44-4.
    111. He DH, Lin ZX, Zhang XL, et al. Dissection of genetic variance of fiber quality in advanced generations from an interspecific cross of Gossypium hirsutum and G. barbadense. Plant Breeding, 2008a,127:286-294
    112. He DH, Lin ZX, Zhang XL, et al. Mapping QTLs of traits contributing to yield and analysis of genetic effects in tetraploid cotton[J]. Euphytica,2005,144 (1-2):141-149
    113. He DH, Lin ZX, Zhang XL, et al. QTL mapping for economic traits based on a dense genetic map of cotton with PCR-based markers using the interspecific cross of Gossypium hirsutum × G. barbadense[J]. Euphytica,2007,153:181-197
    114. He XC, Qin YM, Xu Y, et al. Molecular cloning, expression profiling, and yeast complementation of 19 beta-tubulin cDNAs from developing cotton ovules [J]. J Exp Bot 2008b,59:2687-2695
    115. He YJ, Guo WZ, Shen XL, et al. Molecular cloning and characterization of a cytosolic glutamine synthetase gene, a fiber strength-associated gene in cotton [J]. Planta,2008c,228:473-483
    116. Hee JK, John C, Barbara AT. Characterization of two cDNAs encoding small gtp-binding proteins (Accession Nos. AF165095 and AF165096) from immature cotton (Gossypium hirsutum L) locules [J]. Plant Physiol,1999,121:685.
    117. Hendrix B, Stewart JM. Estimation of the nuclear DNA content of Gossypium species [J]. Annals of Botany,2005,95:789-797.
    118. Hennig L. Patterns of beauty-omics meets plant development [J]. Trends in Plant Science 2007,12 (7):287-293
    119. Hinchliffe DJ, Meredith WR, Yeater KM, et al. Near-isogenic cotton germplasm lines that differ in fiber-bundle strength have temporal differences in fiber gene expression patterns as revealed by comparative high-throughput profiling [J]. Theor Appl Genet,2010.120 (7):p.1347-66.
    120. Hovav R, Chaudhary B, Udall JA, et al. Parallel domestication, convergent evolution and duplicated gene recruitment in allopolyploid cotton [J]. Genetics,2008a. 179 (3):1725-33.
    121. Hovav R, Udall JA, Chaudhary B, et al. Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant [J]. Proc Natl Acad Sci USA,2008b. 105 (16):6191-6195.
    122. Hovav R, Udall JA, Chaudhary B, et al. The evolution of spinnable cotton fiber entailed prolonged development and a novel metabolism. PLoS Genet,2008c,4:e25.
    123. Hovav R, Udall JA, Hovav E, et al. A majority of cotton genes are expressed in single-celled fiber [J]. Planta,2008d.227 (2):319-329.
    124. Hsu CY, Jenkins JN, Sana S, et al. Transcriptional regulation of the lipid transfer protein gene LTP3 in cotton fibers by a novel MYB protein[J]. Plant Science,2005,168:167-181.
    125. Huang B, Jin L, Liu JY. Identification and characterization of the novel gene GhDBP2 encoding a DRE-binding protein from cotton (Gossypium hirsutum) [J]. J Plant Physiol,2008a,165:214-223
    126. Huang GQ, Xu WL, Gong SY, et al. Characterization of 19 novel cotton FLA genes and their expression profiling in fiber development and in response to phytohormones and salt stress[J]. Physiol Plant,2008b,134:348-359
    127. Huang QS, Wang HY, Gao P, et al. Cloning and characterization of a calcium dependent protein kinase gene associated with cotton fiber development [J]. Plant Cell Rep,2008,27:1869-1875.
    128. Hubner N, Wallace CA, Zimdahl H, et al. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet,2005,37:243-253.
    129. Jansen RC, Nap JP. Genetical genomics:the added value from segregation. Trends Genet,2001,17: 388-391.
    130. Ji SJ, Lu YC, Feng JX, et al. Isolation and analyses of gene preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array [J]. Nucleic Acids Research,2003, 31:2534-2543.
    131. Jia ZY, Xu SZ. Mapping quantitative trait loci for expression abundance [J]. Genetics,2007,176 (1):611-623
    132. Jiang C, Wright RJ, El-zik KM, et al. Polyploid formation created unique avenues for response to selection in Gossypium (cotton) [J]. Proc Natl Acad Sci, USA,1998,95:4419-4424
    133. Jin LG, Li H, Liu JY. Molecular characterization of three ethylene responsive element binding factor genes from cotton [J]. J Integr Plant Biol,2010,52:485-495
    134. Jin LG, Liu JY. Molecular cloning, expression profile and promoter analysis of a novel ethylene responsive transcription factor gene GhERF4 from cotton (Gossypium hirsutum) [J]. Plant Physiol Biochem,2008,46:46-53
    135. John ME, Crow LJ. Gene expression in cotton (Gossypium hirsutum L.) fiber:cloning of the mRNAs[J]. Proc Natl Acad Sci, USA,1992,89:5769-5773.
    136. Joosen RV, Ligterink W, Hilhorst HW, et al. Advances in Genetical Genomics of Plants [J]. Current Genomics,2009,10:540-549
    137. Jordan MC, Somers DJ, Banks TW. Identifying regions of the wheat genome controlling seed development by mapping expression quantitative trait loci. Plant Biotechnol J 2007,5:442-453.
    138. Joshi PC, Wadhwani AM, Johri BM. Morphological and embryological studies of Gossypium L[J]. Indian J Agric Res,1967,33:37-93
    139. Kalendar R, Grob T, Regina M, et al. IRAP and REMAP:two new retrotransposon-based DNA finger, printing techniques[J]. Theor Appl Genet,1999,98:704-711
    140. Kalendar R, Tanskanen J, Immonen S, et al. Genome evolution of wild barley (Hordeum spontaneum) by bare-lretrotransposon dynamics in response to sharp microclimatic divergence[J]. Proc Nati Acad Sci USA,2000,97 (12):6603-6607
    141. Kao CH, Zeng ZB, Teasdale RD. Multiple interval mapping for quantitative trait loci [J]. Genetics, 1999,152:1203-1216.
    142. Keurentjes J, Fu JY, Terpstra IR, et al. Regulatory network construction in Arabidopsis by using genome-wide gene expression quantitative trait loci[J]. Proc Natl Acad Sci USA,2007,104 (5):1708-1713
    143. Keurentjes JJ, Koornneef M, Vreugdenhil D. Quantitative genetics in the age of omics [J]. Current Opinion in Plant Biology,2008,11:123-128
    144. Kim HJ, Triplett B. Involvement of extracellular Cu/Zn superoxide dismutase in cotton fiber primary and secondary cell wall biosynthesis [J]. Plant Signal Behav,2008,3(12):1119-1121.
    145. Kim HJ, Triplett BA. Characterization of GhRacl GTPase expressed in developing cotton (Gossypium hirsutum L.) fibers [J]. Biochim Biophys Acta,2004b,1679:214-221.
    146. Kim HJ, Triplett BA. Cotton fiber germin-like protein. I. Molecular cloning and gene expression. Planta,2004a,218 (4):516-524.
    147. Kim HJ, Triplett BA. Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis [J]. Plant Physiol,2001,127 (4):1361-1366
    148. Kim HJ, Williams MY, Triplett BA. A novel expression assay system for fiber-specific promoters in developing cotton fibers [J]. Plant Mol Biol Rep,2002,20:7-18.
    149. Kleinhofs A, Brueggeman R, Nirmala J, et al. Barley stem rust resistance genes:structure and function. Plant Genome,2009,2:109-120.
    150. Kliebenstein DJ. Quantitative genomics:analyzing intraspecific variation using global gene expression polymorphisms or eQTL. Annu Rev Plant Biol,2009,60:93-114.
    151. Kohel RJ. Linkage tests in upland cotton, Gossypium hirsutum L. [J]. Crop Sci,1972,12:66-69.
    152. Koornneef M, Alonso-Blanco C, Vreugdenhil D. Naturally occurring genetic variation in Arabidopsis ihaliana. Annu Rev Plant Biol,2004,55:141-172.
    153. Kurek I, Kawagoe Y, Jacob-Wilk D, et al. Dimerization of cotton fiber cellulose synthase catalytic subunits occurs via oxidation of the zinc-binding domains [J]. Proc Natl Acad Sci USA,2002,99: 11109-11114.
    154. Kwak JM, Mori IC, Pei ZM, et al. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. The EMBO Journal,2003,22 (11):2623-2633.
    155. Kwak PB, Wang QQ, Chen XS, et al. Enrichment of a set of microRNAs during the cotton fiber development [J]. BMC Genomics,2009,10:457
    156. Lacape JM, Nguyen TB, Courtois B, et al. QTL analysis of cotton fiber quality using multiple Gossypium hirsutum × Gossypium barbadense backcross generation [J]. Crop Sci,2005, 45:123-140
    157. Lacape JM, Nguyen TB, Thibivilliers S, et al. combined RFLP-SSR-AFLP map of trtraploid cotton based on a Gossypium hirsutum × Gossypium barbadense backcross population[J], Genome,2003, 46:612-626
    158. Lacape JM, Jacobs J, Arioli T, et al. A new interspecific, Gossypium hirsutum x G. barbadense, RIL population:towards a unified consensus linkage map of tetraploid cotton [J]. Theor Appl Genet, 2009,119 (2):281-92.
    159. Lacape JM, Llewellyn D, Jacobs J, et al. Meta-analysis of cotton fiber quality QTLs across diverse environments in a Gossypium hirsutum x G. barbadense RIL population[J]. BMC Plant Biol,2010, 10:132.
    160. Lander ES, Bostein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps [J]. Genetics,1989,121:185-199.
    161. Lee J, Burns TH, Ligh G, et al. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation[J]. Planta,2010,232 (5):1191-205.
    162. Lee JJ, Woodward AW, Chen ZJ. Gene expression changes and early events in cotton fiber development [J]. Ann Bot,2007,100 (7):1391-1401
    163. Li CH, Zhu YP, Meng YL, et al. Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PCR [J]. Plant Science,2002,163:1113-1120.
    164. Li HB, Qin YM, Pang Y, et al. A cotton ascorbate peroxidase is involved in hydrogen peroxide homeostasis during fibre cell development [J]. New Phytol,2007a,175:462-471
    165. Li L, Wang XL, Huang GQ, et al., Molecular characterization of cotton GhTUA9 gene specifically expressed in fibre and involved in cell elongation. J Exp Bot,2007b,58 (12):3227-3238.
    166. Li XB, Cai L, Cheng NH, et al. Molecular characterization of the cotton GhTUBl gene that is preferentially expressed in fiber [J]. Plant Physiol,2002,130:666-674
    167. Li XB, Fan XP, Wang XL, et al. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation [J]. Plant Cell,2005a,17:859-875
    168. Li XB, Sun J, Xia GX. Cloning and characterization of a gne for an LRR receptor-like protein kinase associated with cotton fiber development [J]. Mol Genet Genomics,2005b,273:217-224.
    169. Li XB, Xu D, Wang XL, et al. Three cotton genes preferentially expressed in flower tissues encode actin-depolymerizing factors which are involved in F-actin dynamics in cells [J]. J Exp Bot,2010a; 61 (1):41-53.
    170. Li XR, Wang L, Ruan YL, et al. Developmental and molecular physiological evidence for the role of phosphoenolpyruvate carboxylase in rapid cotton fibre elongation[J]. J Exp Bot,2010b,61 (1): 287-95.
    171. Li YJ, Liu DQ, Tu LL, et al. Suppression of GhAGP4 gene expression repressed the initiation and elongation of cotton fiber[J]. Plant Cell Rep,2010c,29 (2):193-202
    172. Lin ZX, He DH, Zhang XL, et al. Linkage map construction and mapping QTL for cotton fiber quality using SRAP, SSR and RAPD[J]. Plant Breeding,2005d,124:180-187.
    173. Lin ZX, Zhang XL, Nie YC, et al. Construction of a genetic linkage map for cotton based on SRAP[J]. Chin Sci Bul,2003,48 (19):2063-2067
    174. Lin ZX, Zhang YX, Zhang XL, et al. A high-density integrative linkage map for Gossypium hirsutum L. [J]. Euphytica,2009,166 (1):35-45
    175. Liu DQ, Tu LL, Li YJ, et al. Genes encoding fasciclin-like arabinogalactan proteins are specifically expressed during cotton fiber development [J]. Plant Mol Bio Rep,2008,26 (2):98-113
    176. Liu DQ, Zhang XL, Tu LL, et al. Isolation by suppression-subtractive hybridization of genes preferentially expressed during early and later fiber development stages in cotton [J]. Molecular Biology,2006,40 (5):741-749
    177. Liu HC, Creech RG, Jenkins JN, et al. Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3 (1) [J]. Biochim Biophys Acta,2000,1487(1):106-111.
    178. Liu HW, Wang XF, Pan YX, et al. Mining cotton fiber strength candidate genes based on transcriptome mapping [J]. Chin Sci Bul,2009,54:4651-4657
    179. Liu R, Wang B, Guo W, et al. Differential gene expression and associated QTL mapping for cotton yield based on a cDNA-AFLP transcriptome map in an immortalized F2 [J]. Theor Appl Genet, 2011,123 (3):439-54
    180. Lorenzo A, Jun K, Haggag A, et al. Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1 [J]. Plant Mol Biol,2008,68:1-16.
    181. Luo M, Tan K, Xiao Z, et al. Cloning and expression of two sterol C-24 methyltransferase genes from upland cotton (Gossypium hirsuturm L.) [J]. J Genet Genomics,2008,35 (6):357-63.
    182. Luo M, Xiao YH, Li XB, et al. GhDET2, a steroid 5alpha-reductase, plays an important role in cotton fiber cell initiation and elongation [J]. Plant J,2007a,51:419-430
    183. Luo ZW, Potokina E, Druka A, et al. SFP genotyping from detects cis-acting expression regulators. Genetics,2007b,176:789-800.
    184. Ma DP, Liu HC, Tan H, et al. Cloning and characterization of a cotton lipid transfer protein specifically expressed in fiber cells [J]. Biochim Biophy Acta,1997,1344:111-114.
    185. Ma DP, Tan H, Si Y, et al. Differential expression of a lipid transfer protein gene in cotton fiber[J]. Biochim Biophys Acta,1995,1257:81-84.
    186. Ma GJ, Zhang TZ, Guo WZ. Cloning and characterization of cotton GhBG gene encoding beta-glucosidase [J]. DNA Seq,2006,17:355-362
    187. Machado A., Wu Y, Yang Y, et al. The MYB transcription factor GhMYB25 regulates early fibre and trichome development [J]. Plant J,2009,59(1):52-62.
    188. Mei M, Syed N H, Gao W, et al. Genetic mapping and QTL analysis of fiber-realated traits in cotton (Gossypium) [J]. Theor Appl Genet,2004,108:280-291.
    189. Mei WQ, Qin YM, Song WQ, et al. Cotton GhPOXl encoding plant class III peroxidase may be responsible for the high level of reactive oxygen species production that is related to cotton fiber elongation [J]. J Genet Genomics 2009,36:141-150.
    190. Meinert MC and Delmer DP. Changes in biochemcal composition of the cell wall in cotton fiber during development [J]. Plant Physiol,1977,59:1088-1097.
    191. Meng CM, Cai CP, Zhang TZ, et al. Characterization of six novel NAC genes and their responses to abiotic stresses in Gossypium hirsutum L. [J]. Plant Science,2009,176 (3):352-359
    192. Meng XP, Li FG, Liu CL, et al. Isolation and characterization of an ERF transcription factor gene from cotton (Gossypium barbadense L.) [J]. Plant Mol Biol Rep,2010,28:176-183
    193.Michailidis G, Argiriou A, Darzentas N, et al. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors expressed during fiber elongation[J]. J Plant Physiol,2009,166 (4):403-16.
    194. Micheli F. Pectin methylesterases:cell wall enzymes with important roles in plant physiology. Trends Plant Sci,2001,6:414-419.
    195. Mitsuda N, Iwase A, Yamamoto H, et al. NAC transcription factors, NST1 and NST3, are key regulators of the formation of secondary walls in woody tissues of Arabidopsis. Plant Cell,2007,19: 270-280.
    196. Munis MF, Tu L, Deng F, et al. A thaumatin-like protein gene involved in cotton fiber secondary cell wall development enhances resistance against Verticillium dahliae and other stresses in transgenic tobacco [J]. Biochem Biophys Res Commun,2010
    197. Nguyen TB, Giband M, Brottier P, et al. Wide coverage of the tetraploid cotton genome using newly developed microsatellite markers [J]. Theor Appl Genet,2004,109:167-175
    198. Oksman-Caldentey KM, Saito K. Integrating genomics and metabolomics for engineering plant metabolic pathways [J]. Curr Opin Biotechnol,2005,16:174-179
    199. Orford SJ, Timmis JN. Abundant mRNAs specific to the developing cotton fiber [J]. Theor Appl Genet,1997,94:909-918.
    200. Overvoorde PJ, Okushima Y, Alonso JM, et al. Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana. Plant Cell, 2005,17:3282-3300.
    201.Ozsolak F, Platt AR, Jones DR, et al. Direct RNA sequencing [J]. Nature,2009,461 (7265):814-818..
    202. Pan YX, Ma J, Zhang GY, et al. cDNA-AFLP profiling for the fiber development stage of secondary cell wall synthesis and transcriptome mapping in cotton [J]. Chin Sci Bui,2007,52 (17):2358-2364
    203. Pang CY, Wang H, Pang Y, et al. Comparative proteomics indicate that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation. Mol Cell Proteomics, 2010,9 (9):2019-2033
    204. Pang CY, Wang H, Song WQ, et al. The cotton ATP synthase81 subunit is required to maintain a higher ATP/ADP ratio that facilitates rapid fibre cell elongation [J]. Plant Biology,2010a, doi:10.1111/j.1438-8677.2009.00313.x
    205. Pang M, Woodward AW, Agarwal V, et al. Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L.) [J]. Genome Biol,2009,10 (11):R122.
    206. Park W, Scheffler BE, Bauer PJ, et al. Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.) [J]. BMC Plant Biol,2010,10:142.
    207. Park YH, Alabady MS, Ulloa M, et al. Genetic mapping of new cotton fiber loci using EST-derived microsatellites in an interspecific recombinant inbred line cotton population[J]. Mol Gen Genomics, 2005,274:428-441
    208. Paterson TA, Saranga Y, Menz M, et al. QTL analysis of genotype x environment interactions affecting cotton fiber quality[J]. Theor Appl Genet,2003,106:384-396.
    209. Patterson TA, Lobenhofer EK, Fulmer-Smentek SB, et al. Performance comparison of one-color and two-colour platforms within the MicroArray Quality Control (MAQC) project. Nat Biotechnol, 2006,24:1140-1150.
    210. Pear JR, Kawagoe Y, Schreckengost WE. Higher plants contain homologs of the bacterial CelA genes encoding the catalytic subunit of cellulose synthase [J]. Proc Natl Acad Sci, USA,1996,93 (22):12637-12642.
    211. Percival AE, Wendel JF, Stewart JM. Taxonomy and germplasm resources. In:Smith CW, Cothren JT, eds. Cotton:origin, history, technology, and production [M]. New York, NY:John Wiley & Sons,1999,33-63.
    212. Pially M, Mayer GO. Genetic diversity in cotton assessed by variation in ribosomal RNA genes and AFLP markers [J]. Crop Sci,1999.39:1881-1886.
    213. Porceddu A, Albertini E, Barcaccia G, et al. Falcinelli Linkage mapping in apomictic and sexual Kentucky bluegrass (Poa pratensis L.) genotypes using a two way pseudo-testcross strategy based on AFLP and SAMPL markers [J]. Theor Appl Genet,2002,104:273-280
    214. Potikha TS, Collins CC, Johnson DI, et al. The involvement of hydrogen peroxide in the differentiation of secondary walls in cotton fibers. Plant Physiol,1999,119:849-858.
    215. Potokina E, Druka A, Luo Z, et al. Gene expression quantitative trait locus analysis of 16000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J,2008b,53: 90-101.
    216. Potokina E, Druka A, Luo Z, et al. Tissue-dependent limited pleiotropy affects gene expression in?. barley. Plant J,2008a,56 (2):287-296
    217. Preuss ML, Kovar DR, Lee YR, et al. A plant-specific kinesin binds to actin microfilaments and interacts with cortical microtubules in cotton fibers [J]. Plant Physiol,2004,136:3945-3955.
    218. Pu L, Li Q, Fan X, et al. The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development [J]. Genetics,2008,180:811-820.
    219. Qiao ZX, Huang B, Liu JY. Molecular cloning and functional analysis of an ERF gene from cotton (Gossypium hirsutum) [J]. Biochim Biophys Acta,2008,1779:122-127
    220. Qin HD, Guo WZ, Zhang YM, et al. QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. [J]. Theor Appl Genet,2008a,117:883-894
    221. Qin YM, Hu CY, Pang Y, et al. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis [J]. Plant Cell,2007a,19: 3692-3704
    222. Qin YM, Hu CY, Zhu YX. The ascorbate peroxidase regulated by H2O2 and ethylene is involved in cotton fiber cell elongation by modulating ROS homeostasis [J]. Plant Signal Behav,2008b,3: 194-196
    223. Qin YM, Pujol FM, Hu CY, et al. Genetic and biochemical studies in yeast reveal that the cotton fibre-specific GhCER6 gene functions in fatty acid elongation [J]. Journal of Experimental Botany, 2007b,58:473-481.
    224. Qin YM, Pujol FM, Shi YH, et al. Cloning and functional characterization of two cDNAs encoding NADPH-dependent 3-ketoacyl-CoA reductased from developing cotton fibers [J]. Cell Res, 2005,15:465-473
    225. Qin YM, Zhu YX. A brief summary of major advances in cotton functional genomics and molecular breeding studies in China [J]. Chin Sci Bull,2007c,52 (23):3174-3178
    226. Qin YM, Zhu YX. How cotton fibers elongate:a tale of linear cell-growth mode. Curr Opin Plant Biol,2011,14(1):106-111
    227. Qiu CX, Xie FL, Zhu YY, et al. Computational identification of microRNAs and their targets in Gossypium hirsutwn expressed sequence tags [J]. Gene,2007,395:49-61
    228. Rabinowicz PD, Citek R, Budiman MA, et al. Differential methylation of genes and repeats in land plants [J]. Genome Res.2005,15:1431-1440.
    229. Ramsay NA, Glover BJ. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity [J]. Trends Plant Sci,2005,10:63-70
    230. Reina-Pinto JJ, Voisin D, Kurdyukov S, et al. Misexpression of fatty acid elongationl in the Arabidopsis epidermis induces cell death and suggests a critical role for phospholipase A2 in this process [J]. Plant Cell,2009,21:1252-1272.
    231. Rinehart JA, Petersen MW, John ME. Tissue-specific and developmental regulation of cotton gene FbL2A [J]. Plant Physiol,1996,112:1331-1341.
    232. Rong J, Feltus FA, Waghmare VN, et al. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development[J]. Genetics,2007,176:2577-2588.
    233. Rong JK, Abbey C, Bowers JE, et al. A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium) [J]. Genetics,2004,166:389-417
    234. Roy JK, Lakshmikumaran MS, Balyan HS, et al. AFLP-Based Genetic Diversity and Its Comparison With Diversity Based on SSR, SAMPL, and Phenotypic Traits in Bread Wheat [J]. Biochemical Genetics,2004,42,1/2
    235. Ruan XM, Luo F, Li DD, et al. Cotton BCP genes encoding putative blue copper-binding proteins are functionally expressed in fiber development and involved in response to high-salinity and heavy metal stresses[J]. Physiol Plant,2011,141 (1):71-83.
    236. Ruan Y, Lewellyn D, Furbank R. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmadesmata and coordinated expression of sucrose and K+ transporters and expansin [J]. Plant Cell,2001,13 (1):47-60.
    237. Ruan YL, Chourey PS. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds [J]. Plant Physiol,1998,118 (2):399-406.
    238. Ruan YL, Llewellyn DJ, Furbank RT. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development [J]. Plant Cell,2003,15:952-964.
    239. Ruan YL, Llewellyn DJ, Furbank RT. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell,2001,13:47-60.
    240. Ruan YL, Xu SM, White R, et al. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover [J]. Plant Physiol, 2004,136:4104-4113.
    241. Ruan YL. Rapid cell expansion and cellulose synthesis regulated by plasmodesmata and sugar: insights from the single-celled cotton fiber [J]. Funct Plant Biol,2007,34:1-10.
    242. Saha S, Raska DA, Stelly DM. Upland cotton (Gossypium hirsutum L.) x Hawaiian cotton (G tomentosum Nutt. ex. Seem) F1 hybrid hypoaneuploidchromosome substitution series [J]. J Cotton Sci,2006,10:146-154
    243. Schadt EE, Monks SA, Drake TA, et al. Genetics of gene expression surveyed in maize, mouse and man. Nature,2003,422:297-302.
    244. Schadt EE. Novel integrative genomics strategies to identify genes for complex traits. Anim Genet, 2006,37,1:18-23
    245. Schena M, Shalon D, Davis RW, et al. Quantitative monitoring of gene expression patterns with a complementary DNA microarray [J]. Science,1995,20; 270 (5235):467-70.
    246. Schubert AM, Benedict CR, Berlin JD, et al. Cotton fiber development kinetics of cell elongation and secondary wall thickening [J]. Crop Sci,1973,13:704-709.
    247. Schubert AM, Benedict CR, Gates CE, et al. Growth and development of the lint fibers of Pima S-4 cotton. Crop Sci,1976,16:539-543.
    248. Seagull R. The effect of microtubule and microfilament disrupting agents on cytoskeletal arrays and wall deposition in developing cotton fibres [J]. Protoplasma,1990,159:44-59.
    249. Shangguan XX, Xu B, Yu ZX, et al. Promoter of a cotton fibre MYB gene functional in trichomes of Arabidopsis and glandular trichomes of tobaccofJJ. J Exp Bot,2008,59:3533-3542
    250. Shappley ZW, Jenkins JN, Zhu J, et al. Quantitative trait loci associated with agronomic and fiber traits of Upland cotton[J]. J Cotton Sci,1998,4:153-163
    251. Shen XL, Guo WZ, Lu QX, et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton [J]. Euphytica,2007,155:371-380.
    252. Shen XL, Guo WZ, Zhu XF, et al. Molecular mapping of QTLs for qualities in three diverse lines in Upland cotton using SSR markers [J]. Mol Breeding,2005,15:169-181.
    253. Shen XL, Zhang TZ, Guo WZ, et al. Mapping fiber and yield QTLs with main, epistatic, and QTL x environment interaction effects in recombinant inbred lines of Upland cotton [J]. Crop Sci,2006,46 (1):61-66
    254. Shendure J, Ji H. Next-generation DNA sequencing [J]. Nature Biotechnol,2008,26 (10):1135-1145
    255. Shi C, Uzarowska A, Ouzunova M, et al. Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint x Flint maize recombinant inbred line population. BMC Genomics,2007a,8:22
    256. Shi HY, Wang XL, Li DD, et al. Molecular characterization of cotton 14-3-3L gene preferentially expressed during fiber elongation [J]. J Genet Genomics,2007b,34:151-159
    257. Shi YH, Zhu SW, Mao XZ, et al. Transcriptome profiling, molecular biological and physiological studies reveal a major role for ethylene in cotton fiber cell elongation [J]. Plant Cell,2006,18: 651-664.
    258. Simpson C, Thomas C, Findlay K, et al. An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell-to-cell trafficking. Plant Cell,2009,21: 581-594.
    259. Smart LB, Vojdani F, Maeshima M, et al. Genes involved in osmoregulation during turgor-driven expansin of developing cotton fibers are differential regulated [J]. Plant Physiol,1998,116: 1539-1549.
    260. Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol,2004,3:1-25.
    261. Song J, Chai Y, Pang Y, et al. Isolation and characterization of an IAA-responsive gene from Gossypium barbadense L. [J]. DNA Seq,2004,15 (1):71-76.
    262. Song P, Allen RD. Identification of a cotton fiber-specific acyl carrier protein cDNA by differential display [J]. Biochim Biophys Acta,1997,1351:305-312.
    263. Song WQ, Qin YM, Saito M, et al. Characterization of two cotton cDNAs encoding trans-2-enoyl-CoA reductase reveals a putative novel NADPH-binding motif [J]. J Exp Bot, 2009a,60:1839-1848
    264. Song XL, Wang K, Guo WZ, et al. A comparison of genetic maps constructed from haploid and BCi mapping populations from the same crossing between Gossypium hirsutum L. and Gossypium barbadense L. [J]. Genome,2005b,48:378-390
    265. Stepanova AN, Hoyt JM, Hamilton AA, et al. A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis [J]. Plant Cell, 2005,17:2230-2242.
    266. Stewart JM. Fiber initiation on the cotton ovule (Gossypium hirsutem) [J]. Am J Bot,1975,62: 723-730.
    267. Stewart JM. Potential for crop improvement with exotic germplasm and genetic engineering. In: Constable GA, Forrester NW, eds. Challenging the future:Proceedings of the World Cotton Research.CSIRO,1995,313-327.
    268. Sun Y, Allen RD. Functional analysis of the BIN2 genes of cotton [J]. Mol Gen Genomics,2005, 274:51-59.
    269. Sun Y, Fokaeer M, Asaml T, et al. Characterization of the brassinosteroid insensitive genes of cotton [J]. Plant Mol Biol,2004,54:221-232.
    270. Suo JF, Liang XE, Pu L, et al. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.) [J]. Biochim Biophys Acta,2003,1630:25-34
    271. Suo JF, Pu L, Liang XE, et al. Identification of an endothelium-specific gene GhIAA16 in cotton (Gossypium hirsutum) [J]. Acta Botanica Sinica,2004,46 (4):472-479.
    272. Swanson-Wagner RA, DeCook R, Jia Y, et al. Paternal dominance of trans-eQTL influences gene expression patterns in maize hybrids. Science,2009,326:1118-1120.
    273. Szumlanski AL, Nelsen E. The Rab GTPase RabA4d regulates pollen tube tip growth in Arabidopsis thaliana [J]. Plant Cell,2009,21:526-544.
    274.'t Hoen PA, Turk R, Boer JM, et al. Intensity-based analysis of two-colour microarrays enables efficient and flexible hybridization designs. Nucleic Acids Res,2004,32:e41.
    275. Tai FJ, Wang XL, Xu WL, et al. Characterization and expression analysis of two cotton genes encoding putative UDP-Glycosyltransferases[J]. Mol Biol (Mosk),2008,42 (1):50-8.
    276. Taliercio E, Scheffler J, Zhang J, et al. Characterization of two cotton (Gossypium hirsutum L) invertase genes[J]. Mol Biol Rep,2010,37 (8):3915-3920.
    277. Taliercio EW and Boykin D. Analysis of gene expression in cotton fiber initials [J]. BMC Plant Biology,2007,7:22
    278. Taliercio EW. Characterization of an ADP-glucose pyrophosphorylase small subunit gene expressed in developing cotton (Gossypium hirsutum) fibers [J]. Mol Biol Rep,2010,38 (5):2967-73
    279. Tan H, Creech RG, Jenkins JN, et al. Cloning and expression analysis of two cotton (Gossypium hirsutum L.) genes encoding cell wall proline-rich proteins [J]. DNA Seq,2001,12:367-380.
    280. Tiwari SC, Wilkins TA:Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism [J]. Can J Bot 1995,73:746-757.
    281. Triplett BA, Johnson DS. Adding gelling agents to cotton ovule culture media leads to subtle changes in fiber development [J]. In Vitro Cell Dev-PL,1999,35 (3):265-270.
    282. Tu LL, Zhang XL, Liang SG, et al. Genes expression analyses of Sea-island cotton (Gossypium barbadense L.) during fiber development [J]. Plant Cell Rep,2007,26:1309-1320.
    283. Udall JA, Flagel LE, Cheung F, et al. Spotted cotton oligonucleotide microarrays for gene expression analysis [J]. BMC genomics,2007,8:81.
    284. Udall JA, Swanson JM, Haller K, et al. A global assembly of cotton ESTs [J]. Genome Res,2006, 16 (3):441-450.
    285. Ulloa M, Meredith WR, Shapply ZW, et al. RFLP genetic linkage maps from F2.3 populations and a joinmap of Gossypium hirsutum L.[J]. Theor Appl Genet,2002,104:200-208
    286. Ulloa M, Meredith WR. Genetic linkage map and QTL analysis of agronomic and fiber quality traits in an intraspecific population [J]. Cotton Sci,2000,4:161-170
    287. Ulloa M, Saha S, Jenkins J N, et al. Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) joinmap [J]. J. Hered,2005, 96:132-144
    288. Van Deynze A, Stoffel K, Lee M et al. Sampling nucleotide diversity in cotton [J]. BMC Plant Biology,2009,9:125
    289. Varshney RK, Graner A, Sorrells ME. Genomics-assisted breeding for crop improvement [J]. Trends Plant Sci,2005,10:621-630
    290. Voorrips RE. MapChart:Software for the graphical presentation of linkage maps and QTLs [J]. J. Heredity,2002,93 (1):77-78
    291. Vuylsteke M, Daele HVD, Vercauteren A, et al. Genetic dissection of transcriptional regulation by cDNA-AFLP [J]. Plant J,2006,45 (3):439-446.
    292. Wan CY, Wilkins TA. Isolation of multiple cDNAs encoding the vacuolar H+-ATPase subunit B from developing cotton (Gossypium hirsutum L.) [J]. Plant Physiol,1994,106:393-394.
    293. Wan Q, Zhang ZS, Hu MC, et al. T1 locus in cotton is the candidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias spp.) resistance [J]. Euphytica,2007,158:241-247
    294. Wang BH, Guo WZ, Zhu XF, et al. QTL mapping for fiber quality in an elite hybrid derived-RIL population of upland cotton [J]. Euphytica,2006a,152 (3):367-378
    295. Wang BH, Wu YT, Guo WZ, et al. QTL analysis and epistasis effects dissection of fiber qualities in an elite cotton hybrid grown in second generation [J]. Crop Sci,2007,47:1384-1392
    296. Wang BH, Wu YT, Huang NT, et al. QTL mapping for plant architecture traits in upland cotton using RILs and SSR markers[J]. Acta Genetica Sinica,2006b,33 (2):161-70.
    297. Wang HH, Guo Y, Lv FN, et al. The essential role of GhPEL gene, encoding a pectate lyase, in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton [J]. Plant Mol Biol,2010a,72:397-406
    298. Wang HY, Wang J, Gao P, et al. Down-regulation of GhADFl gene expression affects cotton fibre properties[J]. Plant Biotechnol J,2009,7 (1):13-23.
    299. Wang HY, Yu Y, Chen ZL, et al. Functional characterization of Gossypium hirsutum profilin 1 gene (GhPFNl) in tobacco suspension cells:characterization of in vivo functions of a cotton profilin gene[J]. Planta,2005,222:594-603.
    300. Wang J, Wang HY, Zhao PM, et al. Overexpression of a profilin (GhPFN2) promotes the progression of developmental phases in cotton fibers [J]. Plant Cell Physiol,2010b,51 (8): 1276-90.
    301. Wang J, Yu HH, Xie WB, et al. A global analysis of QTLs for expression variations in rice shoots at the early seedling stage. Plant J,2010c,63:1063-1074.
    302. Wang K, Song XL, Han ZG, et al. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping[J]. Theor Appl Genet, 2006c,113:73-80.
    303. Wang L, Li XR, Lian H, et al. Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectivelytJ]. Plant Physiol,2010e,154 (2):744-56.
    304. Wang L, Ruan YL. Unraveling mechanisms of cell expansion linking solute transport, metabolism, plasmodesmtal gating and cell wall dynamics [J]. Plant Signal Behav,2010d,5 (12).
    305. Wang LK, Niu XW, Lv YH, et al. Molecular cloning and localization of a novel cotton annexin gene expressed preferentially during fiber development [J]. Mol Biol Rep,2010f,37 (7):3327-34
    306. Wang QQ, Liu F, Chen XS, et al. Transcriptome profiling of early developing cotton fiber by deep-sequencing reveals significantly differential expression of genes in a fuzzless/lintless mutant[J]. Genomics,2010g,96 (6):369-76.
    307. Wang S, Wang JW, Yu N, et al. Control of plant trichome development by a cotton fiber MYB gene [J]. Plant Cell,2004,16:2323-2334.
    308. Wendel JF, Cronn RC. Polyploidy and the evolutionary history of cotton [J]. Adv Agron,2003, 78:139-186
    309. Wendel JF. New world tetraploid cottons contain Old World cytoplasm [J]. Proc Natl Acad Sci USA,1989,86:4132-4136.
    310. West MA, Kim K, Kliebenstein DJ, et al. Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics,2007,175:1441-1450.
    311. Wigoda N, Ben-Nissan G, Granot D, et al. The gibberellin-induced, cysteine-rich protein GIP2 from Petunia hybrida exhibits in planta antioxidant activity. Plant J,2006,48:796-805.
    312. Wilkins TA, Arpat AB. The cotton fiber transcriptome [J]. Physiologia Plantarum,2005,124: 295-300.
    313. Wilkins TA, Jernstedt JA. Chapter 9. Molecular genetics of developing cotton fibers. In:AM Basra (Ed), Cotton Fibers[M], Hawthorne Press, New York,1999:231-267.
    314. Wilkins TA, Smart LB:Isolation of RNA from plant tissue. In A laboratory guide to RNA:isolation, analysis, and synthesis. Edited by:Krieg PA. New York:Wiley-Liss; 1996:21-41.
    315. Wilkins TA. Vacuolar H+-ATPase 69-kilodalton catalytic subunit cDNA from developing cotton (Gossypium hirsutum L.) ovules [J]. Plant Physiol,1993,102:679-680.
    316. Willison JHM and Brown RM. An examination of the developing cotton fiber:wall and plasmalemma [J]. Protoplasma,1977,92:21-41.
    317. Wu AM, Lv SY, Liu JY. Functional analysis of a cotton glucuronosyltransferase promoter in transgenic tobaccos [J]. Cell Res,2007,17:174-183
    318. Wu Y, Llewellyn DJ, White R, et al. Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules [J]. Planta,2007,226:1475-1490.
    319. Wu Y, Machado AC, White RG, et al. Expression profiling identifies genes expressed early during lint fibre initiation in cotton [J]. Plant Cell Physiol,2006,47:107-127.
    320. Wu Y, Meeley RB, Cosgrove DJ. Analysis and expression of the alpha-expansin and beta-expansin gene families in maize [J]. Plant Physiol,2001,126:222-232.
    321. Wu Y, Xu W, Huang G et al. Expression and localization of GhH6L, a putative classical arabinogalactan protein in cotton (Gossypium hirsutum) [J]. Acta Biochim Biophys Sin (Shanghai), 2009,41 (6):495-503.
    322. Wu YR, Rozenfeld S, Defferrard A, et al. Cycloheximide treatment of cotton ovules alters the abundance of specific classes of mRNAs and generates novel ESTs for microarray expression profiling[J]. Mol Gen Genomics,2005,274:477-493.
    323. Wu YT, Liu JY. Molecular cloning and characterization of a cotton glucuronosyltranferase gene [J]. Journal of Plant Physiol,2005,162:573-582.
    324. Wymer CL, Bibikova TN, Gilroy S. Cytoplasmic free calcium distributions during the development of root hairs of Arabidopsis thaliana [J]. Plant J,1997,12:427-439.
    325. Xiao YH, Li DM, Yin MH, et al. Gibberellin 20-oxidase promotes initiation and elongation of cotton fibers by regulating gibberellin synthesis [J]. J Plant Physiol,2010,167:829-837
    326. Xu K, Xu X, Fukao T, et al. SublA is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature,2006,442:705-708.
    327. Xu SL, Rahman A, Baskin TI, et al. Two leucine-rich repeat receptor kinases mediate signaling, linking cell wall biosynthesis and ACC synthase in Arabidopsis [J]. Plant Cell,2008,20:3065-3079.
    328. Xu WL, Wang XL, Wang H, et al. Molecular characterization and expression analysis of nine cotton GhEFIA genes encoding translation elongation factor 1A [J]. Gene,2007,389:27-35.
    329. Xu Y, Li HB, Zhu YX. Molecular biological and biochemical studies reveal new pathways important for cotton fiber development [J]. J Integr Plant Biol,2007a,49 (1):69-74
    330. Xu YH, Wang JW, Wang S, et al. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A [J]. Plant Physiol,2004, 135(1):507-515.
    331. Xu Z, Kohel RJ, Song G, et al. Gene-rich islands for fiber development in the cotton genome [J]. Genomics,2008,92 (3):173-83.
    332. Xu Z, Yu JZ, Cho J, et al. Polyploidization altered gene functions in cotton (Gossypium spp.) [J]. PLoS One,2010,5 (12):e14351.
    333. Yang SS, Cheung F, Lee JJ, et al. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton[J]. Plant Journal,2006,47:761-775.
    334. Yang YM, Xu CN, Wang BM, et al. Effects of plant growth regulators on secondary wall thickening of cotton fibers. Plant Growth Regulation,2001,35:233-237.
    335. Yang YW, Bian SM, Yao Y, et al. Comparative proteomic analysis provides new insights into the fiber elongating process in cotton [J]. J Proteome Res,2008a,7:4623-4637
    336. Yang ZB. Cell polarity signaling in Arabidopsis [J]. Annu Rev Cell Dev Biol,2008,24:551-575.
    337. Yao Y, Yang YW, Liu JY. An efficient protein preparation for proteomic analysis of developing cotton fibers by 2-DE [J]. Electrophoresis,2006,27:4559-4569
    338. Yu J, Kohel RJ, Smith CW. The construction of a tetraploid cotton genome wide comprehensive reference map [J]. Genomics,2010,95:230-240
    339. Yu JW, Yu SX, Lu CR, et al. High-density linkage map of cultivated allotetraploid cotton based on SSR, TRAP, SRAP and AFLP markers [J]. J Integr Plant Biol,2007,49 (5):716-724
    340. Yu Y, Yuan D, Liang S, et al., Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between Gossypium hirsutum and G. barbadense [J]. BMC Genomics,2011,12:15.
    341. Zabeau M, Vos P. Selective restriction amplification:a general method for DNA fingerprinting. European Patent Publication 92402629 (Publication No. EP0534858A1),1993
    342. Zeng ZB. Precision mapping of quantitative trait loci [J]. Genetics,1994,136:1457-1468.
    343. Zeng ZB. Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci[J]. Proc Natl Acad Sci. USA,1993,90:10972-10976.
    344. Zhang F, Zuo K, Zhang J, et al. An L1 box binding protein, GbMLl, interacts with GbMYB25 to control cotton fibre development [J]. J Exp Bot,2010b,61(13):3599-3613.
    345. Zhang HB, Li Y, Wang BH, et al. Recent advances in cotton genomics [J]. International Journal of Plant Genomics,2008:742304
    346. Zhang J, Guo WZ, Zhang TZ. Molecular linkage map of allotetraploid cotton (Gossypium hirsutum L. x Gossypium barbadense L.) with a haploid population[J]. Theor Appl Genet,2002,105: 1166-1174
    347. Zhang J, Lu Y, Yu S. Cleaved AFLP (cAFLP), a modified amplified fragment length polymorphism analysis for cotton[J]. Theor Appl Genet,2005a,111 (7):1385-95.
    348. Zhang M, Zheng X, Song S, et al. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality [J]. Nat Biotechnol,2011,29 (5):453-8.
    349. Zhang TZ, Yuan YL, Yu J, et al. Molecular tagging of a major QTL for fiber strength in Upland cotton and its marker-assisted selection [J]. Theor Appl Genet,2003,106:262-268
    350. Zhang W, Morris QD, Chang R, et al. The functional landscape of mouse gene expression. J Biol, 2004,3:21-22.
    351. Zhang YM, Xu S. A penalized maximum likelihood method for estimating epistatic effects of QTL[J]. Heredity,2005b,95 (1):96-104
    352. Zhang YX, Lin ZX, Li W, et al. Studies of new EST-SSRs derived from Gossypium barbadense [J]. Chin Sci Bull,2007,52:2522-2531.
    353. Zhang YX, Lin ZX, Xia QZ, et al. Characteristics and analysis of simple sequence repeats in the cotton genome based on a linkage map constructed from a BCi population between Gossypium hirsutum and G. barbadense [J]. Genome,2008,51:534-546.
    354. Zhang ZS, Xiao YH, Luo M, et al. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.) [J]. Euphytica 2005c,144:91-99
    355. Zhang ZT, Zhou Y, Li Y, et al. Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibres and involved in cell elongation. J Exp Bot,2010a,61(12):3331-3344.
    356. Zhao GR, Liu JY. Isolation of a cotton RGP gene:A homolog of reversibly glycosylated polypeptide highly expressed during fiber development [J]. Biochim Biophys Acta,2002,1574 (3): 370-374.
    357. Zhao PM, Wang LL, Han LB, et al. Proteomic identification of differentially expressed proteins in the Ligon lintless mutant of upland cotton (Gossypium hirsutum L.) [J]. J Proteome Res,2010,9: 1076-1087
    358. Zhao XP, Si Y, Hanson RE, et al. Dispersed repetitive DNA has spread to new genomes since polyploid formation in cotton [J]. Genome Res,1998,8:479-492
    359. Zhou T, Zhang R, Yang D, et al. Molecular cloning and characterization of GhAPm, a gene encoding the mu subunit of the clathrin-associated adaptor protein complex that is associated with cotton (Gossypium hirsutum) fiber development [J]. Mol Biol Rep,2011,38 (5):3309-17.
    360. Zhu J, Lum PY, Lamb J, et al. An integrative genomics approach to the reconstruction of gene networks in segregating populations [J]. Cytogenet Genome Res,2004,105 (24):363-374.
    361. Zhu J, Weir BS. Mixed model approaches for genetic analysis of quantitative trait [J]. JZUS-A, 1998,1:321-330
    362. Zhu J, Zhang B, Smith, EN, et al. Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nat Genet,2008,40 (7),854-861.
    363. Zhu YQ, Xu KX, Luo B, et al. An ATP-binding cassette transporter GhWBCl from elongating cotton fibers[J]. Plant Physiol,2003,133:580-588.
    364. Zuo K, Zhao J, Wang J, et al. Molecular cloning and characterization of GhlecRK, a novel kinase gene with lectin-like domain from Gossypium hirsutum [J]. DNA Seq,2004,15 (1):58-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700